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Abstract

In a variety of problems, a decision-maker is un-
aware of the loss function associated with a task,
yet it has to minimize this unknown loss in order
to accomplish the task. Furthermore, the decision-
maker’s task may evolve, resulting in a varying
loss function. In this setting, we explore sequential
decision-making problems modeled by adversarial
Markov decision processes, where the loss func-
tion may arbitrarily change at every time step. We
consider the bandit feedback scenario, where the
agent observes only the loss corresponding to its
actions. We propose an algorithm, called online
relative-entropy policy search with implicit explo-
ration, that achieves a sublinear regret not only in
expectation but, more importantly, with high proba-
bility. In particular, we prove that by employing an
optimistically biased loss estimator, the proposed
algorithm achieves a regret of Õ(T

2
3

√
τ |A||S|),

where |S| is the number of states, |A| is the num-
ber of actions, τ is the mixing time, and T is the
time horizon. To our knowledge, the proposed al-
gorithm is the first scheme that enjoys such high-
probability regret bounds for general adversarial
Markov decision processes under the presence of
bandit feedback.

1 INTRODUCTION

A central notion in the analysis of online and sequential
decision-making systems is that of Markov decision pro-
cesses (MDPs). MDPs enable modeling decision-makers
(learners) that need to make a sequence of decisions in the
presence of uncertainty in the decision-maker’s environment.
In this scenario, a loss (or reward) function captures the task
expected from the learner. Therefore, the decision-maker’s

*The first two authors contributed equally.

goal is to design a learning algorithm that, despite operating
under uncertainty, learns a policy with the lowest cumulative
loss (or the highest cumulative reward). In a traditional MDP
problem, one assumes that the environment’s dynamics and
the losses are stationary (i.e., time-invariant) throughout the
time horizon of the interaction between the learner and the
environment. However, the stationarity assumption does not
hold in scenarios where the agent’s task evolves over time.

The so-called adversarial MDP (A-MDP) [11] is a new
paradigm that enables the study of sequential decision-
making problems with evolving tasks. In particular, in an
A-MDP, the environment’s dynamics remain invariant while
the loss function changes arbitrarily over time.1 The learner
aims to follow a policy that minimizes its loss in expecta-
tion over the time horizon. A standard metric for evaluating
the learner’s performance is regret, i.e., the difference be-
tween the learner’s loss and the loss occurred by the best
(stationary stochastic) policy in hindsight.

We focus on the setting of A-MDPs with bandit feedback,
i.e., after each action, the learner observes only the corre-
sponding loss but not the entire loss function. We consider
the general class of uniformly ergodic adversarial MDPs for
which the loss may change at every time step and provide
the first no-regret algorithm that achieves a high-probability
regret bound in this setting.

The state-of-the-art algorithms for learning in A-MDPs with
bandit feedback guarantee sublinear regret of Õ(

√
T ) in

expectation2, where T denotes the time horizon. However,
it remains a challenge to establish algorithms that attain sub-
linear regrets with high probability. Since in many practical
settings, e.g., robotics and recommender systems, a learner
may operate only once in an environment, a high-probability
regret bound is more desirable than a bound in expectation.
Nevertheless, high-probability guarantees are considered
to be significantly more difficult to obtain than expected

1We assume a setting where the adversarial changes in the loss
are oblivious to the past actions taken by the learner.

2The notation Õ hides log(.) factors.
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guarantees in online tasks with bandit feedback [21].

Contribution. We propose a learning algorithm for A-
MDPs with bandit feedback that achieves a sublinear re-
gret guarantee with high probability. We consider the linear
programming formulation of MDPs where the decision vari-
ables are the occupancy measure of state-action pairs. This
adaptation enables us to employ online mirror descent as a
building block of our proposed scheme to learn low-regret
occupancy measures. Furthermore, inspired by the idea of
implicit exploration [16, 21] for adversarial bandits, we
design a new optimistically biased estimator of the loss
function for A-MDPs with bandit feedback to establish re-
gret guarantees that hold with arbitrarily high probability.
Our specific contributions are as follows:

• We propose a new online learning algorithm, called
online relative-entropy policy search with implicit ex-
ploration, for A-MDPs under bandit feedback that em-
ploys a novel optimistically biased loss estimator.

• We design a novel optimistically biased loss estimator
which implicitly promotes the learner to explore the ac-
tion space and learn a sequence of randomized policies
by relying on a variant of online mirror descent.

• We prove for uniformly ergodic MDPs that the
proposed algorithm achieves a regret bound of
Õ((T |A||S|) 2

3
√
τ), both in expectation and with high

probability. Here, |S| is the number of states, |A| is
the number of actions, and τ is the mixing time of the
MDP. To our knowledge, the proposed scheme is the
first to achieve the above high probability regret bound
for uniformly ergodic MDPs with bandit feedback.

2 RELATED WORK

A number of exact and approximate solutions to the problem
of learning optimal policies in MDPs have been proposed in
the literature. These include value iteration, policy iteration,
and policy gradient techniques (see, e.g. [4, 5, 26] for a
detailed discussion). Diverging from these methods, a linear
programming (LP) approach has recently gained attention
for MDPs with stationary loss functions [1, 28] as well
as A-MDPs [31, 27, 6]. Our proposed algorithm relies on
the LP formulation for computing an occupancy measure
corresponding to the optimal policy. However, we propose a
new loss estimator to deal with the bandit feedback setting.

Learning with A-MDPs can be categorized into two cases:
episodic MDPs and uniformly ergodic MDPs where the
latter is considered more general and challenging [24].

2.1 EPISODIC A-MDPS

In this setting, the loss may change from episode to episode.
Jaksch et al. [13] introduced the UCRL-2 algorithm for

MDPs with stochastic rewards under the setting of unknown
transition functions and full information feedback. UCRL-
2 keeps track of confidence sets that, with high probabil-
ity, contain the true transition function and shrink over
time. For episodes of length L, they showed a regret of
Õ(L|S|

√
|A|T ) compared to the optimal policy and pro-

vided a min-max lower bound, which can be achieved for a
sufficiently large T (see the recent work of Azar et al. [3]).
Non-adversarial episodic MDPs are studied in [7, 30] and
recently [9] establish the state-of-the-art lowerbound for this
setting. For the adversarial episodic MDP model, Neu et
al. [22] proposed the follow-the-perturbed-optimistic-policy
algorithm which relies on the follow-the-perturbed-leader
method [15] and provides a regret of Õ(L|S||A|

√
T ). Re-

cently, Rosenberg and Mansour [27] extended the results
of Jaksch et al. [13] to MDPs with convex loss functions
by employing online convex optimization and provided an
algorithm achieving a regret of Õ(L|S|

√
|A|T ). However,

these results still rely on the availability of full information
feedback.

Under bandit feedback, Zimin and Neu [31] introduced
the O-REPS algorithm, which employs the online mir-
ror descent algorithm to achieve an expected regret of
Õ(
√
LT |A||S|). Similarly, Dick et al. [8] provided a re-

gret of Õ(
√
LT |S||A|) but for a computationally improved

algorithm. Jin et al. [14] explored the use of an implicit
exploration in the loss estimation for the case of episodic
A-MDPs with unknown transition functions and obtained a
high-probability regret of Õ(L|S|

√
T |A|). In this work, we

employ a different loss estimator with implicit exploration
property for the general case of ergodic A-MDPs where the
transition functions are known. We also analyze the regret in
terms of both the expectation and high-probability bounds.

2.2 UNIFORMLY ERGODIC A-MDPS

Learning with uniformly ergodic MDPs in the adversarial
setting is considerably more complicated than the episodic
case. In the former, which is also the focus of this paper, the
loss may change in every round, as opposed to the episodic
setting where the loss in each episode is fixed. This diffi-
culty renders the task of deriving learning algorithms with
sublinear regrets more challenging.

Early work by Even-Dar et al. [11] on A-MDPs is on uni-
formly ergodic MDPs with known transition function and
full information feedback. Considering each action to be an
expert, the MDP-E algorithm in [11] employs the weighted
majority method [19] in each state and achieves a regret
of O(τ2

√
T log |A|). Yu et al. [29] improved the computa-

tional efficiency utilizing the so-called follow-the-perturbed-
leader method [15] with a regret of O(|A|2|S|τT 3/4).
More recently, Cardoso et al. [6] provided a regret of
O(
√
τ(log |A||S|)T log T ) for the same problem of uni-

formly ergodic MDPs with known transition function and



Table 1: Overview of theoretical regret guarantees of learning algorithms for uniformly ergodic A-MDPs. Expected stands
for in expectation while High Probability stands for with high probability. β ∈ (0, 1] in [23, 24] is a lower bound on all
stationary distributions. The result in [24] only holds for T = Ω̃(|A|τβ−3).

Reference Related Setting Regret Bound Regret Type

[11] full feedback O(τ2
√
T log |A|) Expected

[23] bandit feedback O(T 2/3τ 3
√

log(T )|A| log(|A|)/β) Expected
[24] bandit feedback O(

√
τ3T log(T )|A| log(|A|)/β) Expected, Only for large T

[6] full feedback O(
√
τ(log |A||S|)T log T ) Expected

This work bandit feedback O((T |A||S|)2/3
√
τ log(|S||A|) log T log 1/δ) Expected, High Probability

full information feedback. Compared to this line of work,
we consider the bandit setting and propose a new algorithm
achieving high probability regret bounds.

