
Contextual Policy Transfer in Reinforcement Learning Domains via
Deep Mixtures-of-Experts

Michael Gimelfarb1,2 Scott Sanner1,2 Chi-Guhn Lee1

1Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
2 Vector Institute, Toronto, Canada

Abstract

In reinforcement learning, agents that consider the
context or current state when transferring source
policies have been shown to outperform context-
free approaches. However, existing approaches suf-
fer from limitations, including sensitivity to sparse
or delayed rewards and estimation errors in values.
One important insight is that explicit learned mod-
els of the source dynamics, when available, could
benefit contextual transfer in such settings. In this
paper, we assume a family of tasks with shared sub-
goals but different dynamics, and availability of es-
timated dynamics and policies for source tasks. To
deal with possible estimation errors in dynamics,
we introduce a novel Bayesian mixture-of-experts
for learning state-dependent beliefs over source
task dynamics that match the target dynamics us-
ing state transitions collected from the target task.
The mixture is easy to interpret, is robust to esti-
mation errors in dynamics, and is compatible with
most RL algorithms. We incorporate it into stan-
dard policy reuse frameworks and demonstrate its
effectiveness on benchmarks from OpenAI gym.

1 INTRODUCTION

Reinforcement learning (RL) is a general framework for
developing artificial agents that learn to make complex deci-
sions by interacting with an environment. In recent years, RL
algorithms have achieved state-of-the-art performance on
simulated tasks such as Atari games [Mnih et al., 2015] and
real-world applications [Gu et al., 2017]. However, model-
free RL algorithms are sensitive to the choice of reward or
hyper-parameters [Henderson et al., 2018, Seo et al., 2019],
and are often not sample-efficient [Yarats et al., 2019].

To address this concern, transfer learning reduces the num-
ber of samples required to learn a new (target) task by

reusing previously acquired knowledge from other simi-
lar (source) tasks [Lazaric, 2012, Taylor and Stone, 2009].
Many papers in this area focus on reusing policies, because
it is intuitive and direct, and does not rely on value functions
that can be difficult to estimate [Van Hasselt et al., 2016].
Furthermore, transferring policies from multiple sources
can be more effective than a single policy [Fernández and
Veloso, 2006, Rosman et al., 2016]. However, to make such
transfer successful in practice, a learning agent should be
able to identify which source policies are relevant in each
state of the target environment, referred to as contextual
transfer [Taylor and Stone, 2009]. In recent years, various
frameworks have been proposed to tackle this problem. The
hierarchical RL framework is naturally well-suited because
it decomposes complex goals into simpler sub-goals – each
requiring distinct yet complementary skills to be learned
– which must then be combined to solve the original prob-
lem. Perhaps the best-known approach in this category is
the options framework, which models the choice of source
policy as a temporally-extended action, embedding it within
MDPs [Sutton et al., 1999]. However, such transfer methods
typically assign credit based on observed rewards, which
could be sparse or significantly delayed, and can therefore
be sensitive to estimation errors in value functions.

On the other hand, learned estimates of the source dynamics,
when available, could offer a strong contextual indicator of
which source policies to use, without suffering from the
aforementioned problems. Such estimates have been used in
many relevant areas, such as transferring from simulators to
the real world [Tan et al., 2018] or fine-tuning policies ob-
tained using model-based learners [Nagabandi et al., 2018].
They are also routinely available in many industrial and
practical settings. For example, in asset maintenance, practi-
tioners often rely on a digital reconstruction of a machine
and its operating environment, called a digital twin, to learn
a maintenance policy [Aivaliotis et al., 2019]. Here, source
tasks could represent models of optimal control under a wide
range of conditions, such as different climate and weather
forecasts, or hypothetical usage and degradation patterns

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1787–1797.

associated with the asset. They are also prevalent in other
fields, such as drug discovery [Durrant and McCammon,
2011], robotics [Christiano et al., 2016] or manufacturing
[Shao and Helu, 2020]. Furthermore, in order to achieve
robustness in these settings, one can simulate high-risk sce-
narios that do not occur often in practice and contextually
transfer this information to the real-world target learner to
enhance its safety during unexpected events.

Starting with this insight, we consider a family of tasks with
shared sub-goals [McGovern and Barto, 2001] but different
dynamics [Eysenbach et al., 2021, Tirinzoni et al., 2019].
Furthermore, both the dynamics and control policies of the
source tasks are estimated prior to transfer, although we do
not require that the source dynamics are precisely learned,
as demonstrated in our experiments. To enable contextual
policy transfer, we introduce a novel Bayesian framework
for autonomously identifying and combining promising sub-
regions from multiple source tasks. This is done by placing
state-dependent Dirichlet priors over source task dynam-
ics, and learning the corresponding posterior distributions
using state trajectories sampled from the target task. Fur-
thermore, explicit knowledge of the target dynamics is not
necessary, making our approach model-free with respect
to the target task, which is a critical assumption when the
target task has sparse data. Finally, naive tabulation of state-
dependent priors is intractable in large or continuous state
spaces, so we parameterize it as a deep neural network. In-
terpreted as a contextual mixture-of-experts (MoE) [Jacobs
et al., 1991], it serves as a surrogate model for informing
the state-dependent contextual selection of source policies
for locally exploring promising actions in each state.

Our approach has several key advantages over other existing
methods. First, Bayesian inference methods can effectively
“smooth" the noise in the training data, allowing source tasks
to be selected robustly even in the presence of noise in the
estimates of the source dynamics [Gimelfarb et al., 2020].
Also, our method only requires the source dynamics to be
used for measuring task similarity, and can thus be applied
in typical model-free settings. Coupled with the Bayesian
formulation, this makes our approach robust to estimation
errors in source dynamics as we demonstrate empirically.
Second, the mixture model is amenable to function approx-
imation, and can therefore benefit from advances in deep
function approximation [Krizhevsky et al., 2012], while
still being Bayesian. Third, our approach separates reason-
ing about task similarity from policy learning, making it
agnostic to the reinforcement learning algorithm and the
type of knowledge transferred. This facilitates transfer of
value functions, source dynamics, and other knowledge rep-
resentations between tasks, though we only focus on policy
transfer in this work. Finally, the learned posterior is easy to
interpret, as we demonstrate empirically (Figures 4 and 5).

