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A DETAIL OF BAYESIAN NEURAL
NETWORK METHODS

We will illustrate the complications of the different ap-
proaches for Bayesian inference with the help of a toy
example: a common linear layer with an input matrix
fi € RIXM with T samples and M features and some
weights f,, € RM*F with the output f, € RI*F with F
output features such that f, = f; fu.

Monte Carlo Dropout The concept of MCD (Gal and
Ghahramani, 2015)) lays in casting dropout (Srivastava et al.,
2014) training in NNs as approximate Bayesian inference.
Dropout can be described by applying a random element-
wise mask K € RT*M; K ~ Bernoulli(p) of zeros and
ones with probability 0 < p < 1 to the input f; and scaling

1 (LK © fi).

the non-zero elements by T as fo=fu >
The authors of MCD show that the use of dropout in NNs
before every weight-bearing layer can be interpreted as a
Bayesian approximation and by applying dropout, it can
approximate the integral over the models’ weights (Gal and
Ghahramani|, [2015)). Therefore, to estimate the predictive
distribution p(y*|x*) it is needed to collect the results of L
forward passes, while sampling and applying the element-
wise masks. Training is usually done through a single sam-
ple. Therefore, the only implementation-wise complications
of this method are the need for random generation of ze-
ros and ones and their subsequent element-wise application.
The number of parameters, and thus memory footprint, stays
constant.

Bayes-By-Backprop In BBB (Blundell et al.,[2015]) the
weight uncertainty is modelled explicitly, by assuming an
approximation ¢g(w|x,y, @) for the posterior p(w|x,y)
with respect to learnable parameters 6. The learning is per-
formed through minimising the distance bound between
q(w|x,y, 0) and p(w|x, y). The most common approxima-
tion g for weights w is a mean-field approximation, such that
w~N(u, o?), with individual mean p € RM*¥ and vari-

ance o2 € RM*F for each weight where 8 = {u, 0?} and
N represents a Gaussian distribution (Kingma and Welling}
2013 |Ranganath et al.;|2014). Kingma and Welling| (2013))
have introduced the reparametrisation trick, that allows
sampling of the weights with respect to the g, such that
fuw = p+e® ¢(o) where e~N (0, I), I is an identity and
¢(.) is a positive-forcing function e.g. softplus. The sam-
pled w can then be used, such that f, = f; f,,. Similarly
to MCD, to estimate the predictive distribution p(y*|x*) it
is needed to collect the results of L forward passes with re-
spect to L weight samples. Training is usually done through
a single sample. This method requires the ability of the
hardware to efficiently sample a more complex, Gaussian
distribution. Moreover, this model uses double the number
of parameters for the same network size, due to the means
paired with variances.

Stochastic Gradient Langevin Dynamics with Hamilto-
nian Monte Carlo In comparison to the previous two
approaches, in SGHMC (Chen et al., |2014)), it is not neces-
sary to perform sampling and random number generation
during evaluation. The w; corresponding to a single set of
weights from the ensemble can then be used directly during
evaluation instead of sampling them via w;~p(w|x, y) as
in the case of the two previous methods. To obtain p(y™*|z*)
it is needed to collect the results of L forward passes with
respect to the ensemble with L members corresponding to
L weights w. Training is performed similarly to standard
pointwise NNs. In comparison to the previous two meth-
ods, this method does not require sampling of a distribution
during evaluation. However, it requires L X more memory
resources in comparison to pointwise NN, to store the en-
tire ensemble. At the same time, it is necessary to consider
the extra time needed to load the weights w to memory.

B METRICS

In addition to measuring the root-mean-squared error
(RMSE) and the classification error, we establish metrics
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for the evaluation of the quantified uncertainty.

B.1 NEGATIVE-LOG LIKELIHOOD

Based on (Lakshminarayanan et al.l 2017), our base metric
for evaluating the quality of the predictive uncertainty is the
negative-log likelihood (NLL). We chose averages in our
evaluations, due to easier interpretability and consistence.
In the regression case, NLL can be formulated with respect
to a single-valued Gaussian as in equation ().
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In the classificaiton case, NLL can be formulated with re-
spect to cross-entropy as in equation (2)).