For uniformly ergodic MDPs and under bandit feed-
back, Neu et al. [23] developed an algorithm that ob-
tains Õ(τT 2/3|A|1/3β−1/3) regret in expectation; here,
β is a lower bound on all stationary distributions, typi-
cally satisfying β−1 = O(|S|). The expected regret of
this algorithm is furthered improved with respect to T
to Õ(

√
τ3T |A|β−1) [24]; however, this result is semi-

asymptotic, i.e., it holds only for very long time horizons sat-
isfying T = Ω̃(|A|τβ−3). We note that all of the aforemen-
tioned episodic schemes, as well as the uniformly ergodic
results in [11, 23, 24], are guaranteed to achieve certain ex-
pected regrets. In contrast, in this paper, we propose a new
scheme that achieves regret bound of Õ((T |A||S|) 2

3
√
τ)

not only in expectation but also with high probability.

Table 1 summarizes the differences between our approach
with the most relevant existing methods.

3 BACKGROUND AND PRELIMINARY

We briefly overview the definitions of Markov decision
processes, uniformly ergodicity assumption, random and
expected regret, and the occupancy measures.

3.1 MARKOV DECISION PROCESS

Definition 1. A Markov decision process (MDP) is a tuple
M = (S,A,P, `), where S is a finite discrete state space,
A is a finite discrete action space, P : S ×A× S → [0, 1]
is a probabilistic transition function, and ` : S ×A → R is
a loss function.

A sequence of actions by the agent generates a state trajec-
tory over an MDP in the following manner. The agent starts
in an initial state sinit ∈ S. At time t, the agent is in state
st. Upon taking an action at ∈ A, the environment stochas-
tically selects a next state st+1 according to P(·|st,at) and
the agent receives a loss `(st,at).

A policy π is a mapping from the history of states and ac-
tions, i.e., ht = (s1,a1, s2,a2, . . . , st, at), to the action
space. The goal is to find a policy that minimizes the ex-
pected cumulative loss

E[

T∑
t=1

`(st,at)]

over a horizon of length T . Since MDPs admit optimal
stochastic stationary policies [26], it suffices to search for an
optimal policy in the family of stochastic stationary policies,
i.e., π : S × A → [0, 1]. Throughout this paper, we use
π(a|s) to denote the probability of selecting action a in state
s and Pπ ∈ R|S|×|S| to denote the transition probabilities
between the states under policy π. Let νt ∈ ∆S denote the
state distribution at time t, where ∆S is a simplex in R|S|.
Further, let νπt+1 denote the state distribution at time t under
policy π conforming to

νπt+1 = νtPπ.

We use ν̄π to indicate the stationary distribution of policy π
satisfying

ν̄π = ν̄πPπ.

We assume that the MDP satisfies the so-called uniformly
ergodic property, stated formally next.

Definition 2. Let ν1, ν2 ∈ ∆S denote a pair of state dis-
tributions. A uniformly ergodic MDP is an MDP for which
there exists τ ≥ 1 such that, for any policy π it holds that

‖ν1Pπ − ν2Pπ‖1 ≤ e−
1
τ ‖ν1 − ν2‖1.

Intuitively, for every policy over a uniformly ergodic MDP,
the convergence rate of state distributions to a unique sta-
tionary distribution is exponentially fast. Similar to [24], we
assume that the dynamics of the AMDP, i.e., the probabilis-
tic transition function P is known. The important and more
practical setting of dealing with unknown dynamic is left to
future work.

In an A-MDP, the loss function, denoted by `t, varies over
time. We assume that `t ∈ [0, 1] to remove the dependence



of the analysis on the magnitude of the loss. We indicate the
long-time average loss of a fixed policy π with respect to a
fixed loss function ` by

ξπ` = lim
T→∞

1

T

T∑
t=1

`(sπt ,a
π
t ).

One can show that for a fixed loss function `, an optimal
policy minimizing ξπ` can be computed by solving a linear
program (see (2) in [6]). We use ξπt and ξπtt to respectively
denote the long-time average loss of policy π and policy πt,
with respect to the loss function `t.

We use the formulation of the regret minimization where the
regret is defined with respect to the best policy in hindsight.
Define

LT = E[

T∑
t=1

`t(st,at)]

as the expected cumulative loss of the learner, where the
expectation is with respect to the randomness of the trajec-
tories over the MDP. Also, define

LT (π) = E[

T∑
t=1

`t(st,at)|π]

as the expected cumulative loss under a fixed policy π. Then,
the main goal of this paper is to achieve a low random regret

RT := max
π
LT − LT (π), (1)

on which we seek a high-probability bound. Note that the
randomness ofRT is injected by the learner and is different
from the randomness in the objective function LT . The
expected regret is defined as

R̄T = E[RT ] = E
[
max
π
LT − LT (π)

]
.

3.2 OCCUPANCY MEASURE

A (stochastic stationary) policy can equivalently be repre-
sented using occupancy measures. The occupancy measure
of a policy is defined as the distribution induced by the
execution of that policy over the state-action pairs, asymp-
totically, i.e.,

ρπ(s, a) = lim
T→∞

1

T

T∑
t=1

Pr(st = s,at = a|π).

A key property of occupancy measures is that the inflow into
a state should be balanced by the outflow from that state.
Formally, for every state s ∈ S,∑

a∈A
ρπ(s, a) =

∑
s′∈S

∑
a′∈A

P(s|s′, a′)ρπ(s′, a′).

Additionally, the occupancy measures are normalized over
the entire state-action space, i.e.,∑

s∈S

∑
a∈A

ρ(s, a) = 1.

There is a one-to-one mapping between stochastic stationary
policies and occupancy measures. The policy πρ correspond-
ing to an occupancy measure ρ can be computed according
to

πρ(a|s) =
ρ(s, a)∑

a′∈A ρ(s, a′)
, ∀(s, a) ∈ S ×A. (2)

The mapping between policies and occupancy measures
allows one to reformulate a search over the policy space as
a search over the occupancy measure space.

4 ONLINE RELATIVE-ENTROPY
POLICY SEARCH WITH IMPLICIT
EXPLORATION

Our proposed solution to the regret minimization problem
is outlined in Algorithm 1. The algorithm builds upon the
relative-entropy policy search of Peters et al. [25] and its
online variant O-REPS by [31] while employing a novel
loss estimator. In particular, Algorithm 1, which we refer
to as online relative-entropy policy search with implicit ex-
ploration (O-REPS-IX), employs an online mirror descent
(OMD) optimization approach in conjunction to an opti-
mistically biased loss estimator. We study these components
of O-REPS-IX next.

4.1 ESTIMATING THE LOSS

In the bandit feedback setting, the agent observes only the
loss corresponding to its current state and action and con-
sequently has to construct an estimate of the overall loss
function. In the episodic setting, the O-REPS algorithm [31]
uses the following unbiased estimator to estimate the un-
observed part of the loss in each episode and achieves the
optimal expected regret:

ˆ̀O-REPS
t (x, a) =

`t(s, a)I{(s, a) ∈ et},
ρt(s, a)

(3)

where et is the t
th

episode. A similar unbiased loss estimator
is further adopted in the uniformly ergodic setting [23, 24].
However, different from O-REPS [31] there is no notion of
episode in the setting of uniformly ergodic A-MDPs that we
consider here. One implication of this non-episodic aspect
is that we can no longer limit the position of the agent to
a specific layer at a time step. Furthermore, the agent does
not restart from the initial state after every episode. Another
implication of having no episode is that the agent updates



Algorithm 1 Online Relative-Entropy Policy Search with
Implicit Exploration (O-REPS-IX)

1: Input: An MDPM = (S,A,P), time horizon T , esti-
mation window N , exploration parameter γ, learning
rate η

2: Output: Occupancy measures ρ1, ρ2, . . . , ρT at each
time step

3: Initialize the occupancy measures for the first 2N − 1
time steps

ρt(s, a) =
1

|S||A|
, ∀t ∈ [2N−1],∀(s, a) ∈ S×A

4: Set the initial state s1 = sinit and the initial history
h1 = (s1)

5: for t = 1, . . . , T do
6: Compute the current policy at the current state

πt(a|st) =
ρt(st, a)∑

a′∈A ρt(st, a
′)

7: Draw an action at randomly from the distribution
πt(a|st)

8: Observe the loss value `t(st, at) and the next state
st+1

9: Update the history,

ht ← ht−1 + (at, `t(st, at), st+1)

10: if t ≥ N then
11: Compute νt|t−N
12: Construct the loss estimator ˆ̀

t from the current
history ht

ˆ̀
t(s, a) =

`t(s, a)

νt|t−N (s)πt(a|s) + γ
I{st = s, at = a}

13: Compute the optimal value function

v̂t = arg min
v

lnZt(v)

14: Compute the solution ρt+N to the projection step
(11)

ρt+N (s, a) =
ρt+N−1(s, a)eδ(s,a|v̂t,

ˆ̀
t)

Zt(v̂t)

15: end if
16: end for

the policy every time step given that the loss function may
change in every time step. Furthermore, a major limitation of

the estimators in [31, 23, 24] is that they suffer from a high
degree of variance. Consequently, although these schemes
achieve the optimal expected regret, it can be shown, using
the arguments presented in Remark 1 in Section 11.5 and
Exercise 11.5 in [18] and Section 3 in [2], that the random
regret will be linear with a nonzero probability due to the
high variance of the loss estimator.