The main contributions of this paper are threefold:

1. We introduce a contextual mixture-of-experts model to
efficiently learn state-dependent posterior distributions
over source task models for discrete (Section 3.1) and
continuous MDPs (Section 3.2);

2. We show how the trained mixture model can be in-
corporated into existing transfer learning frameworks,
namely policy reuse for improving exploration (Sec-
tion 3.3) and reward shaping for dealing with sparse
rewards (Section 3.4);

3. We demonstrate the effectiveness and generality of
our approach by testing it on problems with discrete
and continuous spaces, including physics simulations
(Section 4).

Overall, our paper is the first to leverage learned source dy-
namics to contextually transfer policies, and to demonstrate
the ability for a target policy to adapt stably even in the
presence of imperfect estimates of the dynamics.

2 PRELIMINARIES

Markov Decision Process We follow the framework of
Markov decision processes (MDPs) [Puterman, 2014], de-
fined as five-tuples 〈S,A, P,R, γ〉: S is a set of states,
A is a set of actions, P (s′|s, a) are the state dynamics,
R(s, a, s′) is a bounded reward function, and γ ∈ [0, 1]
is a discount factor. In deterministic problems, the state
dynamics are typically represented as a deterministic map
s′ = f(s, a). The objective of an agent is to find an op-
timal deterministic policy π∗ : S → A that maximizes
the discounted cumulative reward, defined as Qπ(s, a) =

Est∼P, at∼π
[∑T

t=0 γ
trt | s0 = s, a0 = a

]
, starting from an

initial state-action pair (s, a), where rt = R(st, at, st+1).

Reinforcement Learning In the reinforcement learn-
ing setting, neither P nor R are assumed to be
known by the agent. Instead, the agent collects data
(s0, a0, r0, s1, a1, r1, . . . sT) by interacting with the envi-
ronment through a randomized exploration policy. In model-
based RL (MBRL), the agent uses this data to first estimate
P and R, and then uses these estimates to learn the optimal
policy π∗. In model-free RL, an agent learns the optimal
policy π∗ directly without estimating P nor R [Sutton and
Barto, 2018].

Learning Dynamics In model-based RL, a model of the
state dynamics is defined and trained through repeated inter-
actions with the environment. It returns an estimate of the
next state directly ŝ′ = f̂(s, a) in deterministic MDPs, or ap-
proximates its distribution in stochastic MDPs, for instance
using a parameteric model such as a normal distribution
ŝ′ ∼ N (µ(s, a),Σ(s, a)) [Levine and Abbeel, 2014] or a
non-parameteric model such as a Gaussian process [Deisen-
roth and Rasmussen, 2011]. Subsequently, samples from

1788

the trained dynamics model can be used to augment the real
experience when training the policy [Kaiser et al., 2020].
In this paper, we use dynamics to implement efficient and
robust transfer of policies between tasks.

Transfer Learning We are interested in solving the fol-
lowing transfer learning problem. A library of n ≥ 1 source
tasks and a single target task are provided, with common
S and A, common sub-goals, but different dynamics. For
each source task i = 1, 2 . . . n, the control policy π∗i and the
underlying dynamics P̂i(s′|s, a) or f̂i(s, a) are estimated
from data. More generally, it is possible to transfer sample
data, value functions, or other sources of domain knowledge
in our framework, but we only study policy transfer in this
paper. The main objective is to make use of this knowledge
to solve the new target task in an efficient online manner.

3 CONTEXTUAL POLICY TRANSFER

In many domains, the state dynamics of a target task may
be locally similar to one source task in one region of the
state space, but a different source task in another region. By
reasoning about task similarity locally in different regions
of the state space, an RL agent can make more efficient
use of source task knowledge. In this section, we proceed
to model and learn state-dependent contextual similarity
between source tasks and a target task. We also derive a
theoretical result to justify our use of source dynamics.

An overview of our framework applied with DQN [Mnih
et al., 2015] is illustrated in Figure 1, which will be de-
scribed in detail in the following subsections. The main
components of our framework include: the Q-value function,
parameterized as ϑ with loss LDQN ; the mixture network
parameterized as θ with loss function L, that learns the sim-
ilarity b between source and target tasks in each state s; the
environment Env. that is interacted with using a behavior
policy πb, derived from Q and reshaped by the source poli-
cies and the predictions of the mixture network; and a buffer
of previous dataD that trains both the DQN and the mixture
network in an offline batched manner.

3.1 DEEP CONTEXTUAL MIXTURE-OF-EXPERTS

In order to develop a Bayesian framework for measuring
task similarity, we first introduce a state-dependent prior
P (w|s) over combinations w of source task models. This
prior will be updated to a posterior P (w|s,Dt) that tries to
match the true (unknown) target dynamics, using transitions
Dt = {(sτ , aτ , sτ+1), τ = 1, 2 . . . t} collected from the
target environment up to each time instant t. Here, w ∈ Rn
consists of non-negative elements such that

∑n
i=1 wi = 1.

Using combinations to model uncertainty in source task
selection in this way can be viewed as Bayesian model com-
bination. This is much more general than Bayesian model

θ b(s; θ)

L∇θL P̂i

π∗iMoE

ϑ Q(s, a)

LDQN∇ϑL

πb

Env.s′
rDataD

sample B

Figure 1: A conceptual illustration of the proposed frame-
work with a source-policy guided behavior policy πb for
exploration (Algorithm 2). Here, the agent’s Q-values are
modeled using the DQN architecture [Mnih et al., 2015],
with parameters ϑ and standard TD-loss LDQN used to
train Q-values offline on batches of samples from a replay
buffer. Please note that the learning of the contextual mix-
ture b(·; θ) is independent of the Q-values, so the DQN
architecture could be replaced by other reinforcement learn-
ing architectures, including those that do not learn Q-values.

averaging techniques, since w can converge to a mixture
over source dynamics, rather than collapse to a single source
task. This has been shown to provide several advantages,
including more stable convergence and robustness to model
misspecification [Minka, 2000, Monteith et al., 2011].