1 N
NLL:—N;

NLL_NZ

K

Y& log ki (@) )
k=1

B.2 PREDICTIVE ENTROPY

In case of classification for which the labels are not avail-
able, which is the case for most out-of-distribution datasets,
we measure the quality of the uncertainty prediction with
respect to the average predictive entropy (aPE) as in equa-

tion (3).
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B.3 EXPECTED CALIBRATION ERROR

Additionally, we measure the calibration of the BNNs
and their sensitivity through expected calibration error
(ECE) (Guo et al.,[2017). ECE relates confidence with which
a network makes predictions to accuracy, thus it measures
whether a network is over-confident or under-confident in
its predictions, with respect to the softmax output. To com-
pute ECE, the authors propose to discretize the prediction
probability interval into a fixed number of bins, and assign
each probability to the bin that encompasses it. The ECE is
the difference between the fraction of predictions in the bin
that are correct (accuracy) and the mean of the probabilities
in the bin (confidence). ECE computes a weighted average
of this error across bins as shown in equation @]) where
nyp is the number of predictions in bin b and accuracy(b)
and confidence(b) are the accuracy and confidence of bin b,
respectively. We set B = 10.

B
Z nWB laccuracy(b) — confidence(b)|  (4)
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ECE =

To summarise, for regression we are measuring RMSE and
NLL and for image classification problems we were observ-
ing the classification error, NLL, aPE and ECE.

C ADDITIONAL RESULTS

In this Section we report additional measurements with
respect to test data, confusion data or the domain shifts for
the image classification problems.

C.1 MNIST

The additional results for MNIST-based experiments are
presented in Figures [I] (a-e), 2] (a-e) and [3] (a,b). Starting
with the results for changing the activation precision, it can
be seen that as the predictive entropy for the confusion data
increases, the entropy for the test data stays constant and
it increases near the smallest bit-width, as seen in Figure E]
(a). As a result, the ECE, in Figure[I] (b), for the test data
also increases and that is due to 2 reasons: /) The quanti-
sation collapses when n = 3; 2) the predictive uncertainty
increases disproportionately to the error, which can be ob-
served in SGHMC and BBB. Subsequently, the NLL on the
test data stays constant and increases in the collapsed regime
as seen in Figure [T] (c). Nevertheless, as supported by the
ECE plot for the confusion data in Figure[T|(d), by becoming
more uncertain, the activation quantisation reduced the con-
fidence of BNNs on the confusion dataset, which is desired.
This can be also observed on the NLL for the confusion data
in Figure[T](e). Comparing these results to Figures[2](a-e), it
can be seen that weight quantisation follows similar trends,
and the ECE and the predictive entropy collapse, when n
reaches extrema. Looking in more detail at the aPE (a) and
NLL (b) on test data with augmentations in Figures[3] when
n = 7 for activations and n = 8 for weights, it can be seen
that the methods remain robust under augmentations, but at
the same time they are more uncertain. This further supports
the claim that the BNNs can indeed be already quantised to
approximately 8-bit integer representation. In addition, we
present 32-bit floating-point results with respect to Figures[4]
(a-d) and there are barely any visible deviations with respect
to the quantised counterparts.

C.2 CIFAR-10

The additional results for CIFAR-10-based experiments are
presented in Figures [5] (a-e), [6] (a-e) and [7] (a,b). Similarly
to MNIST experiments, as seen in Figures E] (a-e), it can be
observed that as the accuracy degrades, so does rightfully
the predictive confidence, best seen in Figure E] (a). At the
same time the ECE on the test data also increases, and on the
confusion data it tends to decrease, as seen in Figures E] (b,d).
However, this time it is due to the collapse in the activations,
where the bit-width is not satisfactory and a more advanced