Given above challenges, designing a loss estimator for the
uniformly ergodic setting requires further considerations.

Let
νt|t−N (s) = Pr(st = s|ht−N )

denote the probability of being in state s at time t given the
history at time t−N , t ≥ N + 1. Also, let ~νt|t−N represent
a vector of dimension |S|, concatenating νt|t−N (s) for all
s ∈ S, and eht−N represent a unit vector in R|S| such that

eht−N (s) =

{
1 if st−N = s

0 otherwise.

Then, one can obtain ~νt|t−N according to:

~νt|t−N = eht−NPat−NPπt−N+1Pπt−N+2 . . .Pπt−1 ,

where Pat−N denotes the transition probabilities between
the states upon taking action at−N .

We propose the following loss estimator:

ˆ̀
t(s, a) :=

`t(s, a)

νt|t−N (s)πt(a|s) + γ
I{st = s,at = a},

(4)
which exploits the bandit observation of the loss in the
current time step; here, γ > 0 is an exploration parameter
that induces exploration whose value will be determined in
Theorem 1. Intuitively, νt|t−N (s)πt(a|s) can be thought of
as some form of occupancy measure. Looking at (3), one
might be tempted to set N = 1 in (4), justified by the fact
that in the episodic setting

E[I{(s, a) ∈ et|e1, . . . , et−1] = ρt(s, a).

However, this does not hold in the uniformly ergodic settings
as

E[I{st = s,at = a}|t− 1] = P(s, a|st−1, at−1)

6= νt(s)πt(a|s).
(5)

Due to this discrepancy, which is discussed originally by
Neu et al. [23], we will consider a sufficiently large N .
Larger values of N , which we henceforth refer to as the esti-
mation window, results in a better estimate of the loss func-
tion. Intuitively, delaying the policy update leads to lower
variance of the random regret, enabling a high-probability
analysis since the estimation window N helps to robustify
the estimator against the learner’s randomness.



Now given a sufficiently large N and an exploration param-
eter γ > 0, by taking the expectation of (4) we observe

E[ˆ̀t(s, a)|t−N ] =
`t(s, a)E[I{st = s,at = a}|t−N ]

νt|t−N (s)πt(a|s) + γ

=
`t(s, a)νt|t−N (s)πt(a|s)
νt|t−N (s)πt(a|s) + γ

≤ `t(s, a).

(6)
That is, our proposed loss estimator in (4) is optimistically
biased. This aspect is inline with the optimism principle
in online learning [17]. Intuitively, since for a given state
and action pair (s, a) the proposed estimator underestimates
the true loss, as the agent interacts with the environment
the estimated loss of any sub-optimal action will eventually
become larger than that of the optimal ones. Furthermore,
as we will show in Section 5, the proposed estimator in
(4) achieves a variance reducing effect compared to typi-
cal unbiased estimators, e.g., (3), thereby enabling a high
probability sublinear regret for O-REPS-IX.

4.2 POLICY UPDATE VIA OMD

Given an occupancy measure ρ, we use the unnormalized
negative entropy as the potential function of OMD, i.e.,

R(ρ) =
∑

s∈S,a∈A
ρ(s, a) log ρ(s, a)−

∑
s∈S,a∈A

ρ(s, a). (7)

Given this potential function, the Bregman divergence
D(ρ‖ρ′) between two occupancy measures ρ and ρ′ is the
unnormalized Kullback–Leibler divergence:

D(ρ‖ρ′) =
∑

s∈S,a∈A
ρ(s, a) log

ρ(s, a)

ρ′(s, a)

−
∑

s∈S,a∈A
(ρ(s, a)− ρ′(s, a)) .

(8)

In tth time step, the agent selects an occupancy measure
ρt+N which minimizes a linear combination of the esti-
mated loss ˆ̀

t and the divergence from the previous occu-
pancy measure ρt+N−1. Formally, the agent finds a solution
to the constrained optimization problem

ρt+N = arg min
ρ∈∆(M)

{
η〈ρ, ˆ̀t〉+D(ρ‖ρt+N−1)

}
, (9)

where ∆(M) denotes the set of all occupancy measures
over an MDPM that satisfy the inflow-outflow balancing
and normalization constraints, and 〈·, ·〉 is the inner product
in the space of S × A. Note that as we discussed ρt+N is
entirely determined by the history ht. Hence, in the first
2N − 1 rounds of learning (see step 3 of Algorithm 1)
we initialize the occupancy measure (and consequently the
policy πt) uniformly, i.e., ρt(s, a) = 1/|S||A|.

Similar to the standard mirror descent techniques, the con-
strained optimization in (9) can be efficiently solved through
a two-step procedure. First, an unconstrained version of the
problem is solved, i.e., we find

ρ̃t+N = arg min
ρ

{
η〈ρ, ˆ̀t〉+D(ρ‖ρt+N−1)

}
, (10)

which admits a closed form solution

ρ̃t+N (s, a) = ρt+N−1(s, a)e−η
ˆ̀
t(s,a).

Then, ρ̃t+N (s, a) is projected to the constraint set ∆(M),
i.e., we find

ρt+N = arg min
ρ∈∆(M)

{
D(ρ‖ρ̃t+N−1)

}
. (11)

By enforcing constraints of inflow-outflow balancing and
normalization on the occupancy measures, the following
constrained optimization yields the solution to the projection
step:

min
ρ

D(ρ‖ρ̃t+N−1)

s.t.
∑
a∈A

ρ(s, a) =
∑
s′∈S

∑
a′∈A

P(s|s′, a′)ρ(s′, a′) ∀s ∈ S,∑
s∈S

∑
a∈A

ρ(s, a) = 1.

(12)
We show in Proposition 1 that the above optimization prob-
lem using ideas from [31] can equivalently be written as an
unconstrained convex optimization problem.

Proposition 1. Let v : S → R denote a value function for
each state and ` : S ×A → [0, 1] denote a loss function.
Define

δ(s, a|v, `) = ν(s)− η`(s, a)−
∑
s′∈S

v(s′)P(s′|s, a),

a function capturing the notion of Bellman error for the
value function v. Furthermore, for t > 1, define a partition
function

Zt(v) =
∑

s∈S,a∈A
ρt(s, a)eδ(s,a|v,

ˆ̀
t).

The optimal value function (corresponding to the dual prob-
lem) is the solution to an unconstrained optimization prob-
lem

v̂t = arg min
v

lnZt(v).

With these definitions in place, the solution to the projection
step (11) is

ρt+N (s, a) =
ρt+N−1(s, a)eδ(s,a|v̂t,

ˆ̀
t)

Zt(v̂t)
.



Proof. The projection step of online mirror descent has
a closed-form solution for episodic A-MDPs as shown in
[31]; it is readily derived by differentiating the Lagrangian
with respect to ρ(s, a) and setting the gradient to zero. The
solution follows by using the second constraint and solving
the dual maximization problem.

The projection step of online mirror descent for uniformly
ergodic MDPs in (12) is different from the one for episodic
MDPs only in constraints on the occupancy measures. That
is, for an episodic MDP, occupancy measures are normalized
across each layer while for a uniformly ergodic MDP the
normalization is over the entire state space. Therefore, with
comparable arguments to those stated in [31], we can derive
the presented closed form solution. �

5 REGRET ANALYSIS

We now present the theoretical analysis of O-REPS-IX for
A-MDPs satisfying the uniform ergodicity assumption. The
detailed proofs are deferred to the Appendix.

5.1 BOUND ON THE RANDOM REGRET

We start by stating our main theoretical result, establishing
a high-probability bound on the random regretRT .

Theorem 1. Let

η = (T |S||A|)−2/3
√

log(|S||A|),

γ = (T |S||A|)−1/3

√
τ log T log

1

δ
,

N = 1 + dτ log T e.

(13)

Then, for any δ ∈ (0, 1), with probability at least 1− 4δ, it
holds that the random regret of Algorithm 1 satisfies

RT ≤ C (T |A||S|)
2
3

√
τ log(|S||A|) log T log

1

δ

+ C ′τ log T,

for some universal constants C,C ′ > 0.

