
Correlated Weights in Infinite Limits of Deep Convolutional Neural Networks
(Supplementary material)

Adrià Garriga-Alonso1 Mark van der Wilk2

1Department of Engineering, University of Cambridge, UK
2Department of Computer Science, Imperial College London, UK

A PATCH FUNCTIONS AND DISCRETE
CONVOLUTIONS

Usually, convolutions are defined explicitly by subtracting
the indices of one input tensor from the other one, and
not using patch functions. To make this paper clearer, it is
convenient to abstract the details of a convolution, so we
introduced the patch function.

Definition A.1 (Discrete convolution). Let D ∈ N be a
number of spatial dimensions, the tensor-valued weights
W ∈ RP , input X ∈ RF , and output Y ∈ RF ′ . The
tensor sizes P (patch size) and F ,F ′ (feature sizes) are
each a D-tuple, P ,F ,F ′ ∈ ND. We say that Y is the
result of the convolution operation Y = W ∗X , if

Yq1,...,qD =

P1∑
p1=1

· · ·
PD∑
pD=1

Wp1,...,pDXq̃1(p1),...,q̃D(pD).

(1)
Here, q̃d(·) : [Pd]→ [F ′d] are the patch functions for a given
output location q. Using D-tuples p, q as indices, we may
also write

Yq =

P∑
p=1

WpXq̃(p). (2)

Counting from 1 to P is done in such a way that p takes all
the values in [P].

Definition A.2 (Patch function). For each dimension d ∈
[D], layer ` ∈ [L], fix a stride s ∈ N, and dilation h ∈ N. For
output position q, the patch function of the dth dimension
q̃d(·) : [Pd]→ [F ′d] is

q̃d(pd) = sqd − h
(
pd −

⌈
Pd
2

⌉)
. (3)

For a D-tuple index p, we may compactly write q̃(p) ,
(q̃1(p1), . . . , q̃D(pD)).

It is possible to verify that definition A.2 overall yields the
usual definition of a convolution in deep learning [Goodfel-
low et al., 2016, Section 9.1].

Remark A.3. The concatenation of two patch functions
q̃(·), q̃′(·) is also a patch function, with argument in [P]2.
That is, for [p,p′] = s ∈ NP×P and [q, q′] = r,

(q̃(p), q̃′(p′))

= (q̃1(p1), . . . , q̃D(pD), q̃′1(p′1), . . . , q̃′D(p′D))

= r̃(s) . (4)

B PROOF THAT A CNN WITH
CORRELATIONS IN THE WEIGHTS
CONVERGES TO A GP

In this section, we formally prove that a CNN with correl-
ated weights converges in distribution to a Gaussian process
in the limit of infinite width. Using the NETSOR program-
ming language due to Yang [2019], most of the work in the
proof is done by one step: describe a CNN with correlated
weights in NETSOR.

For the reader’s convenience, we informally recall the NET-
SOR programming language [Yang, 2019] and key properties
of its programs (theorem B.7 and corollary B.8). The outline
of our presentation here also closely follows Yang [2019].
Readers familiar with NETSOR should skip to appendix B.3,
where we show the program that proves theorem B.10.

B.1 DEFINITION OF A NETSOR PROGRAM

A NETSOR program expresses numerical computations,
such as those used to define the output of a neural network.
Each line of a NETSOR program is simply the definition of
a new variable, in terms of previously defined variables.

There are three types of variables: G(n)-vars, A(n1, n2)-
vars, and H(n)-vars (henceforth called “NETSOR vari-
ables”). Each of these have one or two parameters, which
are the widths we will take to infinity. For a given index
in [n] (or [n1]× [n2]), each NETSOR variable is a random

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Adri� Garriga-Alonso <ag919@cam.ac.uk>?Subject=Your UAI 2021 paper

scalar. To represent vectors that do not grow to infinity, we
need to use collections of NETSOR variables.

G-vars, A-vars and H-vars are all random when the pro-
gram is run. To accomodate non-random variables that may
change (like the inputX to a neural network (NN)) we must
define a different NETSOR program, definingX either as a
constant or a G-var with variance zero.

What follows is an explanation of the three kinds of NETSOR
variables, and example uses of them. The program indicates
the type of a variable using “var : Type”.

