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1 ESTIMATION AND CONFIDENCE INTERVALS

Due to sampling variation, in real-data applications we know the observed data distribution only up to statistical uncertainty.
For any empirical distribution, it is possible to construct an uncertainty set for the true observed data distribution. In this
section, we present an approach for propagating this uncertainty through the linear program and into the resulting bounds.
This approach can be used whenever there is statistical uncertainty about the “right-hand-side” of the constraints of a
linear program. As a result, this approach can be used to estimate confidence intervals for the partial identification bounds
described in this paper, as well as for bounds on the ATE in the classic IV model.

The two major advantages of this approach over existing methods for calculating uncertainty sets for LP-based estimators
[Horowitz and Manski, 2000, Cheng and Small, 2006] are its finite-sample validity, and its computational simplicity. Because
the uncertainty is built directly into the linear program, calculating the uncertainty interval does not require resampling
or running additional optimization procedures. Perhaps the most common approach in such settings is the bootstrapping
method developed in Beran [1990] for balanced simultaneous confidence sets. However, recent work indicates that the
bootstrap does not yield valid results for functionals that are not smooth when estimates of the parameters of the distribution
are asymptotically Gaussian, as in discrete data [Fang and Santos, 2019]. It is well known that LPs are not smooth in the
RHS coefficients of their constraints [Chvatal, 1983].

The basic idea of our approach is that rather than insisting that the full data must marginalize exactly to the empirical
distribution, we instead insist only that the full data must marginalize to some distribution in the uncertainty set of the
observed data distribution. To facilitate incorporation of such uncertainty sets into the relevant linear programs, we would
like to be able to express them linearly. To that end, we make use of the convex polytope uncertainty region developed in
Garivier [2011] and succinctly stated in Nowak and Tánczos [2019], described by the expression

P(KLbern(p̂i||pi) ≤
log( 2k

α )

n
∀ i) ≥ 1− α, (1)

where p̂i and pi represent the empirical and true probabilities of outcome i respectively, KLbern(p||q) is the KL-divergence
between Bernoulli distributions with parameters p and q, k represents the number of possible outcomes, and n represents
the size of the dataset. In our setting, k is just the product of the cardinalities of the observed variables.

For convenience, we let U(P̂ , α, n) represent the uncertainty polytope at level α around P̂ for a sample of size n. The
following proposition shows how statistical uncertainty can be incorporated when no assumptions are made about the
relationships among the observed proxies Y, as in Section 3.

Proposition 1 (Measurement Error Uncertainty). LetM be a convex polytope model for the distribution φ of an unobserved
random variable X and observed proxies Y, and P̂Y be the empirical distribution of Y. Define

P ≡ {Q :
∑
x

Q(X = x,Y) ∈ U(P̂Y, α, n)}.
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Then for any functional η(φ),
P ( min

Q∈M∩P
η(Q) ≤ η(φ) ≤ max

Q∈M∩P
η(Q)) ≥ 1− α.

Proof. By the validity of the polytope uncertainty region (1), P (φ ∈ P) ≥ 1− α for any φ – including any φ ∈ M – as∑
x φ(X = x,Y) = P (Y). Because φ ∈M by assumption, P (φ ∈ P) = P (φ ∈ P ∩M). The conclusion then follows

trivially.

Next, we consider uncertainty in IV models, where the observed data constraints are expressed in terms of conditional
distributions. For that reason, we create uncertainty polytopes around these conditional distributions, rather than around the
full observed data distribution.

Proposition 2 (Uncertainty w/ Instruments). LetM be a convex polytope model for ψ, and P̂B|a represent the empirical
distribution of P (B | A = a), and P̂ (a) represent the empirical probability that P (A = a). Define

P ≡ {Q :
∑
b̃

Q(b̃)
∏
B∈B

I
(
b̃(aPa(B),bPa(B)\A) = bB

)
∈ U(P̂B|a, 1− (1− α)1/|A|, nP̂ (a)) ∀ a}.

Then for any functional η(ψ) that is not a function of P (A),

P ( min
Q∈M∩P

η(Q) ≤ η(ψ) ≤ max
Q∈M∩P

η(Q)) ≥ 1− α.

Proof. For a fixed a, P (B | A = a) =
∑

b̃Q(b̃)
∏
B∈B I

(
b̃(aPa(B),bPa(B)\A) = bB

)
as described in Section 4. The

set P is therefore the set of distributions over B̃ such that each observed conditional distribution is in its 1− (1− α)1/|A|

uncertainty polytope, as each such polytope is estimated using a sample of size nP̂ (a). Note that estimates of these
conditional distributions are statistically independent, as each sample subject is used in the estimation of only the conditional
distribution corresponding to the observed value of the instruments in that subject. Therefore the probability that all |A| of
them fall into their 1− (1− α)1/|A| uncertainty polytopes is simply 1− α. The remainder of the proof is as before.