Remark 1. Theorem 1 establishes that Algorithm 1 achieves
Õ(T

2
3 ) regret bound with high probability. The pioneering

algorithm in [24] achieves an optimal regret of Õ(
√
T )

only in expectation for sufficiently large T , and under an
extra assumption compared to our result (see Assumption
A2 there) that bounds all stationary distributions from zero.
Algorithm 1 enjoys a high-probability regret bound which
is a much stronger type of guarantee. Additionally, the pro-
posed algorithm has a better dependence on τ compared to
the algorithm in [24] (that is, O(

√
τ) vs. O(τ

√
τ)). In our

current analysis we employ a relatively large γ to ensure
that the proposed estimator is uniformly bounded with prob-
ability one. However, this restriction results in a sub-optimal

regret bound Õ(T
2
3 ). Hence, it remains an open problem to

see whether the high probability regret of Algorithm 1 can
be improved to Õ(

√
T ), i.e., the optimal regret (with respect

to T ).

Proof of Theorem 1. Recall step 3 of O-REPS-IX (see Al-
gorithm 1). Given that by assumption `t(s, a) ≤ 1, the first
2N − 1 terms in the random regret RT can be bounded
by 2N . Hence, we study the regret of O-REPS-IX starting
t = 2N . To obtain the regret bound, we first decompose the
random regret:

RT = O(N)+ max
ρ∈∆(M)

T∑
t=2N

ξπt − E

[
T∑

t=2N

`t(s
π
t , a

π
t )

]
︸ ︷︷ ︸

I

+

T∑
t=2N

ξπtt −
T∑

t=2N

ξπt︸ ︷︷ ︸
II

+ E

[
T∑

t=2N

`t(s
πt
t , a

πt
t )

]
−

T∑
t=2N

ξπtt︸ ︷︷ ︸
III

.

Next, we decompose the second term according to

T∑
t=2N

ξπtt −
T∑

t=2N

ξπt =

T∑
t=2N

〈ρt − ρ, `t〉

=

T∑
t=2N

〈ρt, `t − ˆ̀
t〉︸ ︷︷ ︸

II-I

+

T∑
t=2N

〈ρ, ˆ̀t − `t〉︸ ︷︷ ︸
II-II

+

T∑
t=2N

〈ρt − ρ, ˆ̀t〉︸ ︷︷ ︸
II-III

,

by recalling definition of ξπ and ξπt :

ξπ = lim
T ′→∞

T ′∑
t=2N

∑
s∈S

∑
a∈A

Pr(sπt′ = s, aπt′ = a)`t(s, a)

=
∑
s∈S

∑
a∈A

ρ(s, a)`t(s, a),

(14)
and

ξπt = lim
T ′→∞

T ′∑
t=2N

∑
s∈S

∑
a∈A

Pr(sπtt′ = s, aπtt′ = a)`t(s, a)

=
∑
s∈S

∑
a∈A

ρt(s, a)`t(s, a).

(15)
Now, we bound each term individually. For a fixed policy
π over a finite time horizon T , term I measures the differ-
ence between the expected reward starting from the initial



distribution ν1 and the expected reward starting from the
stationary distribution ν̄π. Note that this term is determin-
istic and we can bound this difference by a factor of τ due
to the uniform ergodicity assumption which ensures fast
mixing time (Lemma 1 and Appendix B).

Lemma 1 (Bounding term I [11]). For any T ≥ 1 and any
policy π, it holds that

T∑
t=2N

ξπt − E

[
T∑

t=2N

`t(s
π
t , a

π
t )

]
≤ 2(1 + τ). (16)

Term II – which is random – is studied in Lemma 2 (see Ap-
pendix C for the unabridged statement). To analyze term II-I,
we show in Lemma 9 the fact that the evolving policies from
the mirror descent algorithm do not change much between
consecutive time steps as long as N satisfies the condition
given in Theorem 1. We further need to show that ˆ̀

t is a
good estimate for `t, which we prove in two steps. First, we
show that `t is close to E[ˆ̀t] by a factor directly proportional
to γ. Note that with γ = 0, ˆ̀

t becomes an unbiased esti-
mator of `t. Second, ˆ̀

t concentrates around its mean E[ˆ̀t].
We bound term II-II in Lemma 10 by relying on closeness
of ˆ̀

t to `t. In particular, the optimistic bias of ˆ̀
t allows us

to use a concentration result based on the Cramer-Chernoff
method (Lemma 4). Analysis of term II-III also has two
components, where one of them depends on the regret of the
mirror descent algorithm and the other one depends on the
fact that the iterates of the OMD do not change too rapidly
as long as η and γ satisfy the conditions of Theorem 1.

Lemma 2 (Bounding term II). With η, γ, and N given in
(13), it holds, with probability exceeding 1− 4δ, that

T∑
t=2N

ξπt −
T∑

t=2N

ξπ

= O

(
(T |A||S|)

2
3

√
τ log(|S||A|) log T log

1

δ

)
.

Term III, similar to term II, is random and captures the
difference between the expected reward actually obtained
by the agent and the expected reward obtained by the agent
had it been in the stationary distribution ν̄πt at each time
step t. By using the fact that the evolving policies from
the mirror descent algorithm do not change much between
consecutive time steps, in Lemma 3 we establish an upper
bound on term III (see Appendix D for the proof).

Lemma 3 (Bounding term III). For any δ ∈ (0, 1), with
probability at least 1− δ, it holds that

E

[
T∑

t=2N

`t(st, at)

]
−

T∑
t=2N

ξπtt ≤ 2(1 + τ)

+ 2η(1 + τ)

(
log 1

δ

2γ
+ T |S||A|

)
.

Lastly, by adding the bounds from each term and properly
selecting the values of γ and η, we obtain the desired result
stated in Theorem 1. The details of the regret bound is
provided in Appendix E. �

5.2 BOUND ON THE EXPECTED REGRET

An upper bound on the expected regret of Algorithm 1
can also be obtained by integrating the tail of the high-
probability regret bound provided in Theorem 1. The result
is formalized in the following theorem.

Theorem 2. With η, γ, and N given in (13), the expected
regret of Algorithm 1 satisfies

R̄T ≤ C (T |A||S|)
2
3

√
τ log(|S||A|) log T log

1

δ

+ C ′τ log T,

(17)

for some universal constants C,C ′ > 0.

Proof of Theorem 2. First, we relate the expected regret
to the random regret on which we have derived a
high-probability bound. In particular, defining R+

T :=
max {RT , 0}, we have

R̄T ≤ E
[
R+
T

] (a)
=

∫ ∞
0

Pr
(
R+
T ≥ u

)
du

=

∫ ∞
0

Pr (RT ≥ u) du,

where (a) is due to the fact that for a non-negative random
variable X it holds that E[X] =

∫∞
0

Pr(X > x)dx. We
can evaluate the integral using the high-probability bound
of Theorem 1 and a change of variables. Assume τ > 1

and let B = (T |A||S|)
2
3
√
τ log(|S||A|) log T . Then, it is

apparent that with probability at most 4δ, the following
lower bound holds on the random regret:

RT ≥ CB log
1

δ
+ C ′τ log T, (18)

for someC,C ′ > 0. Note that the second term is determinis-
tic. Next, let u = CB log

(
1
δ

)
and thus δ = exp (−u/CB).

If δ → 0+, then u → ∞, while if δ →
(

1
4

)−
, then

u→ (CB log 4)
+. Then,

R̄T
(b)

≤ C ′τ log T +

∫ ∞
CB log 4

Pr

(
RT ≥ CB log

L

δ

)
du

(c)

≤ C ′τ log T +

∫ ∞
CB log 4

4 exp
(
− u

CB

)
du,

where (b) is due to the nonnegativity of the integrand and (c)
corresponds to the simplified high-probability bound in (18).
Lastly, a simple integration yields the desired result. �



6 CONCLUSION AND FUTURE WORK

We considered the general class of uniformly ergodic A-
MDPs whose loss functions may change arbitrarily over
time. By relying on an optimistically biased loss esti-
mator and online linear optimization techniques, we pro-
posed O-REPS-IX that finds a policy achieving sublinear
regret bounds both with high probability and in expec-
tation. In particular, the algorithm achieves the regret of
Õ(T

2
3

√
τ |A||S|) with respect to the best stationary policy

in hindsight. The proposed scheme is the first algorithm
achieving a high probability sublinear regret bound in the
setting of learning with uniformly ergodic A-MDPs and
bandit feedback.

As a future research direction, it is important to establish
whether the high-probability regret of O-REPS-IX can be
improved to Õ(

√
T ), i.e., the optimal regret. Furthermore,

we would like to explore the potential of using the proposed
algorithm for learning in safety-critical scenarios. In these
scenarios, the high-probability guarantees of O-REPS-IX
can be employed to provide desirable safety assurances.
Finally, it is valuable to extend our results to the class of
risk-aware MDPs.
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A INTERMEDIATE LEMMAS

We first state a concentration lemma from [18] (Lemma 12.2 there) which was originally stated in [21].

Lemma 4. Let F = (Ft)Tt=1 to be a filtration and for i ∈ [k] let (Ỹti)t be F-adapted such that the following conditions
hold:

1. For any S ⊂ [k] with |S| > 1, E
[∏

i∈S Ỹti|Ft−1

]
≤ 0.

2. E
[
Ỹti|Ft−1

]
= yti for all t ∈ [T ] and i ∈ [k].