G-vars (Gaussian-vars) are n-wise approximately independent
and identically distributed (i.i.d.) and Gaussian. By “n-
wise (approximately) independent” we mean that there
can be correlations between G-vars, but only within
a single index i ∈ 1, . . . , n. G-vars will converge in
distribution to an n-wise independent, identically dis-
tributed Gaussian in the limit of n→∞, if all widths
are n. They are used, for example, to define the biases
of a fully connected neural network (FCNN).

A-vars represent matrices, like the weight matrices of a dense
neural network. Their entries are always i.i.d. Gaussian
with with zero mean, even for finite instantiations of the
program (finite n). There are no correlations between
different A-vars, or elements of the same A-var. They
may be used to define the weight matrices of a FCNN.

H-vars represent variables that become n-wise i.i.d. (not ne-
cessarily Gaussian) in the infinite limit. G is a subtype
of H, so all G-vars are also H-vars. Post-nonlinearity
activations are H-vars.

O-vars (Output-vars) are used to define the output of the NET-
SOR program. A O(n)-var behaves like you would
expect a hypothetical A(n, 1)-var to behave: its ele-
ments are i.i.d. Gaussian with mean zero, and it is
independent of all other variables in the program.

Yang [2019] does not define O-vars, instead choosing to
consider them part of the G-vars, since they both converge
to i.i.d. Gaussians.

Definition B.1 (Netsor program). A NETSOR program con-
sists of:

Input: A set that may contain G-vars, A-vars, and O-vars.

Body: Each line of the program defines a new variable in
terms of existing ones. New variables may be defined using
the following rules:

• MatMul: A(n1, n2) × H(n2) → G(n1). Given an
A(n1, n2)-var (i.i.d. Gaussian matrix) and an H(n2)-
var (i.i.d. vector), its multiplication is a G(n1)-var
(that is, it converges to a Gaussian vector in the limit
n2 →∞).

• LinComb: Given constants α1, . . . , αK , and G-vars

x1, . . . , xK of type G(n1), their linear combination∑K
k=1 αkxk is a G-var.

• Nonlin: applying an elementwise nonlinear function
φ : RK → R, we map several G-vars x1, . . . , xK to
one H-var.

Output: A tuple of scalars (oT1x1, . . . , o
T
KxK/

√
nK). The

variables ok : O(nk) are O-vars. It may be the case that
oj = ok for different j, k (that is, the list [v1, . . . , vK] has
repeated entries). Each xk : H(nk) is a H-var.

Outside of these rules, NETSOR does not have conditionals
or loops1. In practice, we may use loops and conditionals to
write a NETSOR program, so long as they do not access the
values of NETSOR variables. Conceptually, these behave like
a LISP-style “macro” that generates a NETSOR program.

B.2 THE OUTPUT OF A NETSOR PROGRAM
CONVERGES TO A GAUSSIAN PROCESS

For simplicity, we assume that the width of all the NETSOR
variables is n. Yang [2019] also considers the case where
each nk is different. First, the necessary assumptions.

Definition B.2 (Controlled function [Yang, 2019]). A func-
tion φ : Rk → R is controlled if it is measurable and

|φ(x)| ≤ exp
(
C‖x‖(2−ε)2

)
+ c

for some C, c, ε > 0, where ‖ · ‖2 is the L2 norm.

If a function is controlled, it is L2 integrable with a Gaus-
sian. That is, if the argument x of the function is Gaussian,
the variance of φ(x) is finite. This in turn ensures that the
NN function has finite variance. All common nonlinearities
(ReLU, tanh, SiLU, . . .) are controlled. This is a very weak
assumption, it is vanishingly unlikely that future nonlinear-
ities will grow as fast as O

(
ex

2
)

.

Assumption B.3. All nonlinear functions φ(·) in the NET-
SOR program are controlled.

Assumption B.4 (Distribution of A-var inputs). Consider
each A(n, n)-var in the program,W . Each of its elements
Wi,j , where i, j ∈ [n], is sampled from the zero-mean, i.i.d.

Gaussian, Wi,j
iid∼ N

(
0, σ2

w/n
)
.

Assumption B.5 (Distribution of G-var inputs). Consider
the input vector of all G(n)-vars for each channel i ∈ [n],
that is the vector zi , [xi : x is input G-var]. It is drawn
from a Gaussian, zi

iid∼ N
(
µin,Σin

)
. The covariance Σin

may be singular.

