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A EUCLIDEAN ISOMETRIES ARE
ORTHOGONAL MATRICES

The isometries of n-dimensional Euclidean space are de-
scribed by the Euclidean group E(n), the elements of which
are arbitrary combinations of rotations, reflections, and trans-
lations. One way to describe this structure mathematically
is that the group E(n) = O(n) x T'(n) is the semi-direct
product of the group of n-dimensional orthogonal matrices
O(n) by the group of n-dimensional translations 7'(n). For
the purpose of learning representations from point clouds,
it suffices to only consider the non-translation components
of E(n) since we can always normalize input point clouds,
which has the effect of centering all point clouds at the ori-
gin. Mathematically, this is achieved by taking the quotient
of F(n) by the translation group T'(n), so it suffices to work
only with the orthogonal group O(n) = E(n)/T(n).

B RIP MATRICES

Here we provide additional characterizations of RIP matri-
ces in terms of the spectral norm and 2-norm. We will find it
easier to work with the following definition of RIP matrices:

Definition B.1 (Adapted from|Zhao et al.|[2020]). For all s-
sparse vectors x € R", that is vectors x with at most s non-
zero coordinates, matrix A satisfies s-restricted isometry
with constant ¢ if

(L= )a* < [ Az|* < (1 + &) || 1

To see why it makes sense to describe matrices satisfying
the RIP condition as almost-orthogonal, we will follow the
argument of |Zhao et al.| [2020]. In our case, our vectors will
not be sparse, so we will have s equal to the size of the
vector n. Then we can rewrite this condition as

| Az||®
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Since || A||, = 0(A), where o(A) is the spectral norm of A;
that is, the largest singular value of A. Using the min-max
characterization of singular values, we know that

T(ATA-1T
O'(ATA —I) = max M 3)
270 ]
and simplifying we get
o(ATA — I) = max |Az]® _ 1 (4)
20 |||

Plugging this in to Equation 2] we get

o(ATA-T1)<6 (5)

From this equation, we can see that RIP matrices are almost-
orthogonal, and therefore almost-isometric, with respect to
the spectral norm.

C HYPERPARAMETER SENSITIVITY

We investigate the sensitivity of our model to the Gaussian
noise parameter (standard deviation) o for Gaussian per-
turbations and the stretching parameter ¢ for RIP matrices.
Results can be found in Figure and Figure, respectively.
We find that the performance of our model is not heavily
effected by the choice of either parameter.

D ROBUSTNESS COMPARISON TO
BASELINE

Results for the rotation and Gaussian perturbation robust-
ness experiments on ModelNet40 of Section f.2]using the
baseline method [|Shi et al.| 2020] can be found in Figure@
An identical experiment was carried out in their paper, ex-
cept the classification part (see Section was carried
out on ShapeNet instead of ModelNet40. The experiments
were carried out using their publicly available implemen-
tation here: https://github.com/WordBearerY
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Figure 1: Hyperparameter sensitivity plots for (a)
o, the standard deviation of Gaussian noise in the
random Gaussian perturbation augmentation, and
(b) 4, the deviation from isometry for our random
RIP augmentation. We find that our model is not
particularly sensitive to either hyperparameter.

I/Unsupervised-Deep—-Shape-Descriptor-w
ith-Point-Distribution—-Learning. We find
that differing amounts of Gaussian noise do not affect the
classification accuracy, contrary to their results on ShapeNet
where as increasing rotations have a slight negative effect on
classification accuracy, which reflects their ShapeNet results.
We note that we were unable to reproduce their result in
Table [3] with their code. With the results we were able to
produce, we find that our model has similar robustness but
much better accuracy than [Shi et al.| [2020]]. We will also
make our code publicly available.

E POINTNET ENCODER
ARCHITECTURE

A exact specification of our PointNet|Q1 et al.|[2017]] enc-
doer architecture can be found in Table [Tl

F EXAMPLES OF TRANSFORMATIONS

In Figure [ we provide additional examples of randomly
sampled transformations from each of our proposed data
augmentation methods, which are the uniform orthogonal
transformation, random RIP transformation, and smooth
perturbation transformation.

G FAILURE CASES

In Figure [3] we show examples from ModelNet40 that were
misclassified by our method, and similar examples from the
class it was misclassified as. The highest error rate Model-
Net40 class is the flower pot class, which has an error rate
much higher than any other class. Our method frequently
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Figure 2: Plots of accuracy vs variation strength for (a) rotations
by a fixed angle, (b) Gaussian noise of varying standard deviations
for the baseline Shi et al|[2020]. We see that the method is fairly
robust but less accurate than our method. One caveat is that we
were unable to fully reproduce their results using their publicly
available code.

mistakes the examples from the flower pot class for the plant
class, which is much larger, and more rarely as other classes.
As shown in Figure 3] examples from one class can be very
similar visually to an example from another class, and we
believe that this similarity is challenging for contrastive
learning algorithms.
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Table 1: The PointNet encoder architecture used for all versions of our model. Each layers is followed by a batch
normalization layer and a ReLU layer except for the last two linear layers. The identity is added to the third linear
layer as in|Qi et al.| [2017], and the output is reshaped at the before the second block of 1D convolutions. C' is the number of
classes for classification.

LAYER TYPE IN CHANNELS KERNEL SIZE  STRIDE OUT CHANNELS

Conv1D 3 1 1 64
CoNV1D 64 1 1 128
CoNV1D 128 1 1 1024
LINEAR 1024 - - 512
LINEAR 512 - - 256
LINEAR 256 - - 9
Conv1D 3 1 1 64
CoNVv1D 64 1 1 128
Conv1D 128 1 1 1024
LINEAR 1024 - - C
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Figure 3: (a) and (b) are examples of the flower pot class that are misclassified by our method as the plant class, and (c) and
(d) are similar looking examples from the plant class.
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Figure 4: Additional examples of randomly sampled uniform orthogonal, random RIP, and smooth perturbation transforma-
tion using our methods. In the first column from the left is the original image. In the second, third, and fourth columns from
the right, we apply a randomly sampled orthogonal, RIP, and smooth perturbation transformation, respectively. We see that
in general that the orthogonal transform rotates and possibly reflects the object, that the RIP transform generally rotations
and slightly elongates the object, and that the smooth noise smoothly deforms the objects.
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