This approach cannot account for uncertainty when either the objective or the assumptions are a function of P (A). For
example, in linear program (6), we target the factual distribution of the unobserved random variable X , which is as the
sum of products of the parameters of ψ and P (A). Because the distribution of the instrument is observed, we can in theory
substitute in its empirical distribution. However, if we are to account for uncertainty, we must introduce the true parameters
of P (A) distribution over the instruments into the program, yielding bi-linear terms. In the following proposition, we provide
a graphical criterion for assumptions and objectives that are not functions of P (A), and therefore for which Proposition 2
can be used.

Proposition 3. The distribution of a set of potential outcomes Z1(T1 = t1), . . . , Zn(TN = tn) is not a function of the
distribution of the instruments P (A) if and only if there is no index i such that there is an instrument A with a directed path
to Zi not through Ti.

2 COMPUTING BOUNDS FOR NON-LINEAR MODELS

Unfortunately, many useful models do not fall into the class of general IV models. For example, the simple Markov chain
shown in Figure 1 (f) of the main paper is not a general IV model and, as we will see below, generates non-linear constraints
on φ. In this section, we describe how non-sharp outer bounds can be derived for such cases. The only known complete
procedure for identifying all constraints implied by Bayesian networks on the distribution of a subset of their vertices
is an application of quantifier elimination [Gieger and Meek, 1999], which is infeasibly slow for many problems. When
constraints are known to exist, for example by Evans’ e-separation criterion [Evans, 2012], their exact form may not be
known and may not be linear. When constraints are known, but are not linear, it may be possible to derive sharp bounds
analytically. For example, the following proposition, proven in Section 3 of the supplementary materials, gives sharp bounds
for a three variable Markov chain (Figure 1 (f) of the main paper) over binary variables.
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Figure 1: A non-linear graphical model G and an application of the linear relaxation procedure, resulting in the linear relaxed
model G′.

Proposition 4. Let X and Y be binary variables such that X 6⊥⊥ Y , let A be a discrete variable such that A ⊥⊥ Y |X and
P (A = a) > 0 for all a, and let py = P (Y = y) and py|a = P (Y = y | A = a). Then we have the following sharp bounds
on P (X = 1):

P (X = 1) ∈
⋃

y∈{0,1}

[
py −mina py|a

1−mina py|a
,

py
maxa py|a

]
. (2)

Such analytical bounds, however, are not typically available. In these cases, non-sharp bounds can be derived for any
graph by relaxing independence assumptions until the model becomes a general IV model. Specifically, any latent variable
Bayesian network G = (V,E) can be converted to a general IV model G′ by first identifying the set of instruments and then
adding a mutual latent confounder between all non-instruments. This procedure is formalized in the following steps:

Procedure 1 (Graphical Relaxation).

1. Initialize S as the set of all latent confounders and all variables V such that Pa(V ) = ∅
2. For any latent confounder U with exactly two children A and B such that Pa(A) = {U} and Ch(A) = {B} or
Ch(A) = ∅, add A to S

3. Add a latent confounder Λ, and an edge from Λ to each variable in V/S.

An example application of this procedure is shown in Figure 1. Because adding an additional latent confound can only
remove independencies from the graph, this procedure represents relaxations of the constraints on ψ, and therefore enables
the calculation of outer bounds for mismeasured variables through linear programming.

Proposition 5. Suppose G′ is the general IV graph obtained after relaxing a graph G according to Procedure 1. Then sharp
bounds on any linear functional of P (BU) in G′ will be valid outer bounds in G.

3 PROOFS

Proof of Proposition 1 of the main paper

First, the constraints places on P (A,B) by fixing the marginal P (A,BO) are trivially linear. Next, as simple consequence
of Proposition 5 of Evans [2016], whenever two random variables A and B in a graph G share a common unobserved parent,
and A has no other parents, the model corresponding to the graph is unchanged by removing the common parent and adding
an edge from A to B if one does not already exist. As a result, a graph G′ obtained by applying Procedure 1 to any general
IV graph G will represent the same model as G.

In G′, each instrument is randomized with respect to its child in B. Λ can be thought of as a selector such that each variable in
B takes a value determined by Λ and its parents in {A,B}. Consider the equivalence class formed by all values of Λ that lead
to the same settings of B for each setting of A of [λ] = {λ′ : P (B | Λ = λ,A = a) = P (B | Λ = λ′, A = a) ∀ a). Then,
by [Fine, 1982], when variables are discrete, the conditional distributions P (B | A) can be represented linear combinations
of parameters. See Appendix A of Chaves et al. [2017] for a common representation of these linear constraints, in which
the linear combination is of probabilities that Λ takes values in various equivalence classes. Note that is equivalent to the
response function variable representation we use as a joint setting of the response function variables indicates membership
in a particular equivalence class of Λ. Finally, because P (A,BO), and by extension P (A), is known, G′ places linear
constraints on P (A,B).



