Exact and Approximate Hierarchical Clustering Using A*:
Supplementary Material

Craig S. Greenberg*:' Sebastian Macaluso* 2 Nicholas Monath*:3

Avinava Dubey* Patrick Flaherty’ Manzil Zaheer* Amr Ahmed* Kyle Cranmer’ Andrew McCallum?

!National Institute of Standards and Technology
ZCenter for Cosmology and Particle Physics & Center for Data Science, New York University
3College of Information and Computer Sciences, University of Massachusetts Amherst
4Google Research, Mountain View, CA
SDepartment of Mathematics and Statistics, University of Massachusetts Amherst

A APPENDIX

Al THEOREM(CORRECTNESS OF A* MAP) PROOF

Proof. Assume toward contradiction that Algorithm [1|does not return the optimal hierarchical clustering, H*. It is clear
(from the conditional in line 9, |lvs(Hz(X))| = | X]|, and the fact that if X, X are children of X then X |JXr = X
and X1, (| Xr = ©) that Algorithm] returns a hierarchical clustering, H=(X) € H(T), so the assumption is that Hz(X)
is not optimal, i.e., p(H*) < ¢(H=(X)). Consider the set, S, of data sets present in both H* and Hz(X) that branch to
different children, i.e., S = {Xi|XL*,XR* e H*ANX,XRr € HE(X) AN X UXR* =Xy UXR =X; AN X+ 7& X #
Xg # Xg+}. The set S must be non empty, otherwise H=(X) = H*, a contradiction. Now consider the set, T', of ancestors
of S,ie, T ={X;|X; € SA iﬂXj € Sst. X; # X; AX; (X, = X;}. Since S is non-empty, the set 7" must also be
non empty. Now select a dataset, X; € T, such that the sub-hierarchy rooted at X; in H*, H*(X;), has lower energy than
the sub-hierarchy rooted at X; in Hz(X), H=(X;), i.e., p(H*(X;)) < ¢(H=(X;)). There must exist at lease one such X,
otherwise ¢(Hz=(X)) <= ¢(H*), a contradiction.

Now consider the trellis vertex corresponding to data set X;, V;, with min heap X;[I1], and the tuple at the top of X;[II],
(fi, 9i, hi, X1, Xr). Note that because h = 0 in line 9 of Algorithm |1} that h; = 0, therefore the f; is equal to the energy of
the sub-hierarchy of Hz(X) rooted at X;, ¢(Hz=(X;)). Note also that X;’s children in H*, X,«, X g+, must be present in
X;[M], along with corresponding f*, g*, h* values, otherwise H* is not represented in the trellis, a contradiction. Since
X« # X1 # X # Xg«, the tuple (f*, g*, h*, X+, X+) is not at the top of X;[II]. If A* = 0, then f* = ¢(H*(X;))
and f <= f*, which implies ¢(Hz(X;)) <= ¢(H*(X;)), a contradiction. If h* # 0, then f* <= ¢(H*(X;)), otherwise
H is not an admissible heuristic, a contradiction. This gives us ¢(H=(X;)) = f < f* <= ¢(H*(X;)), a contradiction. [

A2 COROLLARY (OPTIMAL CLUSTERING) PROOF

Proof. Theorem [I] states that Algorithm [T] returns the optimal hierarchical clustering, thus proving that all hierarchical
clusterings are represented in a full trellis would prove the corollary.

Assume toward contradiction that there is a hierarchical clustering, H*, that is not present in a full trellis, T. This implies
either that (1) there is a data set X; € H™* that is not in the trellis, i.e., X; ¢ T, or that (2) there exists data sets
Xi,Xj,Xk € H*sit. X; = Xj UXk A Xj ﬂXk = @ and Xi,Xj,Xk € T, but Xj,Xk Q (C(Xl) Regarding (1),
X; € H*s.t. X; ¢ T implies that X ¢ P(X), a contradiction. Regarding (2), since each node in a full trellis has all possible
children, i.e., VV; € T,C(V;) = P(X;), this implies that X;, X}, ¢ P(X;), a contradiction.