In our setting, exact inference for w is intractable, so we
model w using a surrogate probability distribution. Since
each realization of w is a discrete probability distribution, a
suitable conjugate prior for w in each state s is a Dirichlet
distribution [Gimelfarb et al., 2018] with density

P (w|s,Dt) ∝
n∏
i=1

w
αt,i(s)−1
i ,

where αt,i : S → R for all i = 1, 2 . . . n and t = 0, 1, 2, . . .
outputs a vector with strictly positive entries. By averaging
out the uncertainty in w, we can obtain a posterior estimator
P (s′|s, a,Dt) of target dynamics:

P (s′|s, a,Dt) =

∫
P (s′|s, a,w)P (w|s,Dt) dw

=

∫ n∑
i=1

P (s′|s, a,w, i)P (i|w, s)P (w|s,Dt) dw

=

∫ n∑
i=1

P̂i(s
′|s, a)wi P (w|s,Dt) dw

=

n∑
i=1

P̂i(s
′|s, a)

∫
wi P (w|s,Dt) dw

=

n∑
i=1

P̂i(s
′|s, a) Ew∼P (w|s,Dt) [wi]. (1)

In the following sections, we will instead refer to the follow-

1789

ing normalized form of (1)

P (s′|s, a,Dt) =

n∑
i=1

P̂i(s
′|s, a) bt,i(s), (2)

where bt,i(s) = Ew∼P (w|s,Dt) [wi] =
αt,i(s)∑n

j=1 αt,j(s)
is seen

as a contextual mixture or belief over source task models.

In a tabular setting, it is feasible to maintain separate esti-
mates of bt,i(s) per state using approximate Bayes’ infer-
ence [Andrieu et al., 2003, Gimelfarb et al., 2018]. However,
maintaining such estimates for large or continuous state
spaces presents inherent computational challenges. Fortu-
nately, as (2) showed, the posterior mean bt(s) is a suffi-
cient estimator of P (s′|s, a,Dt). Therefore, we can approx-
imate bt(s) directly using a feed-forward neural network
b(s; θ) with parameters θ. The input of b(s; θ) is a vector-
ized representation of s, and the outputs zbi (s; θ) are fed
through the softmax function bi(s; θ) ∝ exp

(
zbi (s; θ

)
) to

guarantee that bt(s) ≥ 0 and
∑n
i=1 bt,i(s) = 1. Now it

is no longer necessary to store all Dt, since each sample
can be processed online or in batches. Furthermore, since
θ is a neural network approximation of (2), we can write
P (s′|s, a,Dt) ' P (s′|s, a, θ).

In order to learn θ, we minimize the empirical negative
log-likelihood function1, given by (2) as:

L(θ) = − logPs′∼Ptarget(s′|s,a) (Dt|θ)

= − log

 ∏
(s,a,s′)∈Dt

n∑
i=1

P (s′|s, a, i)P (i|θ)

= −

∑
(s,a,s′)∈Dt

log

(
n∑
i=1

P̂i(s
′|s, a) bi(s; θ)

)
. (3)

The gradient of L(θ) has a Bayesian interpretation, as the
following result shows.

Proposition 1. For a single sample (s, a, s′):

∇θL(θ) =

n∑
j=1

∂zbj(s; θ)

∂θ
(bj(s; θ)− pj(s; θ))

pj(s; θ) =
P̂j(s

′|s, a) bj(s; θ)∑n
i=1 P̂i(s

′|s, a) bi(s; θ)
.

(4)

Proof. Let Z =
∑n
i=1 P̂i(s

′|s, a) bi(s; θ) and apply the
chain rule with bi(s; θ) ∝ exp (zbi (s; θ)):

∇θL(θ) = −∇θ log

(
n∑
i=1

P̂i(s
′|s, a) bi(s; θ)

)

= − 1

Z

n∑
i=1

P̂i(s
′|s, a)

∂bi(s; θ)

∂θ

1This corresponds to a uniform (improper) prior P (θ).

= − 1

Z

n∑
i=1

P̂i(s
′|s, a)

n∑
j=1

∂bi(s; θ)

∂zbj

∂zbj(s; θ)

∂θ

= − 1

Z

n∑
j=1

∂zbj(s; θ)

∂θ

n∑
i=1

P̂i(s
′|s, a)

∂bi(s; θ)

∂zbj

=
−1

Z

n∑
j=1

∂zbj(s; θ)

∂θ

n∑
i=1

P̂i(s
′|s, a)bi(s; θ) (δij − bj(s; θ))

= −
n∑
j=1

∂zbj(s; θ)

∂θ

n∑
i=1

pi(s; θ) (δij − bj(s; θ))

=

n∑
j=1

∂zbj(s; θ)

∂θ
(bj(s; θ)− pj(s; θ)) .

This completes the proof.

Here, bi(s; θ) can be interpreted as a prior. Once a new sam-
ple (s, a, s′) is observed, the posterior distribution pi(s; θ)
is computed using Bayes’ rule, and θ is updated according
to the difference between prior and posterior, scaled by state
features zbi . It is thus expected that by training θ using gradi-
ent descent on (4), e.g. by updating θ′ = θ − λ∇θL(θ), the
prior bi(s; θ) will eventually be driven to its correct poste-
rior as the number of updates is increased. Regularization of
bi(s; θ) can also be easily incorporated by using informative
priors P (θ) (e.g. isotropic Gaussian, Laplace) in (3), and
can lead to smoother posteriors.

Unfortunately, proving the convergence of gradient descent
is outside the scope of this work. However, the framework
proposed above could potentially leverage recent theoretical
developments concerning the convergence of deep learning
models in more general settings [He and Tao, 2020]. Fur-
thermore, we can also show that incorporating dynamics as
part of the transfer learning process in a contextual way can
lead to better transfer than using a single source task.

Proposition 2. Consider an MDP 〈S,A, P,R, γ〉 with fi-
nite S and A and bounded reward R : S → R. Let R be
the reward function in vector form, P̂π be an estimate of the
transition probabilities induced by a policy π : S → A in
matrix form, and V̂π be the corresponding value function
in vector form. Also, let Pπ and Vπ be the corresponding
values under the true dynamics. Then for any policy π,

‖V̂π −Vπ‖∞ ≤
γ

(1− γ)2
‖R‖∞ ‖P̂π −Pπ‖∞.

Proof. First, observe that for any stochastic matrix P,
‖P‖ = 1, where ‖ · ‖ is the infinity norm, and I − γP
is always invertible. Therefore:

‖(I− γP)−1‖ =

∥∥∥∥∥
∞∑
t=0

(γP)t

∥∥∥∥∥ ≤
∞∑
t=0

γt‖P‖t =
1

1− γ .