Proof of Proposition 2 of the main paper

First, we recall that any graph G in general instrumental variable model is equivalent to G′ in which P (B̃ = b̃,A) =
P (A)ψb̃. Then,

P (Z(t) = z) =
∑

v:vZ=z

P (B(t) = vB | A = vA)P (A = vA)

=
∑

v:vZ=z

P (B(t,vV\T) = vB | A = vA)P (A = vA)

=
∑

v:vZ=z

P (B(t,vV\T) = vB)P (A = vA).

The second equality is by the causal consistency assumption, and the last one is by the independence property of G′. Next,
we note that intervention on variables other than the parents of B is irrelevant given intervention on its parents, yielding

P (B(t,v) = vB) = P (B(tPa(B),vPa(B)\T) = vB : B ∈ B).

Finally, by definition of B̃, each B(tPa(B),vPa(B)\T) is in B̃, such that P (B(tPa(B),vPa(B)\T) = vb : B ∈ B) is simply
the probability B̃ takes a value b̃ in which B(tPa(B),vPa(B)\T) = vB for all B ∈ B, concluding the proof.

Proof of Proposition 4 of the supplementary materials

Following the approach in Balke and Pearl, we derive bounds on π by translating our assumptions into constraints on π
and then find sharp upper (lower) bounds by maximizing (minimizing) π1 subject to these constraints. We begin with the
equality

π1 =
p1 − q1|0
q1|1 − q1|0

. (3)

This function is discontinuous at q1|1 = q1|0 (which is disallowed by assumption), but continuous above and below this
line. To derive the bounds in Proposition 4, we take the union of the sharp bounds when q1|1 > q1|0 and when q1|1 < q1|0.
Consider first the case when q1|1 > q1|0. For each value a of A we have

p1|a = q1|0(1− π1|a) + q1|1π1|a

Combining this with Equation 3, we can find the sharp upper bound by solving the following (non-linear) optimization
problem:

max
q1|1>q1|0

p1 − q1|0
q1|1 − q1|0

s.t. p1|a = q1|0(1− π1|a) + q1|1π1|a ∀a
0 ≤ q1|0, q1|1, π1|a ≤ 1 ∀a

To solve this optimization problem, we will fix q1|1 and optimize with respect to q1|0 and then optimize the resulting function
with respect to q1|1. That is, let

g(q1|1) = max
q1|0

p1 − q1|0
q1|1 − q1|0

s.t. p1|a = q1|0(1− π1|a) + q1|1π1|a ∀a
0 ≤ π1|a ≤ 1 ∀a
0 ≤ q1|0 < q1|1



In this case, all constraints are satisfied so long as 0 ≤ q1|0 ≤ mina p1|a and the maximum is achieved when q1|0 = 0. Thus,
g(q1|1) = p1

q1|1
. Next, we solve

max
q1|1

g(q1|1) =
p1
q1|1

s.t. p1|a = q1|1π1|a ∀a
0 ≤ π1|a ≤ 1 ∀a

In this case, all constraints are satisfied so long as maxa p1|a ≤ q1|1 ≤ 1 and the maximum value that satisfies this constraint
is p1

maxa p1|a
. Applying similar reasoning to the minimization problem, we get a minimum value of p1−mina p1|a

1−mina p1|a
. Thus, when

q1|1 > q1|0, we have the following sharp bounds on π1

p1 −mina p1|a

1−mina p1|a
≤ π1 ≤

p1
maxa p1|a

(4)

Finally, we repeat this derivation for q1|1 < q1|0 and take the union of these two sets of bounds to get the bounds in
Proposition 4.

4 EXAMPLE LINEAR PROGRAMS

In this section, we present example linear programs for each of the general IV models presented in Figure 1 in Section 4 of
the main paper. In all cases, we present bounds for E[X]

4.1 FIGURE 1 (B)

In this model, A can be used to represent observed randomness in the measurement method. Because, X has no parents,
X̃ = X , and thus ψ = P (X, Ỹ )

objective:
∑
a,x,ỹ

xP (A = a)ψx,ỹ (5)

s.t.
∑
x,ỹ

I(ỹ(x, a) = y)ψx,ỹ = P (Y = y | A = a)

ψx,ỹ ≥ 0.

4.2 FIGURE 1 (C)

In this model, A and A′ represent independent IVs.

objective:
∑

a,a′,x̃,ỹ

x(a, a′)P (A = a,A′ = a′)ψx̃,ỹ (6)

s.t.
∑
x̃,ỹ

I(ỹ(x) = y, x̃(a, a′) = x)ψx̃,ỹ = P (Y = y | A = a,A′ = a′)

ψx̃,ỹ ≥ 0.

4.3 FIGURE 1 (D) AND (E)

After randomizing the instruments according to Procedure 1, the graphs for these models are identical to the classic IV model.
Thus, the linear program for the classic IV model, shown in Equation 6, can be used to bound parameters of P (A,X, Y ).
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