O

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

A3 PROPOSITION (SPACE COMPLEXITY OF A* MAP) PROOF

Proof. Each vertex, V,, in a trellis, T, stores a dataset, X;, a min heap, X;[II], and a pointer to the children associated
with the best split, X [=]. Since X; and each pointer in X [Z] can be represented as integers, they are stored in O(1) space.
The min heap, X;[I1], stores a five tuple, (fLr, 9rr, hrr, X5, Xg) for each of X;’s child pairs, (X, Xr). Each five
tuple can be stored in O(1) space, so the min heap is stored in O(|C(X;)|) space, where C(X;) is X;’s children. Thus
each vertex, V;, takes O(|C(X;)]|) space to store. In a full trellis,|C(X;)| = 2/%:/=1 — 1, making the total space complexity
> ver 21Xl = O(3|X‘). In a sparse trellis, the largest number of parent/child relationships occurs when the trellis is
structured such that the root, V1, is a parent of all the remaining |T| — 1 vertices in the trellis, the eldest child of the root,
Vs, is a parent of all the remaining |T| — 2 vertices in the trellis, and so on, thus the space complexity of a sparse trellis is

> ver OUCX)]) <=3y (IT[= 8) = O(|TJ?). [

A4 THEOREM(TIME COMPLEXITY OF A* MAP) PROOF

Proof. During each iteration of the loop beginning at line 4, Algorithm T]descends from the root down to the leaves of the
partial hierarchical clustering with minimum energy, H=(X), such that the internal nodes have all been explored and the

leaf nodes have not. Upon arriving at the leaves of the partial hierarchical clustering (line 11), each leaf node is explored,
creating and populating a min heap stored at the node. Finally in line 19, every node in H=(X) updates its min heap.

Note that when running Algorithm|I] each node in the trellis is explored at most once (a given node, V;, is explored when
V; € lvs(X[Z]) at line 12). If every node in a trellis is explored, H=(X) = argmin ¢y y), at which point Algorithm
computes Hz(X) at line 6 in O(log) time and halts at line 10. Therefore, the time it takes Algorithm [I]to explore every
node in trellis T gives an upper bound on the time it takes Algorithm|[I]to find the tree with minimum energy hierarchical
clustering encoded by T.

The time it takes Algorithmto explore every V; € T is the sum of (1) the time V; contributes to computation of Hz(X)
at line 6 when V; € lvs(X[Z]), (2) the time it takes to populate the min heap for each V; at line 13, and (3) the time V;
contributes to updating the min heap of every node in H=(X) at line 19 when V; € lvs(X[=Z]). We consider each of these
values in turn:

(1) The time it takes for Algorithm to compute H=(X) in a given iteration is the sum of the length of the root to leaf paths
in lvs(X[E]), since reading X[=] takes O(1) time. Therefore the amount of time V; contributes to computation of Hz(X)
is the length of the path in H=(X) from the root to V.

In a full trellis, the maximum possible path length from the root to V; is | X | — | X;|. Thus, the total amount of time spent

computing Hz=(X) at line 6 in a full trellis when every vertex is explored is Y2, _, , (?)(n — k) = 1&=2 — O(2m),

In a sparse trellis, the path lengths are maximized when the root, V1, is a parent of all the remaining |T| — 1 vertices in the
trellis, the eldest child of the root, Vs, is a parent of all the remaining |T| — 2 vertices in the trellis, and so on. Thus the
sum of the total path lengths is bounded from above by >, _; p (|T| — i) = O(|T|?), and the total amount of time spent
computing Hz(X) at line 6 in a sparse trellis when every vertex is explored is O(|T|?).

(2) The time it takes for Algorithm[I|to populate the min heap for V; is the amount of time it takes to compute f1r, 1R,
hrr (lines 14-16) and to enqueve (fLr, 9rLRr, hLr, X1, X) onto the min heap (line 17) for all children, X, X z.