To simplify notation, we write V1 = V̂π, V2 = Vπ, P1 =
P̂π and P2 = Pπ. Then V1 = (I − γP1)−1R and V2 =

1790

(I − γP2)−1R [Ng and Russell, 2000]. Now, making use
of the identity X−1 −Y−1 = X−1(Y −X)Y−1:

‖V̂π −Vπ‖ = ‖(I− γP1)−1R− (I− γP2)−1R‖
≤ ‖(I− γP1)−1 − (I− γP2)−1‖‖R‖
= ‖(I− γP1)−1γ(P2 −P1)(I− γP2)−1‖‖R‖
≤ γ‖(I− γP1)−1‖‖(I− γP2)−1‖‖P2 −P1‖‖R‖

≤ γ
(

1

1− γ

)2

‖P2 −P1‖‖R‖,

and so the proof is complete.

This result justifies our methodology of using source task
dynamics similarity to guide state-dependent policy reuse,
since our choice of contextual P̂ (equation (2)) for sampling
policies would generally result in lower error ‖P̂π−Pπ‖∞,
and thus better values, than that obtained by committing to
a single source task, e.g. Pπ

i . This claim will be validated
empirically in Section 4.

3.2 CONDITIONAL RBF NETWORK

In continuous-state tasks with deterministic transitions,
Pi(s

′|s, a) correspond to Dirac measures, in which case
it is more suitable to learn a model that can predict the
next state f̂i(s, a) directly. In order to tractably update
the mixture model in this setting, we assume that, given
source task i is the correct model of target dynamics,
the probability of observing a transition from state s to
state s′ is a decreasing function of the prediction error
‖s′ − ŝ′‖ = ‖s′ − f̂i(s, a)‖. More formally, given an arbi-
trarily small region S = [s′, s′ + ds′],

P (s′ ∈ S | s, a,w, i) = ρi

(
‖s′ − f̂i(s, a)‖

)
ds′, (5)

where ρi : R → R can be interpreted as a normalized2

radial basis function (RBF). A popular choice of ρi, and
implemented in this paper, is the Gaussian kernel, which
for νi > 0 is given as ρi(r) ∝ exp

(
−νir2

)
. In principle,

νi could be modeled as an additional output of the mix-
ture model, νi(θ), and learned from data [Bishop, 1994],
although we treat it as a constant in this paper.

By using (5) and following the derivations leading to (1),
we obtain the following result in direct analogy to (2)

P (s′ ∈ S | s, a,Dt) =

n∑
i=1

ρi

(
‖s′ − f̂i(s, a)‖

)
bt,i(s) ds′.

(6)
Consequently, the results derived in the previous sections,
including the mixture model and loss function for b(s; θ),

2Technically, we could only require that ρi ≥ 0, as the likeli-
hood need not be a valid probability density.

hold by replacing P̂i(s′|s, a) with ρi
(
‖s′ − f̂i(s, a)‖

)
. Fur-

thermore, since (6) approximates the target dynamics as a
mixture of kernel functions, it can be viewed as a conditional
analogue of the radial basis function network [Broomhead
and Lowe, 1988]. It remains to show how to make use of
this model and the source policies in new target tasks.

3.3 POLICY REUSE FOR EXPLORATION

The most straightforward approach for policy reuse is to
sample a source policy πt at random at each time step t
according to b(st; θ), and apply action a = πt(st) in the
current state st. To allow for exploration, the agent only
takes advice with probability pt ∈ [0, 1], otherwise fol-
lowing a target exploration policy [Fernández and Veloso,
2006, Li and Zhang, 2018]. This resulting behaviour pol-
icy is suitable for any off-policy RL algorithm. We call
this Model-Aware Policy Reuse for Exploration (MAPSE),
and present the corresponding pseudocode for sampling the
modified behavior policy πb in Algorithm 1, and the overall
training loop for MAPSE in Algorithm 2.

Algorithm 1 PolicyReuse(st)
Require: st, b(st; θ), pt, Π = {π∗1 , . . . π∗n}, π

sample_source_policy ∼ Bernoulli(pt)
if sample_source_policy = true then
it ∼ Categorical(b(st; θ)); at ← π∗it(st)

else
at ∼ π(st)

end if
return at

Algorithm 2 MAPSE

Require: P̂i(s′|s, a) (or f̂i(s, a) and ρi) for i = 1, 2 . . . n,
Π = {π∗1 , . . . π∗n}, π, θ, λ, D = ∅, pt
for episode m = 1, 2, . . . do

Sample D ← (s0, a
′
0, r0, s1, a

′
1, r1, . . .) from the

target task, where a′t ∼ PolicyReuse(st)
Store D in D
Sample a mini-batch B ⊂ D
Update π and θ ← θ − λ∇θL(θ) on B

end for
return π

However, this approach has several shortcomings. Firstly,
it is not clear how to anneal pt, since b(s; θ) is learned
over time and is non-stationary. Secondly, using the recom-
mended actions too often can lead to poor test performance,
since the agent may not observe sub-optimal actions enough
times to generalize well to the target task. Finally, since
efficient credit assignment is particularly difficult in sparse
reward problems [Seo et al., 2019], the effectiveness of this
behavior policy could be limited in practice.

1791

3.4 POTENTIAL-BASED REWARD SHAPING

A more principled approach for incorporating policy advice
is to reshape the original reward function using potential-
based reward shaping (PBRS) [Ng et al., 1999, Brys
et al., 2015]. More specifically, the original reward sig-
nal Rt(s, a, s′) at time t is modified to a new signal
R′t(s, a, s

′) = Rt(s, a, s
′) + cFt(s, a, s

′, a′), where3

Ft(s, a, s
′, a′) = γ Φt+1(s′, a′)− Φt(s, a). (7)

Here, c > 0 defines the strength of the shaped reward signal,
and can be tuned for each problem or empirically scaled to
the magnitude of the rewards. The potential Φt(s, a) is cho-
sen to be the posterior probability P (a|s,Dt) that action a
would be recommended by a source policy in state s at time
t. By repeating the derivations leading to (1), we can derive
an expression for Φt(s, a) in the Bayesian framework:

Φt(s, a) = P (a|s,Dt)

=

∫ n∑
i=1

P (a|s,Dt,w, i)P (i|w, s)P (w|s,Dt) dw

=

n∑
i=1

P (a = π∗i (s)) bi(s; θ). (8)

Note that (8) reduces to Brys et al. [2015] when n = 1
and source policies are deterministic. Unlike MAPSE, this
approach can also be applied on-policy, and preserves pol-
icy optimality [Devlin and Kudenko, 2012]. It can also be
applied for problems with continuous action spaces, by mod-
elling P (a = π∗i (s)) using RBFs as discussed earlier. We
call this approach Model-Aware Reward Shaping (MARS),
and present the training loop in Algorithm 3.