Furthermore, let (αti)ti and (λti)ti be real-valued F-predictable random sequences such that for all t, i it holds that
0 ≤ αtiỸti ≤ 2λti. Then for any δ ∈ (0, 1),

Pr

(
T∑
t=1

k∑
i=1

αti

(
Ỹti

1 + λti
− yti

)
≥ log

1

δ

)
≤ δ. (19)

We use this Lemma frequently in establishing high-probability bounds on terms involved in the regret bound of the proposed
algorithm with i going over S ×A and k = |S||A|, and judicious choices for (Ỹti)t, (αti)ti, (λti)ti, and yti. Furthermore,
we define the filtration F to capture all sources of randomness up to time t−N + 1, including t−N + 1 itself where N > 1.
That is, F = (Ft)Tt=2N , where Ft = σ(ht−N+1) such that for any random variable z ∈ Ft, z is measurable by the history
ht−N+1.

A.1 AUXILIARY LEMMAS

Next, we state four auxiliary lemmas that will be used multiple times in the proofs of the main lemmas.

Lemma 5. For any δ1 ∈ (0, 1), with probability at least 1− δ1, it holds that

T∑
t=2N

∑
s∈S

∑
a∈A

ˆ̀
t(s, a)− `t(s, a) ≤

log 1
δ1

2γ
. (20)

Proof. Define the following random sequences

αt(s, a) = 2γ,

λt(s, a) =
γ

νt|t−N (s)πt(a|s)
,

Ỹt(s, a) =
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
.

(21)

Note that αt(s, a) and λt(s, a) are real-valued F-predictable random sequences such that

0 ≤ αt(s, a)Ỹt(s, a) ≤ 2λt(s, a). (22)

due to non-negativity of αt(s, a) and Ỹt(s, a) and the bounded loss assumption:

`t(s, a)I{st = s, at = a} ≤ 1. (23)

Additionally, Ỹt(s, a) is F-adapted and the two conditions stated in Lemma 4 hold since

E

 ∏
(s,a)∈S

Ỹt(s, a)|Ft−1

 = E

 ∏
(s,a)∈S

`t(s, a)I{st = s, at = a}
νt|t−N (s)πt(a|s)

|Ft−1

 = 0, (24)

for any set S ⊂ S ×A having at least two elements, and

E
[
Ỹt(s, a)|Ft−1

]
= E

[
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
|Ft−1

]
= `t(s, a). (25)



Therefore we can can use the concentration result of Lemma 4 to prove the gap between the estimated loss and the expected
loss are bounded with high probability according to:

Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A

αt(s, a)

(
Ỹt(s, a)

1 + λt(s, a)
− `t(s, a)

)
≥ log

1

δ1

)
≤ δ1

⇔ Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A

ˆ̀
t(s, a)− `t(s, a) ≥

log 1
δ1

2γ

)
≤ δ1.

(26)

�

Lemma 6. For any δ1 ∈ (0, 1), with probability at least 1− δ1, it holds that

T∑
t=2N

‖νt − ν̄πt‖1 ≤ 2(1 + τ) + 2η(1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)
. (27)

Proof. By triangle inequality we have that

‖νt − ν̄πt‖1 ≤ ‖νt − ν̄πt−1‖1 + ‖ν̄πt−1 − ν̄πt‖1. (28)

By a simple recursive application of the τ -mixing assumption the first term in RHS of (28) can be bounded as

‖νt − ν̄πt−1‖1 = ‖νt−1Pπt−1 − ν̄πt−1Pπt−1‖1
≤ e− 1

τ ‖νt−1 − ν̄πt−1‖1
≤ e− 1

τ ‖νt−1 − ν̄πt−2‖1 + e−
1
τ ‖ν̄πt−1 − ν̄πt−2‖1.

(29)

Regarding the second term in RHS of (28), using the definition of the occupancy measure we have∑
s∈S
|ν̄πt−1(s)− ν̄πt(s)| =

∑
s∈S

∣∣∣∣∣∑
a∈A

ρt−1(s, a)− ρt(s, a)

∣∣∣∣∣
≤
∑
s∈S

∑
a∈A
|ρt−1(s, a)− ρt(s, a)|

≤ ‖ρt−1 − ρt‖1.

(30)

Thus, by unrolling (29) to t = 2N we can bound ‖νt − ν̄πt‖1 according to

‖νt − ν̄πt‖1 ≤ e−
t−1
τ ‖ν2N − ν̄π1‖1 +

t−1∑
q=1

e−
q−1
τ ‖ρt−q − ρt−q+1‖1. (31)

Summing the above result over t yields

T∑
t=2N

‖νt − ν̄πt‖1 ≤
T∑

t=2N

e−
t−1
τ ‖ν2N − ν̄π1‖1 +

T∑
t=2N

t−1∑
q=1

e−
q−1
τ ‖ρπt−q − ρπt−q+1‖1. (32)

The first term in the RHS of (32) can be bounded by 2(1 + τ) since ‖ν1 − ν̄π1‖1 ≤ 2 and

2

T∑
t=2N

e−
t−1
τ ≤ 2(1 +

∫ ∞
0

e−
t
τ ) = 2(1 + τ). (33)

The starting point of our method to bound the second term in RHS of (32) is similar to the proof of Lemma 6 in [6]. However,
the main steps are different due to the bandit feedback setting that we consider.

First note that since R(.) is a barrier function and its domain is the probability simplex we can equivalently express the
update rule of ρt for t ≥ 2N − 1 according to (see section 28.1 in [18] for more detail)

ρt+1 = arg min
ρ∈∆

[
J t(ρ) :=

t∑
i=2N−1

〈ρ, ˆ̀i−N+1〉+
1

η
R(ρ)

]
. (34)



Since R is 1-strongly convex w.r.t. ‖.‖1, J t(.) is 1/η-strongly convex. Thus, we can establish by strong convexity and the
optimality condition for ρt+1 (see, e.g., Theorem 2.2.9 in [20]) that

1

2η
‖ρt+1 − ρt‖21 ≤ J t(ρt)− J t(ρt+1) + 〈∇J t(ρt+1),ρt+1 − ρt〉

≤

[
t∑

i=2N−1

〈ρt, ˆ̀i−N+1〉+
1

η
R(ρt)

]
−

[
t∑

i=2N−1

〈ρt+1,
ˆ̀
i−N+1〉+

1

η
R(ρt+1)

]

≤

[
t−1∑

i=2N−1

〈ρt, ˆ̀i−N+1〉+
1

η
R(ρt)

]
−

[
t−1∑

i=2N−1

〈ρt+1,
ˆ̀
i−N+1〉+

1

η
R(ρt+1)

]
+ 〈ρt, ˆ̀t−N+1〉 − 〈ρt+1,

ˆ̀
t−N+1〉

≤ 〈ρt − ρt+1,
ˆ̀
t−N+1〉

≤ ‖ρt+1 − ρt‖1‖ˆ̀t−N+1‖∞,

(35)

where we used Hölder’s inequality and the fact that by the update rule and optimality of ρt, the term

[
t−1∑

i=2N−1

〈ρt, ˆ̀i−N+1〉+
1

η
R(ρt)

]

can be bounded by

[
t−1∑

i=2N−1

〈ρt+1,
ˆ̀
i−N+1〉+

1

η
R(ρt+1)

]

which in turn results in cancellation of the two. Thus,

‖ρt+1 − ρt‖1 ≤ 2η‖ˆ̀t−N+1‖∞, (36)

and in turn

T∑
t=2N

‖νt − ν̄πt‖1 ≤ 2(1 + τ) + 2η

T∑
t=2N

t−1∑
q=1

e−
q−1
τ ‖ˆ̀t−N−q+1‖∞. (37)

The last result explains a challenge of the bandit-feedback setting. In the full-information setting ‖ˆ̀t‖∞ = ‖`t‖∞ ≤ 1
and we could simply bound the difference of two consecutive occupancy measures [6]. However, this does hold in the
bandit-feedback setting. To overcome this challenge, we provide a new and different analysis from [6] to show that using the
judicious choice of the loss estimator ˆ̀

t, the difference ‖ρt+1 − ρt‖1 is bounded with high probability. To this end, we use
the result of Lemma 5 to bound the second term on the RHS of (37):



T∑
t=2N

t−1∑
q=1

e−
q−1
τ ‖ˆ̀t−q‖∞ = e−

0
τ

T∑
t=2N

‖ˆ̀t−N‖∞ + · · ·+ e−
T−2
τ

T∑
t=T

‖ˆ̀t−T−N‖∞

= e−
0
τ

T−1∑
t=2N

‖ˆ̀t−N‖∞ + · · ·+ e−
T−2
τ

1∑
t=1

‖ˆ̀t−N‖∞

≤

 T−1∑
q=2N

e−
q−1
τ

( T−1∑
t=2N

‖ˆ̀t‖∞

)

=

 T−1∑
q=2N

e−
q−1
τ

( T−1∑
t=2N

∑
s∈S

∑
a∈A

ˆ̀
t(s, a)

)

≤ (1 + τ)

(
T−1∑
t=2N

∑
s∈S

∑
a∈A

ˆ̀
t(s, a)

)

≤ (1 + τ)

(
log 1

δ1

2γ
+

T−1∑
t=2N

∑
s∈S

∑
a∈A

`t(s, a)

)

≤ (1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)

(38)

with probability at least 1− δ1, where we used the τ -mixing assumption, the fact that by the definition of our loss estimator
we can replace the `∞ norm with the sum over states and actions (since only one component of the estimator is nonzero),
the result of Lemma 5, and the assumption that `t(s, a) ≤ 1.