1Of course, a nonlinearity φ may be internally defined using
loops and conditionals, so long as it satisfies assumption B.3.

Assumption B.6 (Distribution of O-vars). Each O(nk)-var
vk in the program is an independent Gaussian for each
channel. Different O-vars may have different variances. That
is, for each k ∈ [K], i ∈ [n], vk,i

iid∼ N
(
0, σ2

k/nk
)
.

Theorem B.7 (NETSOR master theorem, Yang, 2019). Fix
any NETSOR program satisfying assumptions B.3 to B.6. If
g(1), . . . , g(M) are all the G-vars in the entire program, then
for any controlled ψ : RM → R, as n→∞,

1

n

n∑
i=1

ψ
(
g
(1)
i , . . . , g

(M)
i

)
a.s.→ E

z∼N (m,K)

[
ψ
(
z(1), . . . , z(M)

)]
. (5)

Here a.s.→ is almost sure convergence [Rosenthal, 2006,
sec. 5.2]. The meanm and covarianceK are calculated un-
der the assumption that all the G-vars are jointly Gaussian,
like in section 3.

Proof sketch. The proof is by induction on the number of
G-vars included in the output, added in order of definition.
The induction invariant is that, for some m < M , eq. 5
holds; and that a subset of G-vars in [m] which form a basis
have a non-singular distribution. The detailed proof is in
Yang [2019, Appendix H]. �

The following corollary is a consequence of the Master
theorem (B.7) and the Central Limit Theorem.

Corollary B.8 (Corollary 5.5, abridged, Yang, 2019). Fix
any NETSOR program which satisfies assumptions B.3
to B.6. For simplicity, fix the widths of all the variables to n.
The program outputs are (oT1x1, . . . , v

T
KxK), where each

xk is an H-var, and each ok is a O-var. Then, as n → ∞,
the output tuple converges in distribution to a Gaussian
N (0,K). The covarianceK is given by doing calculations
like section 3, assuming that G-vars are jointly Gaussian.

B.3 NETSOR PROGRAM AND GP BEHAVIOUR:
CNN WITH CORRELATED WEIGHTS

NETSOR only has native support for matrix-vector multiplic-
ations and linear combinations with constants. How can we
represent a convolution operation for convolutional neural
network (CNN)? Consider the convolutional layer definition
(eq. 1). Changing the sum order, we obtain

Expanding the convolution into a sum, and changing the
sum order, we obtain

Z
(`)
i,q (X) =

P (`)∑
p=1

C(`−1)∑
j=1

W
(`)
i,j,p A

(`−1)
j,q̃(p)(X), (6)

which is just a spatial sum of matrix multiplications

Z(`)
:,q (X) =

P (`)∑
p=1

W (`)
:,:,p A

(`−1)
:,q̃(p)(X). (7)

Thus, we may express a convolution with multiple filters as
a sum of matrix-vector multiplications. This is the canonical
way to represent convolutional filters in NETSOR [Yang,
2019, NETSOR program 4].

Here we run into a problem. Equation 9 states that CNN
filters are spatially correlated, but assumption B.4 states
that A-vars have to be independent. To solve this, we will
use the the following well-known lemma, which is theRε
expression of a Gaussian random variable with mean zero.
The tensorR is a square root of the covariance.

Lemma B.9. Let Σ ∈ RP 2

be an arbitrary real-valued
covariance tensor. Then there exists another real-valued
tensorR ∈ RP 2

such that Σq,q′ =
∑P

p=1Rq,pRq′,p. Next,
let u,w ∈ RP be real-valued tensors, such that w =
Ru. Suppose the elements of u are i.i.d. standard Gaussian
variables, {up}p∈[P]

iid∼N (0, 1). Then,w has a multivariate
Gaussian distribution with mean zero and covariance tensor
Σ.