Algorithm 3 MARS

Require: P̂i(s′|s, a) (or f̂i(s, a) and ρi) for i = 1, 2 . . . n,
Π = {π∗1 , . . . π∗n}, π, θ, λ, D = ∅, c
for episode m = 1, 2, . . . do

Sample D ← (s0, a0, r
′
0, s1, a1, r

′
1, . . .) from the

target task, where at ∼ π(st) and r′t is computed
according to (7) and (8)

Store D in D
Sample a mini-batch B ⊂ D
Update π and θ ← θ − λ∇θL(θ) on B

end for
return π

3Our implementation used look-back shaping rather than the
look-ahead form presented here, in which s, a correspond to the
state-action pair at time t − 1 and s′, a′ correspond to time t
rather than t and t+ 1. While policy invariance is not necessarily
guaranteed for look-back shaping in off-policy learning [Wiewiora
et al., 2003], we found it to work well and easy to implement.

Remarks The proposed framework is general and modu-
lar and can be combined with most RL algorithms and even
model-based RL. Furthermore, the computational cost of
processing each sample is a linear function of the cost of
evaluating the source task dynamics and policies. Many
extensions to this framework are also possible. For in-
stance, to reduce the effect of negative transfer, it is pos-
sible to estimate the target task dynamics P̂target(s′|s, a)

or f̂target(s, a), and include it as an additional (n + 1)-st
component in the mixture (2). If this model can be esti-
mated accurately, it can also be used to update the agent
directly. Further improvements for MARS could be obtained
by learning a secondary Q-value function for the potentials
[Harutyunyan et al., 2015]. We do not investigate these ex-
tensions in this paper, which can form interesting topics for
future study.

4 EMPIRICAL EVALUATION

We evaluate the empirical performance of MAPSE and
MARS in a typical reinforcement learning setting (see Ap-
pendix for details).

Research Questions In particular, our aim is to answer
the following questions:

1. Does b(s; θ) learn to select the most relevant source
task(s) in each state?

2. Does MARS (and possibly MAPSE) achieve better
test performance, relative to the number of transitions
observed, over existing baselines?

3. How interpretable is the learned task similarity, as mea-
sured by b(s; θ)?

Baseline Algorithms In order to answer these questions,
we consider tabular Q-learning [Watkins and Dayan, 1992]
and DQN [Mnih et al., 2015] with MAPSE and MARS, in
which source models and policies are learned separately.
Please note that our approach could also be applied with
model-based approaches. To ensure fair comparison with rel-
evant baselines, we include one recently published context-
free and one contextual policy reuse algorithm:

1. CAPS: a contextual option-based algorithm for hierar-
chical transfer as proposed in Li et al. [2019];

2. UCB: a multi-armed bandit algorithm for policy selec-
tion as proposed in Li and Zhang [2018];

3. Φ1, Φ2. . . : reward shaping for transferring each source
policy i individually as proposed in Brys et al. [2015];

4. Q: Q-learning [Watkins and Dayan, 1992] and DQN
[Mnih et al., 2015] trained without transfer.

1792

Benchmark Domains To help us compare these base-
lines, we consider three variants of existing prob-
lems, Transfer-Maze, Transfer-CartPole, and Transfer-
SparseLunarLander, that are explained in the subsequent
subsections. These domains are designed to demonstrate the
effectiveness of MAPSE/MARS in discrete and continuous
state spaces and a realistic problem with sparse rewards and
complex physics. The quality of the estimated models also
varies considerably between them, and serves to assess the
stability of b(s; θ) in the face of imperfect P̂i.

4.1 TRANSFER-MAZE

This domain is a two-dimensional region consisting of cells
arranged in a 30-by-30 grid, and divided into four rooms as
shown in Figure 3. Obstacles are placed to form the rooms
and also scattered throughout to make the task challeng-
ing and assess the ability of b(s) to match local dynamics.
The four possible actions {left, up, right, down}
move the agent to the adjacent cell in the corresponding di-
rection, but have no effect if the destination is an obstacle
or boundary. The agent incurs a penalty of 0.02 for hitting a
wall, and otherwise incurs a penalty of 0.01. The goal is to
reach a fixed goal cell in the least number of steps, at which
point the agent receives a reward of 1. The source tasks are
designed to correctly model the interior of only one of the
four rooms, so that only a context-aware algorithm could
learn to utilize the source task knowledge correctly.

(a) Source tasks. (b) Target tasks.

Figure 3: The Transfer-Maze domain. The agent always
begins in a fixed cell (green). The goal of the agent is to
navigate to the fixed target cell (red).

We use Q-learning to learn optimal source and target poli-
cies, while the dynamics f̂i(s, a) are trained using lookup
tables. The agent’s policy is periodically tested on separate
episodes and the number of steps taken to reach the goal
is recorded. The averaged performance is then reported in
Figure 2a. Note that we have omitted the plot for Φ1,Φ2 . . .
since convergence could not be obtained after 200,000 steps
using only single policies. Figure 4 plots the belief b(s; θ)
learned and assigned to each of the source tasks over time.

0 20

0

20
0.0

1.0

0 20

0

20
0.0

1.0

0 20

0

20
0.0

1.0

0 20

0

20
0.0

1.0

0 20

0

20
0.0

1.0

0 20

0

20
0.0

1.0

Figure 4: Each group of 4 plots shows the learned belief
bt(s; θ) assigned to each source task for the Transfer-Maze
experiment, after training on (respectively, left to right, top
to bottom) t = 0, 5K, 10K, 20K, 50K and 100K target
samples. The color indicates the probability, while x- and
y-axes represent the x and y position of the agent.