Finally, putting together the result established in (38) in (37) yields the stated result. �

Lemma 7. For any δ2 ∈ (0, 1), with probability at least 1− δ2, it holds that

T∑
t=2N

∑
s∈S

∑
a∈A
|νt|t−N (s)− ν̄πt(s)|πt(a|s)

[
ˆ̀
t(s, a)− `t(s, a)

]
≤

log 1
δ2

2γ
(39)

Proof. Define
αt(s, a) = 2γ|νt|t−N (s)− ν̄πt(s)|πt(a|s),

λt(s, a) =
γ

νt|t−N (s)πt(a|s)
,

Ỹt(s, a) =
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
.

(40)

for which it holds
0 ≤ αt(s, a)Ỹt(s, a) ≤ 2λt(s, a), (41)

due to non-negativity of αt(s, a) and Ỹt(s, a), bounded loss:

`t(s, a)I{st = s, at = a} ≤ 1, (42)

and the fact that 0 ≤ |νt(s) − ν̄πt(s)| ≤ 1, and 0 ≤ πt(a|s) ≤ 1. Furthermore, Ỹt(s, a) is F-adapted and satisfies the
conditions stated in Lemma 4. Recall that the first property is that for any set S ⊂ S ×A having at least two elements,

E

 ∏
(s,a)∈S

Ỹt(s, a)|Ft−1

 = E

 ∏
(s,a)∈S

`t(s, a)I{st = s, at = a}
νt|t−N (s)πt(a|s)

|Ft−1

 = 0. (43)

The second property states the unbiasedness of Ỹt(s, a), i.e.,

E
[
Ỹt(s, a)|Ft−1

]
= E

[
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
|Ft−1

]
= `t(s, a). (44)



Therefore we can can use the concentration result Lemma 4 to prove the stated result, i.e.

Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A

αt(s, a)

(
Ỹt(s, a)

1 + λt(s, a)
− `t(s, a)

)
≥ log

1

δ2

)
≤ δ2

⇔ Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A
|νt|t−N (s)− ν̄πt(s)|πt(a|s)

[
ˆ̀
t(s, a)− `t(s, a)

]
≥

log 1
δ2

2γ

)
≤ δ2.

(45)

�

Lemma 8. For any δ1 ∈ (0, 1), with probability at least 1− δ1, it holds that

T∑
t=2N

‖νt|t−N − ν̄πt‖1 ≤ 2e−
N−1
τ (T − 2N + 1) + 2η(1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)
. (46)

Proof. By triangle inequality we have that

‖νt|t−N − ν̄πt‖1 ≤ ‖νt|t−N − ν̄πt−1‖1 + ‖ν̄πt−1 − ν̄πt‖1. (47)

By a simple recursive application of the τ -mixing assumption the first term in RHS of (47) can be bounded as

‖νt|t−N − ν̄πt−1‖1 = ‖νt−1|t−NPπt−1 − ν̄πt−1Pπt−1‖1
≤ e− 1

τ ‖νt−1|t−N − ν̄πt−1‖1
≤ e− 1

τ ‖νt−1|t−N − ν̄πt−2‖1 + e−
1
τ ‖ν̄πt−1 − ν̄πt−2‖1

(48)

Regarding the second term in RHS of (47), identical to the proof of Lemma 6, using the definition of the occupancy measure
we have ∑

s∈S
|ν̄πt−1(s)− ν̄πt(s)| =

∑
s∈S

∣∣∣∣∣∑
a∈A

ρt−1(s, a)− ρt(s, a)

∣∣∣∣∣
≤
∑
s∈S

∑
a∈A
|ρt−1(s, a)− ρt(s, a)|

≤ ‖ρt−1 − ρt‖1.

(49)

Thus, by unrolling (48) to t−N we can bound ‖νt − ν̄πt‖1 according to

‖νt|t−N − ν̄πt‖1 ≤ e−
N−1
τ ‖νt−N |t−N − ν̄πt−N ‖1 +

N−1∑
q=1

e−
q−1
τ ‖ρt−q − ρt−q+1‖1. (50)

Summing the above result over t yields

T∑
t=2N

‖νt|t−N − ν̄πt‖1 ≤
T∑

t=2N

e−
N−1
τ ‖νt−N |t−N − ν̄π1‖1

+

T∑
t=2N

N−1∑
q=1

e−
q−1
τ ‖ρπt−q − ρπt−q+1‖1

≤
T∑

t=2N

e−
N−1
τ ‖νt−N |t−N − ν̄π1‖1

+

T∑
t=2N

t−1∑
q=1

e−
q−1
τ ‖ρπt−q − ρπt−q+1‖1.

(51)

Since ‖νt−N |t−N − ν̄π1‖1 ≤ 2, the first term in the RHS of (51) can be bounded by

2

T∑
t=2N

e−
N−1
τ ≤ 2e−

N−1
τ (T − 2N + 1). (52)



Note that to ensure this last bound is sublinear, we will later impose the requirement that N = 1 + dτ log T e.

Finally, bounding the second term in RHS of (51) is identical to our analysis in Lemma 8 (see (35) and the proceeding
argument). �



B BOUNDING TERM I

Lemma 1 (Bounding term I). For any T ≥ 1 and any policy π, it holds that

T∑
t=1

ξπt − E

[
T∑
t=1

`t(s
π
t , a

π
t )

]
≤ 2(1 + τ). (53)

Proof. The Lemma, which is based on the existing result in [11], relies on the τ -mixing property of uniformly ergodic
A-MDPs and holds for any t ≥ 1.

It holds by definition of ξπt that

T∑
t=1

ξπt − E

[
T∑
t=1

`t(s
π
t , a

π
t )

]

=

T∑
t=1

lim
T ′→∞

T ′∑
t=1

∑
s∈S

∑
a∈A

Pr (sπt′ = s, aπt′ = a) `t(s, a)

−
T∑
t=1

∑
s∈S

∑
a∈A

Pr (sπt = s, aπt = a) `t(s, a)

=

T∑
t=1

∑
s∈S

∑
a∈A

ρπ(s, a)`t(s, a)−
T∑
t=1

∑
s∈S

∑
a∈A

νπt (s)π(a|s)`t(s, a).

(54)

Now, since by the definition of the occupancy measure and the stationary distribution ν̄ we have ρπ(s, a) = ν̄π(s)π(a|s),

T∑
t=1

ξπt − E

[
T∑
t=1

`t(s
π
t , a

π
t )

]

=

T∑
t=1

∑
s∈S

∑
a∈A

ν̄π(s)π(a|s)`t(s, a)−
T∑
t=1

∑
s∈S

∑
a∈A

νπt (s)π(a|s)`t(s, a)

=

T∑
t=1

∑
s∈S

(ν̄π(s)− νπt (s))
∑
a∈A

π(a|s)`t(s, a)

≤
T∑
t=1

∑
s∈S

(ν̄π(s)− νπt (s)) ,

(55)

where we used the fact that
∑
a∈A π(a|s) = 1 and 0 ≤ `t(s, a) ≤ 1. Thus, exploiting the vector notation ν ∈ R|S| and the

definition of `1-norm we have

T∑
t=1

ξπt − E

[
T∑
t=1

`t(s
π
t , a

π
t )

]
≤

T∑
t=1

∑
s∈S
|ν̄π(s)− νπt (s)| =

T∑
t=1

‖ν̄π − νπt ‖1

=

T∑
t=1

‖ν̄π − νπt−1Pπ‖1 ≤
T∑
t=1

e−
1
τ ‖ν̄π − νπt−1‖1,

(56)

where we used the τ -mixing assumption. Recursively repeating the above argument yields

T∑
t=1

ρπt − E

[
T∑
t=1

`t(s
π
t , a

π
t )

]
≤

T∑
t=1

e−
t−1
τ ‖ν̄π − νπ1‖1

≤ 2

T∑
t=1

e−
t−1
τ ≤ 2(1 +

∫ ∞
0

e−
t
τ ) = 2(1 + τ).

(57)

�



C BOUNDING TERM II

Lemma 2 (Bounding term II). For any δ1, δ2, δ3, δ4 ∈ (0, 1), with probability at least 1− (δ1 + δ2 + δ3 + δ4), it holds that

T∑
t=2N

ξπt −
T∑

t=2N

ξπ ≤4e−
N−1
τ T + 4(1 + τ)η

(
log 1

δ1

2γ
+ T |S||A|

)
+

log 1
δ2

2γ
+ γT |S||A|+

√
T

2
log

1

δ3
+

log 1
δ4

2γ
+

1

η
log(|S||A|)

+
ηT

2γ2
+ 2η

NT

γ2
.