Proof. LetK = |P |, and Σ̃ beK×K matrices, obtained by
flattening the dimensions of Σ respectively. Then Σ̃ is a real-
valued covariance matrix, so it is positive semi-definite and a
square matrix R̃ s.t. R̃R̃T = Σ̃ always exists. Un-flattening
R̃ we obtain R. The variable w is Gaussian because it is
a linear transformation of the Gaussian u. Calculating the
second moment of w finishes the proof. �

Thus, to express convolution in NETSOR with correlated
weights w, we can use the following strategy. First, express
several convolutions with uncorrelated weights u, using
eq. 7. Then, combine the output of the convolutions using
LinComb and coefficients of the tensorR.

Given a collection of A-vars
{
U

(`)
:,:,p

}
p∈[P (`)]

, we can ex-

press the convolutional weights W (`) which have covari-
ance Σ(`) = R(`)

(
R(`)

)T
as

W (`)
:,:,p =

P (`)∑
s=1

R(`)
p,sU

(`)
:,:,s . (8)

Substituting this into eq. 7 we obtain

Z(`)
:,q (X) =

P (`)∑
p=1

P (`)∑
s=1

R(`)
p,sU

(`)
:,:,s A

(`−1)
:,q̃(p)(X). (9)

To express this computation with NETSOR rules we may
write

MatMul: H(`)
:,s,p(X) , U (`)

:,:,sA
(`−1)
:,p (X)

for s ∈ [P (`)],p ∈ [F (`−1)], (10)

LinComb: Z(`)
:,q (X) , +

P (`)∑
p=1

P (`)∑
s=1

R(`)
p,s H

(`)
:,s,q̃(p)(X)

for q ∈ [F (`)]. (11)

Algorithm 1 uses this construction for every layer to express
an L-layer CNN with correlated weights, applied to an input
data set X , [X1, . . . ,XM].

Theorem B.10 (Correlated CNN behaves like a GP). Con-
sider a countable set of input points X̃ , and a fixed num-
ber of layers L. Apply the L-layer convolutional neural
network (eqs. 1 and 2) with correlated weights (eq. 9)
to X . Assume its nonlinearities are controlled (assump-
tion B.3). For simplicity, fix all layers to have the same
number of channels: C = C(1) = · · · = C(L). Then, as
the number of channels C →∞, the activations Z(L)

(
X̃
)

converge in distribution to a Gaussian process with mean
function E

[
Z

(L)
i

(
X̃
)]

= m(L)
(
X̃
)

and covariance func-

tion C
[
Z

(L)
i,q

(
X̃
)
, Z

(L)
i′,q′

(
X̃
)]

= δi,i′K
(L)
q,q′

(
X̃ , X̃

)
(sec-

tion 3).

Proof. We need to show

1. that algorithm 1, including the postprocessing part,
implements a correlated-weight CNN correctly,

2. that the full program converges weakly to a Gaussian
process (GP) on X̃ ,

3. that the moments of this GP match the ones in sec-
tion 3.

For the first claim, the key is the equivalence between a con-
volutional layer with correlated weights (eq. 1), and a spa-
tial outer product followed by linear combination (eqs. 10
and 11). Keeping this in mind, we can verify by inspection
that the steps of algorithm 1, including the output postpro-
cessing, implement the recursive CNN equations (eqs. 1
and 2).

The second claim is somewhat more involved. Invoking the
Kolmogorov extension theorem [Tao, 2011, Thm. 2.4.3] we
restrict our attention to finite subsets X ⊆ X̃ , which are
going to be compatible distributions if claim 3 is true. Since
X ∈ X are tensors, we may use the Euclidean metric. We
then show by theorem B.7 that the output tuple of the CNN
NETSOR program converges weakly to a GP as C → ∞.
Each activation in the postprocessing is defined as a linear
combination of a Gaussian random variable (RV) (the bias)
and a RV that converges weakly to a Gaussian, and thus the

Algorithm 1 NETSOR description of an L-layer CNN with
correlated weights, with input X .
/* G-vars for layer 1 activations, for

all spatial locations p and input
points Xm. */

Input :Z(1)
p (Xm) : G(C(1))

for p ∈ [F (1)] and m = 1, . . . ,M.
/* A-vars for the independent

convolutional weights */

Input :U (`)
p : A

(
C(`), C(`−1))

for p ∈ [P (`)] and ` = 2, . . . , L− 1.
/* O-vars for the output, for every

patch location s and channel i */

Input :oi,s : O
(
C(L−1))

for s ∈ [P (L)] and i = 1, . . . , C(L).