It is possible to compute gy, in O(1) time, since the first term in equation 4|is a value look up in the model, and second
and third terms are the g7 g values at X, and X g, respectively, and are memoized at those nodes. It is possible to compute
frr in O(1) time, since it is just the sum of two numbers, g g and hpr. The time it takes to compute hr, i depends on the
objective-specific heuristic being used. Note that i, is the sum of a function of a single X; in Equation[3} i.e.,

hir = > H(X)= Y, HX)+ >, HXy)

XgGWS(HE(XLUXR)) X{GWS(HE(XL)) X(GWS(HE(XR))

so we compute H(X;) once per node, memoize it, and compute hyr in O(1) time given H(X,) and H(X) by summing
the two values.

The time complexity of creating a heap of all tuples is O(|C(|V;|), where |C(V;)| is the number of children V; has in trellis
T.

Thus it takes O(|C(V;)|) + O(JH(X;)|) time to create the min heap for V;, where O(|H(X;)|) is the time complexity for
computing H(X;).

Therefore, creating the min heaps for every node in a full trellis takes >, _; . (¥)O(2%) = O(3") time, when O(H(X;)) =
O(21%:1). In a sparse trellis, v, er OUC(V)) + O(H(X:)) = Yy, er OUC(VH)]) + Yy, e O(H(XY)]) =
Zi:l...|11‘| (|T| —i) = O(|T|?), when each trellis vertex, V;, has the maximum possible number of children and
O(H(X:)) = O(| Xil).

(3) When exploring node V;, Algorithm[I] pops and enqueues an entry from the min heap of every node on the path from V;
to the root in Hz(X), which takes O(log(|C(Vy)|) for each ancestor V}, in the path. In a full trellis, the maximum possible
path length from the root to V; is | X | — | X;|. Thus, in the worst case it takes Algorithm 2=l Xi]m O(log(27)) time to
update the min heaps when V; is explored. Therefore, the total amount of time spent updating the min heaps in H=(X)
at line 19 in a full trellis when every vertex is explored is >, _; . (}) dickom log(2¥) = O(n?2™). In a sparse trellis,
the path lengths are maximized when the root, V1, is a parent of all the remaining |T| — 1 vertices in the trellis, the eldest
child of the root, Vs, is a parent of all the remaining |T| — 2 vertices in the trellis, and so on. Thus the sum of the total path
lengths is bounded from above by 3=, _; 7 22, |7 log(j) = O(log(|T|*))

Therefore, the time complexity of running Algorithm 1| on a full trellis is O(3™), and the time complexity of running
Algorithm [T on a sparse trellis is O(|T|?).

O

A.5 PROPOSITION 2/ (OPTIMAL EFFICIENCY OF A* MAP) PROOF

Proof. We define a mapping between paths in the trellis representing the state space and the standard space of tree structures
via H=(X) (Eq. . This mapping is bijective. We have describe a method to find the neighboring states of H=(X) in
the standard space of trees using the trellis in Algorithm [T](>>Explore new leaves). Given the additive nature of the cost
functions in the family of costs (Eq.[2), we can maintain the splits/merges in the aforementioned nested min heap in the
trellis structure and have parent nodes’ f values be computed from their child’s min heaps. The result is that Algorithm 1]
exactly follows A*’s best-first according to f with an admissible heuristic in search over the entire space of tree structures.
Therefore the optimal efficiency of Algorithm [I|follows as a result of the optimal efficiency of the A* algorithm. O

A.6 PROPOSITION (ADMISSIBILITY OF HIERARCHICAL CORRELATION CLUSTERING COST
HEURISTIC) PROOF

Proof. We wish to prove that Hj..1(X) <= argmin HEH(X) @nec(H). Note that in every hierarchical clustering, every
element is eventually separated (at the leaves), thus every edge eventually crosses a cut in every tree, thus VH € H(X),