4.2 TRANSFER-CARTPOLE

The CartPole control problem involves balancing a pole
upright on top of a moving cart [Brockman et al., 2016]. The
state (x, ẋ, θ, θ̇) consists of the position and velocity of the
cart, and the angle and angular velocity of the pole. The two
actions correspond to applying an external force to the left
or right side of the cart. To make the problem more difficult,
we allow the external force F (x) applied to the cart to vary
with position, F (x) = 35

√
1+36

1+36 cos2(5x) cos(5x)+40. One
way to interpret this is that the surface is not friction-less,
but contains slippery (force of 75) and rough (force of 5)
patches. To learn better policies, the agent can apply half or
full force to the cart in either direction (4 possible actions).
As a result, the correct source policy to transfer in each
state depends on the surface. The problem is made even
more difficult by uniformly initializing x ∈ [−1.5,+1.5], to
require the agent to generalize to both surfaces. In the first
two source tasks, the agent balances the pole only on rough
and slippery surfaces, respectively. For the third source task,
the pole length is doubled and F (x) is set uniformly to 20.

Following Mnih et al. [2015], the Q-values are approximated
using a feed-forward neural network, and randomized expe-
rience replay and target networks are employed for stabil-
ity. State dynamics f̂i(s, a) are also parameterized as feed-
forward neural networks fφi

(s, a) with parameters φi and
trained using the MSE loss 1

|B|
∑

(s,a,s′)∈B ‖s′−fφi
(s, a)‖2

on batches B drawn at random from the buffer. To learn
b(s; θ), we use the Gaussian kernel with fixed ν. For CAPS,
we follow Li et al. [2019] and only train the last layer when
learning the options; the learning rate for options is chosen
from {10−2, 10−3, 10−4} that led to the best performance
on the task. The test performance is defined as the number
of steps that the agent can balance the pole in each episode
before tipping over during testing. The average performance
of all algorithms is illustrated in Figure 2b. Figure 5 plots
the state-dependent belief b(s; θ) learned and assigned to
each source task over time as training progresses.

1793

0.25 0.50 0.75 1.00 1.25
samples collected 1e5

100
125
150
175
200
225
250
275
300

st
ep

s t
o

re
ac

h
go

al

MARS
MAPSE
CAPS
UCB
Q

(a) Transfer-Maze

0.2 0.4 0.6 0.8 1.0
samples collected 1e4

0

100

200

300

400

500

st
ep

s u
nt

il
po

le
 fe

ll

MARS
MAPSE
CAPS
UCB
Q

0.2 0.4 0.6 0.8 1.0
samples collected 1e4

0

100

200

300

400

500

st
ep

s u
nt

il
po

le
 fe

ll

MARS
1
2
3

(b) Transfer-CartPole

0.5 1.0 1.5 2.0
samples collected 1e5

500

400

300

200

100

0

100

to
ta

l r
et

ur
n

MARS
MAPSE
CAPS
UCB
Q

0.5 1.0 1.5 2.0
samples collected 1e5

500

400

300

200

100

0

100

to
ta

l r
et

ur
n

MARS
1
2
3

(c) Tr.-SparseLunarLander

Figure 2: Test performance using the greedy policy of the target agent, as a function of the number of target samples: (a)
number of steps to reach goal (b) number of steps balanced (c) cumulative reward. Curves are averaged over 20 trials for
Transfer-Maze and Transfer-CartPole and 10 trials for Transfer-SparseLunarLander.

1 0 1
-0.2

0.0

0.2

0.0

1.0

1 0 1
-0.2

0.0

0.2

0.0

1.0

1 0 1
-0.2

0.0

0.2

0.0

1.0

1 0 1
-0.2

0.0

0.2

0.0

1.0

1 0 1
-0.2

0.0

0.2

0.0

1.0

1 0 1
-0.2

0.0

0.2

0.0

1.0

Figure 5: Each group of 3 plots shows the learned bt(s, θ)
assigned to each source task for Transfer-CartPole, after
training on (left to right, top to bottom) t = 0, 100, 500,
1K, 2.5K and 5K target samples. The color indicates the
probability, while the x- and y-axes represent respectively
the cart position (x) and pole angle (θ). Values are averaged
over the other two state components over [−0.5,+0.5].

4.3 TRANSFER-SPARSE LUNAR LANDER

This problem involves landing a spacecraft safely on a lunar
surface [Brockman et al., 2016]. The state is 8-dimensional,
consisting of position, orientation, velocities, angular ve-
locities of the craft, and whether it has come into contact
with the ground. The task is made much more challeng-
ing by deferring all rewards until the end of the episode,
making this a sparse-reward problem. We were unable to
learn accurate dynamics in this setting nor learn a suitable
model-based controller, due to the complexity of the prob-
lem. In particular, the lunar surface terrain is randomly
generated in each episode, making it difficult to predict
ground contact. The first source task teaches the lander
to hover above the landing pad at a fixed region in space
(x ∈ [−0.1,+0.1], y ∈ [0.3, 0.5]), and fails if the lander
gets too close to the ground. The second source task places
the lander at a random location (x ∈ [−0.5,+0.5], y = 0.4)
above the landing pad, and the agent learns to land the craft
safely. The third source task is equivalent to the original
LunarLander-v2, except the mass of the craft is reduced
to 10% of the original. A successful transfer learning ex-

periment, therefore, should learn to transfer skills from the
hover and land source tasks depending on altitude, and avoid
the risky policy for landing the lighter craft.

To solve this problem, we use a similar setup as Transfer-
CartPole. State components are clipped to [−1,+1], tanh
output activations are used to predict the position and veloc-
ity components of the dynamics, and sigmoid activations
are used to predict binary variables for leg-ground contact.
Furthermore, source dynamics are learned offline on data
collected during policy training to avoid the moving target
problem and improve stability. We obtained an MSE of or-
der 10−3 for the land and low-mass source task dynamics,
highlighting the difficulty of learning accurate dynamics
for ground contact. The test performance is defined as the
total reward accumulated on each test episode and shown in
Figure 2c. Figure 6 illustrates the learned belief b(s; θ) on
state trajectories obtained during training.

0.4

1 0 10.0

0.8

1.2

1.6

1 0 10.0

0.4

0.8

1.2

1.6

1 0 10.0

0.4

0.8

1.2

1.6

1 0 10.0

0.4

0.8

1.2

1.6

Figure 6: Lander’s position on 10 training episodes, col-
lected after t = 0, 10K, 25K and 50K target samples (left to
right). Colors indicate source tasks assigned the largest be-
liefs in bt(s; θ) in each state s of the trajectories, where red
corresponds to Hover, green to Land and blue to Low-Mass.