for m = 1, . . . ,M (data points of m) do
for ` = 2, . . . , L− 1 (layer `) do

for p = 1, . . . ,F (`−1) do
Nonlin: H

(
C(`−1))

A
(`−1)
:,p (Xm) , φ

(
Z

(`−1)
:,p (Xm)

)
for s = 1, . . . ,P (`) (patch location s) do

MatMul: G
(
C(`)

)
H

(`)
:,s,p(Xm) , U (`)

s A
(`−1)
p (Xm)

end
end
for q = 1, . . . ,F (`) (spatial location q) do

LinComb: G
(
C(`)

)
: Z

(`)
:,q (Xm)

,
∑P (`)

p=1

∑P (`)

s=1 R
(`)
p,s H

(`)
:,s,q̃(p)(Xm)

end
end

for p ∈
[
F (L−1)] (spatial location p) do

Nonlin: H
(
C(L−1))

A
(L−1)
:,p (Xm) , φ

(
Z

(L−1)
:,p (Xm)

)
end

end
/* One output for every spatial

location p, patch location s,
channel i and data point m. */

Output :
(
oTi,sA

(L−1)
:,p (Xm) : for p ∈ [F (L)], s ∈ [P (L)],

i ∈ [C(L)] and m ∈ [M]
)

Output postprocessing: correlate the outputs and add bi-
ases (not part of NETSOR)
for m ∈ [M], i ∈ [C(L)] and q ∈ F (L) do

Z
(L)
i,q (Xm) ,

∑P (L)

p=1

∑P (L)

s=1 R
(L)
p,s

(
oTi,sA

(L−1)
:,q̃(p) (Xm)

)
end

resulting distribution on X converges weakly to a Gaussian
too.

Finally, we have to show that the postprocessed output has
the correct kernel. The output tuple and the activations have
mean zero, which is correct. We thus compute the covariance
of the output tuple in algorithm 1, forX,X ′ ∈ X̃ :

C
[
oTi,sA

(L−1)
:,p (X),oTi′,s′A

(L−1)
:,p′ (X ′)

]
= δi,i′δs,s′V

(L−1)
p,p′ (X,X ′). (12)

The delta functions appear because the O-vars and their
elements are all independent. Using this, we can calculate
the covariance function of the activations

C
[
Z

(L)
i,q (X), Z

(L)
i′,q′(X

′)
]

=

P (L)2∑
p,p′

P (L)2∑
s,s′

R(L)
p,sR

(L)
p′,s′ C

[
oTi,sA

(L−1)
:,q̃(p) (X),oTi′,s′A

(L−1)
:,q̃′(p′)(X

′)
]
.

(13)

Substitute the value of the expectations and eliminate one
of the sums due to δs,s′ ,

C
[
Z

(L)
i,q (X), Z

(L)
i′,q′(X

′)
]

= δi,i′
(P (L)2∑

p,p′

P (L)∑
s=1

R(L)
p,sR

(L)
p′,sV

(L−1)
q̃(p),q̃′(p′)(X,X ′)

)
. (14)

Finally, noting that Σ
(L)
p,p′ =

∑P (L)

s=1 R
(L)
p,sR

(L)
p′,s

(lemma B.9), and using the definition of K(L)
q,q′(X,X ′)

(eq. 11), we obtain the claim.

= δi,i′
(P (L)2∑

p,p′

Σ
(L)
p,p′V

(L−1)
q̃(p),q̃′(p′)(X,X ′)

)
= δi,i′K

(L)
q,q′(X,X ′). (15)

�

References

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016. URL https://www.
deeplearningbook.org/.

Jeffrey S Rosenthal. A First Look At Rigorous Probability
Theory. World Scientific Publishing Company, 2006.

Terence Tao. An introduction to measure theory, volume
126. American Mathematical Society Providence, RI,
2011.

Greg Yang. Wide feedforward or recurrent neural networks
of any architecture are Gaussian processes. In Advances
in Neural Information Processing Systems 32 (NeurIPS).
2019.

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/

	Patch functions and discrete convolutions
	Proof that a CNN with correlations in the weights converges to a GP
	Definition of a Netsor program
	The output of a Netsor program converges to a Gaussian process
	Netsor program and GP behaviour: CNN with correlated weights