(58)

Proof. Recall from the definition of ξπ and ξπt :

ξπ = lim
T ′→∞

T ′∑
t=1

∑
s∈S

∑
a∈A

Pr(sπt′ = s, aπt′ = a)`t(s, a) =
∑
s∈S

∑
a∈A

ρ(s, a)`t(s, a), (59)

and

ξπt = lim
T ′→∞

T ′∑
t=1

∑
s∈S

∑
a∈A

Pr(sπtt′ = s, aπtt′ = a)`t(s, a) =
∑
s∈S

∑
a∈A

ρt(s, a)`t(s, a). (60)

Thus, we can establish the following decomposition

T∑
t=1

ξπt −
T∑
t=1

ξπ =

T∑
t=1

∑
s∈S

∑
a∈A

ρt(s, a)`t(s, a)− ρ(s, a)`t(s, a)

=

T∑
t=1

∑
s∈S

∑
a∈A

ρt(s, a)
[
`t(s, a)− ˆ̀

t(s, a)
]

+

T∑
t=1

∑
s∈S

∑
a∈A

ρπ(s, a)
[
ˆ̀
t(s, a)− `t(s, a)

]

+

T∑
t=1

∑
s∈S

∑
a∈A

[ρt(s, a)− ρπ(s, a)] ˆ̀
t(s, a),

(61)

by adding and subtracting ρt(s, a)ˆ̀t(s, a) and ρπ(s, a)ˆ̀t(s, a). Now, we bound each of the terms on the RHS of (61) in the
next three lemmas. Before proceeding, we further recall

ρt(s, a) = ν̄πt(s)πt(a|s), ν̄πt(s) =
∑
a∈A

ρt(s, a). (62)

�

C.1 BOUNDING TERM II-I

Lemma 9 (Bounding term II-I). For any δ1, δ2, δ3 ∈ (0, 1), with probability at least 1− (δ1 + δ2 + δ3), it holds that

T∑
t=2N

∑
s∈S

∑
a∈A

ρt(s, a)
[
`t(s, a)− ˆ̀

t(s, a)
]
≤ 4e−

N−1
τ T + 4(1 + τ)η

(
log 1

δ1

2γ
+ T |S||A|

)

+
log 1

δ2

2γ
+ γT |S||A|+

√
T

2
log

1

δ3
.

(63)



Proof. We start by adding and subtracting νt|t−N (s)πt(a|s) to obtain

T∑
t=2N

∑
s∈S

∑
a∈A

ν̄πt(s)πt(a|s)
[
`t(s, a)− ˆ̀

t(s, a)
]

=

T∑
t=2N

∑
s∈S

∑
a∈A

(ν̄πt(s)− νt|t−N (s))πt(a|s)
[
`t(s, a)− ˆ̀

t(s, a)
]

+

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
[
`t(s, a)− ˆ̀

t(s, a)
]

:= A+B

(64)

We first bound A and then we proceed to bound B.

◦ Bounding A. It holds that

A =

T∑
t=2N

∑
s∈S

∑
a∈A

(ν̄πt(s)− νt|t−N (s))πt(a|s)`t(s, a)

+

T∑
t=2N

∑
s∈S

∑
a∈A

(νt|t−N (s)− ν̄πt(s))πt(a|s)ˆ̀t(s, a)

≤
T∑

t=2N

∑
s∈S

∑
a∈A
|ν̄πt(s)− νt|t−N (s)|πt(a|s)`t(s, a)

+

T∑
t=1

∑
s∈S

∑
a∈A
|νt|t−N (s)− ν̄πt(s)|πt(a|s)ˆ̀t(s, a)

= 2

T∑
t=2N

∑
s∈S

∑
a∈A
|ν̄πt(s)− νt|t−N (s)|πt(a|s)`t(s, a)

+

T∑
t=2N

∑
s∈S

∑
a∈A
|νt|t−N (s)− ν̄πt(s)|πt(a|s)

[
ˆ̀
t(s, a)− `t(s, a)

]
.

(65)

The first term in (65) can be bounded by noting 0 ≤ `t(s, a) ≤ 1, πt(a|s) ≤ 1, and using the result of Lemma 8. Thus, it
holds with probability at least 1− δ1 that

2

T∑
t=2N

∑
s∈S

∑
a∈A
|ν̄πt(s)− νt|t−N (s)|πt(a|s)`t(s, a) ≤ 4e−

N−1
τ (T − 2N + 1)

+ 4η(1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)
.

(66)

The second term in (65) can be bounded by using the concentration result established in Lemma 7. That is, with probability
at least 1− δ2, we have

T∑
t=2N

∑
s∈S

∑
a∈A
|νt|t−N (s)− ν̄πt(s)|πt(a|s)

[
ˆ̀
t(s, a)− `t(s, a)

]
≤

log 1
δ2

2γ
. (67)

Thus, with probability at least 1− (δ1 + δ2) the following bound on A holds

A ≤ 4e−
N−1
τ (T − 2N + 1) + 4η(1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)
+

log 1
δ2

2γ
. (68)

◦ Bounding B. We now turn to bounding the second term in (64). By adding and subtracting E[ˆ̀t(s, a)|ht−N ] we can



express B equivalently as

B =

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
[
`t(s, a)− E[ˆ̀t(s, a)|ht−N ]

]

+

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
[
E[ˆ̀t(s, a)|ht−N ]− ˆ̀

t(s, a)
] (69)

The first term in (69) can be bounded according to

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
[
`t(s, a)− E[ˆ̀t(s, a)|ht−N ]

]

=

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)`t(s, a)

[
1− E[I{st = s, at = a}|ht−N ]

νt|t−N (s)πt(a|s) + γ

]

=

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)`t(s, a)
γ

νt|t−N (s)πt(a|s) + γ

≤
T∑

t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)`t(s, a)
γ

νt|t−N (s)πt(a|s)

≤ γ(T − 2N + 1)|S||A|

(70)

where we used the fact that E[I{st = s, at = a}|ht−N ] = νt|t−N (s)πt(a|s), γ > 0, and 0 ≤ `t(s, a) ≤ 1.

To bound the second term in (69) we will use the Azuma-Hoeffding’s inequality [12] as follows. First, since we assume an
oblivious adversary, it holds that E[ˆ̀t(s, a)] = E[E[ˆ̀t(s, a)|ht−N ]]. Also, note that

xt :=
∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)ˆ̀t(s, a) =
∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
νt|t−N (s)πt(a|s) + γ

`t(s, a)I{st = s, at = a}

≤
∑
s∈S

∑
a∈A

`t(s, a)I{st = s, at = a} ≤ 1.
(71)

Thus, 0 ≤ xt ≤ 1, and in turn |St − St−1| ≤ 1 where St =
∑t
i=2N xi. Consequently, by Azuma-Hoeffding’s inequality

for martingales, we can bound the difference ST − S2N such that with probability exceeding 1− δ3,

T∑
t=2N

∑
s∈S

∑
a∈A

νt|t−N (s)πt(a|s)
[
E[ˆ̀t(s, a)]− ˆ̀

t(s, a)
]
≤
√
T − 2N + 1

2
log

1

δ3
. (72)

Therefore, we established that with probability at least 1− δ3, the following bound on B holds

B ≤ γ(T − 2N + 1)|S||A|+
√
T − 2N + 1

2
log

1

δ3
. (73)

Combining (68) and (73) to bound (64) and using T − 2N + 1 ≤ T establishes the stated result. �

C.2 BOUNDING TERM II-II

Lemma 10 (Bounding term II-II). For any δ4 ∈ (0, 1), with probability at least 1− δ4, it holds that

T∑
t=2N

∑
s∈S

∑
a∈A

ρπ(s, a)
[
ˆ̀
t(s, a)− `t(s, a)

]
≤

log 1
δ4

2γ
. (74)



Proof. We resort to the concentration of ˆ̀
t(s, a) around `t(s, a). Define

αt(s, a) = 2γρπ(s, a),

λt(s, a) =
γ

νt|t−N (s)πt(a|s)
,

Ỹt(s, a) =
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
,

(75)

and note αt(s, a) and λt(s, a) are real-valued F-predictable random sequences satisfying

0 ≤ αt(s, a)Ỹt(s, a) ≤ 2λt(s, a), (76)

because of non-negativity of αt(s, a) and Ỹt(s, a), the bounded loss assumption of

`t(s, a)I{st = s, at = a} ≤ 1, (77)

and ρπ(s, a) ≤ 1. Furthermore, Ỹt(s, a) is F-adapted and satisfies the two conditions stated in Lemma 4, i.e.

E

 ∏
(s,a)∈S

Ỹt(s, a)|Ft−1

 = E

 ∏
(s,a)∈S

`t(s, a)I{st = s, at = a}
νt|t−N (s)πt(a|s)

|Ft−1

 = 0. (78)

and

E
[
Ỹt(s, a)|Ft−1

]
= E

[
`t(s, a)I{st = s, at = a}

νt|t−N (s)πt(a|s)
|Ft−1

]
= `t(s, a). (79)

Therefore we can can use Lemma 4 to prove

Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A

αt(s, a)

(
Ỹt(s, a)

1 + λt(s, a)
− `t(s, a)

)
≥ log

1

δ4

)
≤ δ4

⇔ Pr

(
T∑

t=2N

∑
s∈S

∑
a∈A

ρπ(s, a)
[
ˆ̀
t(s, a)− `t(s, a)

]
≥

log 1
δ4

2γ

)
≤ δ4.