4.4 DISCUSSION

In all three experiments, we can see that MARS consis-
tently outperforms all other baselines including MAPSE,
in terms of sample efficiency and solution quality. Also,
MAPSE consistently outperforms UCB, as shown in Fig-
ure 2. Figure 6 provide one possible explanation for this,
namely the ability of the mixture model to converge to a
correct representation even when presented with imperfect
source dynamics as in Transfer-SparseLunarLander. Fur-

1794

thermore, on all three domains, MARS achieves asymptotic
performance comparable to, or better, than the best single
potential function Φ1,Φ2 etc. This reaffirms our hypothe-
sis that reward shaping can improve generalization on test
data with little tuning. Furthermore, we conjecture that the
inconsistent performance of CAPS is due to its reliance on
fluctuating Q-values, that can be especially difficult to esti-
mate in sparse-reward settings, as evidenced in Figure 2c.
This is mitigated in MARS and MAPSE by their reliance
instead on more stable samples of the dynamics, that can
be learned offline prior to target task training. On the other
hand, UCB does not perform well, converging asymptoti-
cally to a single source policy uniformly across the state
space and demonstrating the need for contextual transfer.

Imperfect Transfer MAPSE and MARS can be most ef-
fective when the target task naturally breaks up into simpler
subtasks as in Transfer-Maze. However, in states s where
none of the source policies is relevant for transfer, there isn’t
necessary an optimal b(s; θ). To demonstrate the potential
limitations of MAPSE/MARS in such settings, we rerun
the Transfer-Maze experiment but omit one of the 4 source
policies. The training then proceeds as described previously
4 times (once for each possible omitted source policy), and
the averaged performance is illustrated in Figure 7.

0.5 1.0 1.5 2.0
samples collected 1e5

100
125
150
175
200
225
250
275
300
325

st
ep

s t
o

re
ac

h
go

al

MARS
MAPSE
CAPS
Q

Figure 7: Average number of steps to reach the goal, after
one source policy is omitted in Transfer-Maze.

Interestingly, all baselines perform worse than standard Q-
learning. Furthermore, unlike the perfect transfer setting,
MAPSE now learns a better policy than MARS. One possi-
ble explanation for this is that RL is highly sensitive to un-
informative rewards now arising from (7), whereas MAPSE
anneals pm quickly to zero and eventually learns the right
policy without relying on bad advice. The idea of annealing
could potentially be applied to anneal the c hyper-parameter
for MARS in a similar manner. Finally, CAPS failed to find
a meaningful policy in 2 out of the 4 cases, while performing
well on the remaining 2. Once again, the reliance of MAPSE
and MARS on stable samples of the dynamics could provide
some degree of robustness against negative transfer, which
could be improved further by learning a model of target
dynamics as discussed at the end of Section 3.4.

5 RELATED WORK

State-dependent contextual transfer with multiple source
policies is an emerging topic in transfer learning. Different
approaches for solving this problem have been proposed
in different settings, including soft attention [Rajendran
et al., 2017], bi-level optimization [Li and Kudenko, 2018],
and options [Li et al., 2019]. Bayesian approaches include
the AC-Teach framework of Kurenkov et al. [2019], which
used Bayesian DDPG to learn probability distributions over
Q-values corresponding to student and teacher actions. How-
ever, this approach was specific to DDPG and continuous
control problems. Our paper complements existing work by
using source task dynamics rather than value functions to
reason about task similarity, and is compatible with most
model-based and model-free RL algorithms. More generally,
our work is related to hierarchical reinforcement learning
[Goyal et al., 2020, Li et al., 2019, Peng et al., 2019, Yang
et al., 2020], in which policies can be decomposed and
transferred as low-level primitives.

Potential-based reward shaping (PBRS) was first introduced
in Ng et al. [1999] for constructing dense reward signals
without changing the optimal policies. Later, Wiewiora et al.
[2003] and Devlin and Kudenko [2012] extended this to
action- and time-dependent shaping, respectively. More re-
cently, Harutyunyan et al. [2015] combined these two exten-
sions into one framework and used it to incorporate arbitrary
reward functions. Brys et al. [2015] made the connection
between PBRS and policy reuse, by turning a single source
policy into a binary reward signal and applying Harutyunyan
et al. [2015]. Later, Suay et al. [2016] recovered a poten-
tial function from demonstrations directly using inverse RL.
Our paper extends Brys et al. [2015] by reusing multiple
source policies in a contextual way compatible with modern
deep RL. Thus, our paper contributes to the expanding body
of research on policy transfer and reward shaping.

6 CONCLUSION

We investigated transfer of policies from multiple source
tasks with common sub-goals. We showed theoretically how
errors in dynamics are related to errors in policy values. We
then used estimates of source task dynamics to contextually
measure similarity between source and target tasks using a
deep mixture model. We introduced MARS and MAPSE to
use this information to transfer policies from the source tasks
to the target task. Experiments showed strong performance
of MARS and thus the advantages of leveraging more stable
dynamics as a novel means of deep contextual transfer.

Acknowledgements

We would like to thank the reviewers, who provided con-
structive comments that significantly improved the paper.

1795

References

Panagiotis Aivaliotis, Konstantinos Georgoulias, and
George Chryssolouris. The use of digital twin for predic-
tive maintenance in manufacturing. International Jour-
nal of Computer Integrated Manufacturing, 32(11):1067–
1080, 2019.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and
Michael I Jordan. An introduction to mcmc for machine
learning. Machine learning, 50(1-2):5–43, 2003.

Christopher M Bishop. Mixture density networks. Technical
report, Citeseer, 1994.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

David S Broomhead and David Lowe. Radial basis func-
tions, multi-variable functional interpolation and adaptive
networks. Technical report, Royal Signals and Radar
Establishment Malvern (United Kingdom), 1988.

Tim Brys, Anna Harutyunyan, Matthew E Taylor, and Ann
Nowé. Policy transfer using reward shaping. In AAMAS,
pages 181–188, 2015.

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider,
Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Woj-
ciech Zaremba. Transfer from simulation to real world
through learning deep inverse dynamics model. arXiv
preprint arXiv:1610.03518, 2016.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In
ICML, pages 465–472, 2011.

Sam Michael Devlin and Daniel Kudenko. Dynamic
potential-based reward shaping. In AAMAS, pages 433–
440, 2012.