quantisation scheme might be needed for n < 4. The re-
sults for weight quantisation support these observations as
seen in Figures [f] (a-e), nevertheless with smaller impact
on the ranges of the deviations. This suggests a potential
investigation into mixed precision representation with low
bit-width of weights, while preserving the activation pre-
cision. As seen in Figure[7](a,b) presenting results on test
data with augmentations when n = 7 for activations and
n = 8 for weights, it can be seen that the quantisation does
not prevent the Bayesian inference methods from quantify-
ing uncertainty in their predictions. In addition, we present
32-bit floating-point results with respect to Figures [§] (a-d)
and there are barely any visible deviations with respect to
the quantised counterparts presented in the supplementary
material or the main body of the paper.
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Figure 1: Changing activation precision, fixing weight precision. MNIST results with respect to average predictive entropy
(aPE) (a), expected calibration error (ECE) (b) and negative log-likelihood (NLL) (c) on test data and ECE (d) and NLL (e)
on FashionMNIST. Q stands for quantised activations (A) and weights (W). Subscript denotes bit-width. MCD collapses

when the bit-width < 3 for A.
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Figure 2: Fixing activation precision, changing weight precision. MNIST results with respect to average predictive entropy

(aPE) (a), expected calibration error (ECE) (b) and negative log-likelihood (NLL) (c) on test data and ECE (d) and NLL (e)
on FashionMNIST data. Q stands for quantised activations (A) and weights (W). Subscript denotes bit-width.

B Pointwise 3 mCD [ BBB I SGHMC A Pointwise 3 MCD I BBB B SGHMC
@ 1.0 4
©
£
& 0.5 1 ii
o
0.() rmm—— ﬂ S ——
Test data 1.5, Test data
with no 15°, 30 45 60 75 with no s ,
Augmentations 0.1 0.2 0. 3 04 05 Augmentations 0A1 0 2 0 3 0 4 045
Distortions Distortions
(@ (b)

Figure 3: Average predictive entropy (aPE) (a) and negative log-likelihood (NLL) (b) with respect to 7-bit activations and

8-bit weights and three augmentations applied to the MNIST test set: Brightness [1.5-3.5], Rotation [15°-75°] and Horizontal
shift [0.1-0.5 of image size].
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Figure 4: Classification error (a), average predictive entropy (aPE) (b), expected calibration error (ECE) (c) and negative
log-likelihood (NLL) (d) with respect to 32-bit floating-point activations and weights and three augmentations applied to the
MNIST test set: Brightness [1.5-3.5], Rotation [15°-75°] and Horizontal shift [0.1-0.5 of image size].
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Figure 5: Changing activation precision, fixing weight precision. CIFAR-10 results with respect to average predictive entropy
(aPE) (a), expected calibration error (ECE) (b) and negative log-likelihood (NLL) (c) on test data and ECE (d) and NLL (e)
on SVHN. Q stands for quantised activations (A) and weights (W). Subscript denotes bit-width. All methods collapse when

the bit-width < 4 for A.
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Figure 6: Fixing activation precision, changing weight precision. CIFAR-10 results with respect to average predictive
entropy (aPE) (a), expected calibration error (ECE) (b) and negative log-likelihood (NLL) (c) on test data and ECE (d) and

NLL (e) on SVHN. Q stands for quantised activations (A) and weights (W). Subscript denotes bit-width. All methods except
MCD collapse when the bit-width < 3 for W.
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Figure 7: Average predictive entropy (aPE) (a) and negative log-likelihood (NLL) (b) with respect to 7-bit activations
and 8-bit weights and three augmentations applied to the CIFAR-10 test set: Brightness [1.5-3.5], Rotation [15°-75°] and
Horizontal shift [0.1-0.5 of image size].
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Figure 8: Classification error (a), average predictive entropy (aPE) (b) and expected calibration error (ECE) (c) and negative
log-likelihood (NLL) (d) with respect to 32-bit floating-point activations and weights and three augmentations applied to the
CIFAR-10 test set: Brightness [1.5-3.5], Rotation [15°-75°] and Horizontal shift [0.1-0.5 of image size].
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