(80)

�

C.3 BOUNDING TERM II-III

Lemma 11 (Bounding term II-III). It holds that with probability exceeding 1− δ1
T∑

t=2N

∑
s∈S

∑
a∈A

[ρt(s, a)− ρπ(s, a)] ˆ̀
t(s, a) ≤ 1

η
log(|S||A|) +

η

2γ

(
log 1

δ1

2γ
+ T |S||A|

)

+ 2η
N

γ

(
log 1

δ1

2γ
+ T |S||A|

)
.

(81)

Proof. First, note that we can write

T∑
t=2N

∑
s∈S

∑
a∈A

[ρt(s, a)− ρπ(s, a)] ˆ̀
t(s, a) ≤

T∑
t=N

∑
s∈S

∑
a∈A

[
ρt+N (s, a)− ρπ(s, a)

]
ˆ̀
t(s, a)

+

T∑
t=2N

∑
s∈S

∑
a∈A

[
ρt(s, a)− ρt+N (s, a)

]
ˆ̀
t(s, a).

(82)

Given the update of O-REPS-IX (see step 14 of Algorithm 1) the first term in (82) is exactly the regret of OMD with respect
to a fixed occupancy measure ρπ(s, a). Hence, using the analysis of OMD (see, e.g., Theorem 2 in [10]),

T∑
t=N

∑
s∈S

∑
a∈A

[
ρt+N (s, a)− ρπ(s, a)

]
ˆ̀
t(s, a) ≤

D(ρπ‖ρ2N−1)

η
+
η

2

T∑
t=N

‖ˆ̀t‖2∞. (83)



Since

ˆ̀
t(s, a) =

`t(s, a)I{st = s, at = a}
νt|t−N (s)πt(a|s) + γ

≤ 1

γ
, (84)

using Lemma 5, it holds with probability larger than 1− δ1

T∑
t=N

‖ˆ̀t‖2∞ ≤
1

γ

(
log 1

δ1

2γ
+

T−1∑
t=2N

∑
s∈S

∑
a∈A

`t(s, a)

)

≤ 1

γ

(
log 1

δ1

2γ
+ T |S||A|

)
.

(85)

Additionally, since we initialize the occupancy measures uniformly in O-REPS-IX, D(ρπ‖ρ2N−1) can be easily bounded
by the definition of the Bregman divergence according to

1

η
D(ρπ‖ρ2N−1) ≤ 1

η

(
R(ρπ)−R(ρ2N−1)

)
≤ −1

η
R(ρ2N−1)

≤ 1

η

∑
s∈S

∑
a∈A

ρ2N−1(s, a) log
1

ρ2N−1(s, a)
≤ 1

η
log(|S||A|),

(86)

where we exploited the fact that R(ρπ) ≤ 0 by definition. Therefore,

T∑
t=N

∑
s∈S

∑
a∈A

[
ρt+N (s, a)− ρπ(s, a)

]
ˆ̀
t(s, a) ≤ 1

η
log(|S||A|) +

η

2γ

(
log 1

δ1

2γ
+ T |S||A|

)
(87)

We now bound the second term in (82). Using a similar argument as the one used to derive (35) and (36) in Lemma 6, we
can write

1

2η
‖ρt+N − ρt‖21 ≤ J t(ρt)− J t(ρt+N ) + 〈∇J t(ρt+N ),ρt+N − ρt〉

≤

[
t∑

i=2N−1

〈ρt, ˆ̀i〉+
1

η
R(ρt)

]
−

[
t∑

i=2N−1

〈ρt+N , ˆ̀i〉+
1

η
R(ρt+N )

]

≤

[
t−N∑

i=2N−1

〈ρt, ˆ̀i〉+
1

η
R(ρt)

]
−

[
t−N∑

i=2N−1

〈ρt+N , ˆ̀i〉+
1

η
R(ρt+1)

]

+

t−N∑
i=2N−1

〈ρt, ˆ̀i〉 −
t−N∑

i=2N−1

〈ρt+N , ˆ̀i〉

≤ 〈ρt − ρt+N ,
t−N∑

i=2N−1

ˆ̀
i〉

≤ ‖ρt+N − ρt‖1‖
t−N∑

i=2N−1

ˆ̀
i‖∞.

(88)

Therefore,

‖ρt+N − ρt‖1 ≤ 2η
N

γ
. (89)



Thus, the second term in (82) is bounded by

T∑
t=2N

∑
s∈S

∑
a∈A

[
ρt(s, a)− ρt+N (s, a)

]
ˆ̀
t(s, a) ≤

T∑
t=2N

‖ρt+N − ρt‖1‖ˆ̀t‖∞

≤ 2η
N

γ

T∑
t=2N

‖ˆ̀t‖∞

≤ 2η
N

γ

(
T∑

t=2N

∑
s∈S

∑
a∈A

ˆ̀
t(s, a)

)

≤ 2η
N

γ

(
log 1

δ1

2γ
+

T−1∑
t=2N

∑
s∈S

∑
a∈A

`t(s, a)

)

≤ 2η
N

γ

(
log 1

δ1

2γ
+ T |S||A|

)
,

(90)

where we used Lemma 5 and the fact that by the definition of our loss estimator we can replace the `∞ norm with the sum
over states and actions (since only one component of the estimator is nonzero). Therefore, combining (87) and (90) furnishes
the lemma. �



D BOUNDING TERM III

Lemma 3 (Bounding term III). For any δ1 ∈ (0, 1), with probability at least 1− δ1, it holds that

E

[
T∑

t=2N

`t(st, at)

]
−

T∑
t=2N

ξπtt ≤ 2(1 + τ) + 2η(1 + τ)

(
log 1

δ1

2γ
+ T |S||A|

)
. (91)

Proof. Similar to the proof of Lemma 1, we start by expanding using the definition of ξπtt according to

E

[
T∑

t=2N

`t(st, at)

]
−

T∑
t=2N

ξπtt

=

T∑
t=2N

∑
s∈S

∑
a∈A

Pr(st = s, at = a)`t(s, a)

−
T∑

t=2N

lim
T ′→∞

T ′∑
t=2N

∑
s∈S

∑
a∈A

Pr(sπtt′ = s, aπtt′ = a)`t(s, a)

=

T∑
t=2N

∑
s∈S

∑
a∈A

νt(s)πt(a|s)`t(s, a)−
T∑

t=2N

∑
s∈S

∑
a∈A

ρt(s, a)`t(s, a)

=

T∑
t=2N

∑
s∈S

∑
a∈A

(νt(s)− ν̄πt(s))πt(a|s)`t(s, a)

≤
T∑

t=2N

∑
s∈S

(νt(s)− ν̄πt(s)) ≤
T∑

t=2N

‖νt − ν̄πt‖1,

(92)

where we used the fact that
∑
a∈A π(a|s) = 1 and 0 ≤ `t(s, a) ≤ 1, as well as the vector notation ν ∈ R|S| and the

definition of `1-norm. The proof is then completed using the result of Lemma 6. �



E PROOF OF THEOREM 1

Theorem 1 (High-Probability Regret Bound). Let

η = (T |S||A|)−2/3
√

log(|S||A|), γ = (T |S||A|)−1/3

√
τ log T log

1

δ
, and N = 1 + dτ log T e. (93)

Then, for any δ ∈ (0, 1), with probability at least 1− 4δ, it holds that the random regret of Algorithm 1 satisfies

RT ≤ C (T |S||A|)2/3

√
τ log(|S||A|) log T log

1

δ
+ C ′τ log T, (94)

for some universal constants C,C ′ > 0.

Proof. Let δ = max{δ1, δ2, δ3, δ4}. Summing and rearranging the bounds over the terms in the regret decomposition,
according to Lemmas 1, 2, and 3, we conclude that, with probability at least 1− 4δ, it holds that

RT ≤ 2N + 2(1 + τ) + 4e−
N−1
τ T + 4(1 + τ)η

(
log 1

δ

2γ
+ T |S||A|

)
+

log 1
δ

2γ
+ γT |S||A|+

√
T

2
log

1

δ
+

log 1
δ

2γ
+

1

η
log(|S||A|)

+
η

2γ

(
log 1

δ

2γ
+ T |S||A|

)
+ 2η

N

γ

(
log 1

δ

2γ
+ T |S||A|

)
+ 2(1 + τ) + 2η(1 + τ)

(
log 1

δ

2γ
+ T |S||A|

)
.

(95)

Note that γT |S||A|, 1
η log(|S||A|), and 2ηNγ

(
log 1

δ

2γ + T |S||A|
)

are the dominant terms in the regret in terms of T , |S|,
and |A|. Using the specified values of γ, η, and N in (13) and separating the deterministic terms 2N + 4(1 + τ), we can

bound other terms in (95) by multiples of (T |S||A|) 2
3

√
τ log(|S||A|) log T log 1

δ , thereby establishing the proof of the
theorem. �
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