Jacob D Durrant and J Andrew McCammon. Molecular
dynamics simulations and drug discovery. BMC biology,
9(1):71, 2011.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa,
Sergey Levine, and Ruslan Salakhutdinov. Off-dynamics
reinforcement learning: Training for transfer with domain
classifiers. In ICLR, 2021.

Fernando Fernández and Manuela Veloso. Probabilistic
policy reuse in a reinforcement learning agent. In AAMAS,
pages 720–727, 2006.

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Re-
inforcement learning with multiple experts: A bayesian
model combination approach. NeurIPS, 31:9528–9538,
2018.

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee.
Epsilon-bmc: A bayesian ensemble approach to epsilon-
greedy exploration in model-free reinforcement learning.
In UAI, pages 476–485. PMLR, 2020.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin
Peng, Sergey Levine, and Yoshua Bengio. Reinforce-
ment learning with competitive ensembles of information-
constrained primitives. In ICLR, 2020.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey
Levine. Deep reinforcement learning for robotic manip-
ulation with asynchronous off-policy updates. In ICRA,
pages 3389–3396. IEEE, 2017.

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann
Nowé. Expressing arbitrary reward functions as potential-
based advice. In AAAI, 2015.

Fengxiang He and Dacheng Tao. Recent advances in deep
learning theory. arXiv preprint arXiv:2012.10931, 2020.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. Deep reinforce-
ment learning that matters. In AAAI, 2018.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and
Geoffrey E Hinton. Adaptive mixtures of local experts.
Neural computation, 3(1):79–87, 1991.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos,
Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker,
and Henryk Michalewski. Model based reinforcement
learning for atari. In ICLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In NeurIPS, pages 1097–1105, 2012.

Andrey Kurenkov, Ajay Mandlekar, Roberto Martin-Martin,
Silvio Savarese, Animesh Garg, Michael Danielczuk,
Ashwin Balakrishna, Matthew Matl, David Wang, Ken
Goldberg, et al. Ac-teach: A bayesian actor-critic method
for policy learning with an ensemble of suboptimal teach-
ers. In ICRA, 2019.

Alessandro Lazaric. Transfer in reinforcement learning:
a framework and a survey. In Reinforcement Learning,
pages 143–173. Springer, 2012.

Sergey Levine and Pieter Abbeel. Learning neural network
policies with guided policy search under unknown dy-
namics. In NeurIPS, pages 1071–1079, 2014.

Mao Li and D Kudenko. Reinforcement learning from
multiple experts demonstrations. In ALA, volume 18,
2018.

1796

Siyuan Li and Chongjie Zhang. An optimal online method
of selecting source policies for reinforcement learning. In
AAAI, 2018.

Siyuan Li, Fangda Gu, Guangxiang Zhu, and Chongjie
Zhang. Context-aware policy reuse. In AAMAS, pages
989–997, 2019.

Amy McGovern and Andrew G. Barto. Automatic discov-
ery of subgoals in reinforcement learning using diverse
density. In ICML, page 361–368, 2001.

Thomas P Minka. Bayesian model averaging is not model
combination. Available electronically at http://www. stat.
cmu. edu/minka/papers/bma. html, pages 1–2, 2000.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

Kristine Monteith, James L Carroll, Kevin Seppi, and
Tony Martinez. Turning bayesian model averaging into
bayesian model combination. In IJCNN, pages 2657–
2663. IEEE, 2011.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and
Sergey Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-
tuning. In ICRA, pages 7559–7566, 2018.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse
reinforcement learning. In ICML, pages 663–670, 2000.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and ap-
plication to reward shaping. In ICML, volume 99, pages
278–287, 1999.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel,
and Sergey Levine. Mcp: Learning composable hierarchi-
cal control with multiplicative compositional policies. In
NeurIPS, pages 3686–3697, 2019.

Martin L Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Janarthanan Rajendran, Aravind S Lakshminarayanan,
Mitesh M Khapra, P Prasanna, and Balaraman Ravindran.
Attend, adapt and transfer: Attentive deep architecture
for adaptive transfer from multiple sources in the same
domain. In ICLR, 2017.

Benjamin Rosman, Majd Hawasly, and Subramanian Ra-
mamoorthy. Bayesian policy reuse. Machine Learning,
104(1):99–127, 2016.

M. Seo, L. F. Vecchietti, S. Lee, and D. Har. Rewards
prediction-based credit assignment for reinforcement
learning with sparse binary rewards. IEEE Access, 7:
118776–118791, 2019. ISSN 2169-3536. doi: 10.1109/
ACCESS.2019.2936863.

Guodong Shao and Moneer Helu. Framework for a digital
twin in manufacturing: Scope and requirements. Manu-
facturing Letters, 24:105–107, 2020.

Halit Bener Suay, Tim Brys, Matthew E Taylor, and So-
nia Chernova. Learning from demonstration for shaping
through inverse reinforcement learning. In AAMAS, pages
429–437, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT Press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelli-
gence, 112(1-2):181–211, 1999.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei
Bai, Danijar Hafner, Steven Bohez, and Vincent Van-
houcke. Sim-to-real: Learning agile locomotion for
quadruped robots. In Robotics: Science and Systems,
2018.

Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey. JMLR, 10
(Jul):1633–1685, 2009.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli.
Transfer of samples in policy search via multiple impor-
tance sampling. In ICML, pages 6264–6274, 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In AAAI,
2016.

Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan.
Principled methods for advising reinforcement learning
agents. In ICML, pages 792–799, 2003.

Tianpei Yang, Jianye Hao, Zhaopeng Meng, Zongzhang
Zhang, Yujing Hu, Yingfeng Chen, Changjie Fan, Weixun
Wang, Wulong Liu, Zhaodong Wang, and Jiajie Peng.
Efficient deep reinforcement learning via adaptive policy
transfer. In IJCAI, 2020.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos,
Joelle Pineau, and Rob Fergus. Improving sample effi-
ciency in model-free reinforcement learning from images.
arXiv preprint arXiv:1910.01741, 2019.

1797

	Introduction
	Preliminaries
	Contextual Policy Transfer
	Deep Contextual Mixture-of-Experts
	Conditional RBF Network
	Policy Reuse for Exploration
	Potential-Based Reward Shaping

	Empirical Evaluation
	Transfer-Maze
	Transfer-CartPole
	Transfer-Sparse Lunar Lander
	Discussion

	Related Work
	Conclusion