> > wilwi; > 0] =" wiTwq; > 0]) (1)

X, Xresbs(H)xi,x; EXL X XR Ti,r;€X
Therefore,
S(H)= > $(Xp,Xn) (by definition)
Xr,XRr€sibs(H)
= Z (Z w;I{w;; > 0] + Z |wsj|L[w;; < 0] + Z |w;j[I[w;; < 0]) (given HCC objective)
XL,XRESibS(H) wi,JZjEXLXXR a:i,$j€XL><XL7 wi,JZjEXRXXR,
1<J 1<J
>= Z Zwijl[[wij > O] VX, Z \wij|]l[wij < 0] >=0)
XL,XRESibS(H)CEz‘-,CE]’GXLXXR Ii,IjGXXX
Ti,r;€X

= Hpee1(X) (given HCC Heuristic)

A.7 HEURISTIC FUNCTIONS FOR GINKGO JETS

We want to find heuristic functions to set an upper bound on the likelihood of Ginkgo hierarchies (for more details about
Ginkgo see [19]). We split the heuristic into internal nodes and leaves.

A.7.1 Internal nodes

We want to find the smallest possible upper bound to

A\ tp) = ————¢e & 2
f(‘,P) 1—€7>‘tpe P ()
with A a constant. We first focus on getting an upper bound for ¢p in the exponential. The upper bound for all the parent
masses is given by the squared mass of the root vertex, t,.,,¢ (top of the tree).

Next, we look for the biggest lower bound on the squared mass ¢ in the exponential of Equation [2| We consider a fully
unbalanced tree as the topology with the smallest per level values of ¢ and we bound each level in a bottom up approach
(singletons are at the bottom). For each internal node, ¢ has to be greater than ¢.,; (¢, is a threshold below which binary
splittings stop in Ginkgo). Thus, for each element, we find the smallest parent invariant squared mass tp; that is above the
threshold ¢, else set this value to .+ and save it to a list named ¢,,;,,, that we sort. Maximizing the number of nodes per
level (having a full binary tree) minimizes the values of ¢. We start at the first level, taking the first N//2 entries of ,,;,,
and adding them to our candidate minimum list, poung (£V is the number of elements to cluster). For the second level, we
take ¢9 as the minimum value in £, that is greater than t.,.; and bound ¢ by [£(i%2) + t3(i//2)](j//2) with i = 3 and
j = N%2+ N/ /2, where t is the minimum invariant squared mass among all the leaves. The reason is that (5//2) bounds
the total possible number of nodes at current level and ¢ the minimum number of elements of the tree branch below a given
vertex at current level. We calculate this bound level by level, maximizing the possible number of nodes at each level. This
is described in Algorithm]

Algorithm 1 Lower Bound on ¢ in Equation

1: function LOWERBOUND(%;, tyuin, IV)

2: Input: Elements invariant mass squared: ¢;, minimum value in t,,;,, that is greater than £,;: tg, list with minimum
parent mass squared above ¢, for each element: ¢,,;,, and number of elements: V.

3 Output: List that bounds t: tpound-

4 > Set initial variables

5: m? = sort([t; foriin N])

6: tbound = SOTt(tmin)[O : N//2]

7.

8

9

i=3
j=N%2+ N//2
: do
10: thounat = [m?[0](1%2) +t9(i//2)1(//2))
11 j=7%2+j//2
12: i+ =1

13: while len(tpound) < N — 2

Finally, to get a bound for ¢p (denoted as tp) in the denominator of Equation [2| we want the minimum possible values. Here
we consider two options for a heuristic:

o Admissible heuristic: Thus we take tp = tpound + ¢ (given that the parent of any internal node contains at least one
more element) except when tpoung < max{ti}f\;O where we just keep tp = tpoung (see [[19] for more details).

e hl:tp = tyound + 2 tg. Even though we do not have a proof for hl to be admissible, we gained confidence about it

from checking it on a dataset of 5000 Ginkgo jets with up to 9 elements (compared to the exact trellis solution for the
MAP tree), as well as the fact that exact A* with hl agrees with the exact trellis within 6 significant figures (see Figure

B).

Putting it all together, the upper bound for Equation [2]is
Zlog fPeund — [—log(1 — e) + log(M\)]
2

N— i
— <log(fp)+)* b‘””“i)
=0

troot

A.7.2 Leaves

We want to find the smallest possible upper bound to

1 iy
f(t|)\,tp) = ﬁ (1 — e tptcut> (3)

with A and ¢.,,; constants.

We want the maximum possible value of ¢p while still getting an upper bound in Equation[3] A parent ¢p consists of a pairing
of two elements (leaves). We find and sort the same list ¢,,;,, as we did for the internal nodes. We do not know the order in
which the two children are sampled, and the minimum value happens when each child is sampled last, tp; — (v/Zpi — v/%i)?
(see [19] for more details). We take the minimum value greater than t.,; in t,,;, and refer to it as tgi. Thus we get

tei = (\/t9 — V/1;)?. For the element with greatest invariant squared mass ¢; we just keep tp; = t5;. Finally, sum the
likelihood over each element 7.

A.8 DASGUPTA’S COST

(Dasgupta’s Cost)[20] Given a graph with vertices of the dataset X and weighted edges representing pairwise similarities
between points W = {(i, j, w;;)|i,j € {1, ..., | X[} x {1,...,|X|},i < j,w;; € RT}. Dasgupta’s cost is defined as:

DXL XG) = (Xl IX) Y wy @
T2, €Xy X X
This is equivalent to the cut-cost definition of Dasgupta’s cost with the restriction to binary trees [20].

We are given the similarity graph, YW(.X), where the nodes of the graph refer to the dataset X and edges (denoted Eyy(x)),
w; ; give similarity between points z;,z; € X. Given a subset X’ C X, we hope to design a heuristic i(-) such that
hX') < mingen(x) J(H).

Dasgupta’s cost is a sum over weighted edges E)y(x) with each edge’s similarity multiplied by the number of descendant
nodes. This leads to a heuristic in which the number of descendants is lower-bounded by having a single descendant:

ha(X) = > wi, ()

(1,5)€EBw(x)
Proposition 1. (Admissible Heuristic for Dasgupta) EquationS|is an admissible heuristic for Dasgupta’s cost, that is

hd1(X) < JDasgupta(X)'

Proof. We wish to prove that Hyqsgupte (X) <= argmin HEH(X) ®dasgupta (H). Note that in every hierarchical clustering,
every element is eventually separated (at the leaves), thus every edge eventually crosses a cut in every tree, thus VH € H(X),

Z Z W5 = Z Wi (6)

X1, Xresbs(H)i,z;€EX X Xpxi,x; €EX

Since VX, | X| € Z*, we have

= Z w(XL,XR>

X1, Xr€esibs(H)

= > (Xl +1XR) DD wy)

Xr,Xresibs(H) z;,2;€EXLXXR

>=) > wiy

Xr,Xresibs(H)zi,z; EXL XXR
Ti,Tj eXx
= HDasgupta(X)

(by definition)
(given Dasgupta objective)
(| XL+ |XR]) > 1 Aw;; € RT)

(by Equation 6)

(given Dasgupta heuristic)

	Appendix
	Theorem 1 (Correctness of A* MAP) Proof
	Corollary 1 (Optimal Clustering) Proof
	Proposition 1 (Space Complexity of A* MAP) Proof
	Theorem 2 (Time Complexity of A* MAP) Proof
	Proposition 2 (Optimal Efficiency of A* MAP) Proof
	Proposition 3 (Admissibility of Hierarchical Correlation Clustering Cost Heuristic) Proof
	Heuristic Functions for Ginkgo Jets
	 Internal nodes
	 Leaves

	Dasgupta's Cost

