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1 BRIEF REVIEW OF OLS REGRESSION

Since we use OLS regression for our results, we briefly review OLS estimators. We consider the following setup:

y =X +e,

where y and e are n X 1 vectors, X is an n. X d matrix of observations, and (3 is the d x 1 coefficient vector that we want to

estimate. If e 1L X and e ~ N(0,021,,), where I, is the n x n identity matrix, then the OLS estimate of 3 is

B=X"X)"'XTy
=B+ (XTX) X Te,

with E[B] = [ and Var(B) = o2E[(XTX)™!]. If each row X; of X is sampled from X; P N(0, %), then the distribution

of (XTX)~! is an Inverse-Wishart distribution. Then the variance of /3 is
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var(B) = -

2 COVARIANCE OF @ AND ¢

2.1 FRONTDOOR ESTIMATOR

We prove that Cov(ay, ¢) = 0 for the frontdoor estimator. The expressions for @y and ¢ are
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where e; = —guf + u. Using the fact the (u”, ) is bivariate normally distributed, we get
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Cov(dy.2) = El(d; — a)(@ - ¢

= E[E[(as — a)(E* c)|z, m]]
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where ' = The covariance then is
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where in Eq. [5|we used the expression from Eq.[d Also, in Eq.[5} we took ] out of the conditional expectation because u;"
is given x; and m; (because u;"* = m; — cx;).

2.2 COMBINED ESTIMATOR

We prove that Cov(a, ¢) = 0 for the combined estimator from Section |3 I The expressions for a. and ¢ are
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The covariance is

Cov(a,¢) = E[(d. — a)(c — c)]
_ E[E[@

—a)(¢—¢o)|z,m,w]]
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where in (8| we used the fact that E[u?] =0.

3 UNBIASEDNESS OF THE ESTIMATORS
3.1 BACKDOOR ESTIMATOR

Recall that for the backdoor estimator, we take the coefficient of X in an OLS regression of Y on { X, W}. The outcome y;
can be written as
y; = acz; + bw; + auf’ + ul.

The error term au” —|—u§’ is independent of (z;, w; ). In this case, the OLS estimator is unbiased. Therefore, E[@Coackdoor] = ac.

3.2 FRONTDOOR ESTIMATOR

For the frontdoor estimator, we first compute ¢ by taking the coefficient of X in an OLS regression of M on X . The mediator
m; can be written as

m; = cx; +u;".



The error term " is independent of z;. In this case, the OLS estimator is unbiased and hence, E[c] = c.
We then compute @y by taking the coefficient of M/ in an OLS regression of ¥ on {M, X }. The outcome y; can be written
as

b
Yi = am; =+ E.’L‘z — guf + uy.

In this case, the error term — guf + uY is correlated with z;. The expression for @ is given in Eq. 3| The expectation E[a] is
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where, in Eq. 0] the expression for E|e;|x] is taken from Eq.[4] Using the fact that Cov(ay,¢) = 0 (see proof in Appendix
[2.1), we can see that the frontdoor estimator is unbiased as

Eflayec] = E[ay]E[c] + Cov(ay,c)

= ac.

3.3 COMBINED ESTIMATOR

In the combined estimator, the expression for ¢ is the same as for the frontdoor estimator. Therefore, as shown in Appendix
E[c] = ¢. We compute a by taking the coefficient of M in an OLS regression of Y on { M, W}. The outcome y; can be
written as

yi = am; + bw; +u!.

The error term ! is independent of (m;, w; ). In this case, the OLS estimator is unbiased. Therefore, E[a.] = a. Using the
fact that Cov(a,, ¢) = 0 (see proof Appendix[2.2)), we can see that the combined estimator is unbiased as

E[d.d = E[aJE[ + Cov(..?)

= ac.

4 VARIANCE RESULTS FOR THE FRONTDOOR, BACKDOOR, AND COMBINED
ESTIMATORS

4.1 BACKDOOR ESTIMATOR

The outcome y; can be written as
y; = acx; + bw; + aul” + u.

We estimate the causal effect ac by taking the coefficient on X in an OLS regression of Y on { X, W}. Let 3 = Cov([X, W]).

Using Eq. [T} the finite sample variance of the backdoor estimator is

Var(au™ + u?) (571)
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Var(d\c) backdoor =



OLS estimators are asymptotically normally for arbitrary error distributions (and hence, Gaussianity is not needed). Therefore,
the asymptotic variance of the backdoor estimator is

lim Var(yv/n(ac — ac))packdoor = Var(au™ +u¥) (871, | = —Um My

n— oo 1,1

4.2 FRONTDOOR ESTIMATOR
4.2.1 Variance of ¢

The regression of M on X can be written as m; = cx; + ul". Let ¥, = Var(X). Using Eq. |1} Var(c) is

. Var(um)(Z;! o2
Var(e) — V(S 2, |
n—2 (n—2)(d?o3, +07,)
4.2.2 Variance of a ¢
The regression of Y on { M, X'} can be written as y; = am; + %xi + ¢;, where ¢; = —%uf + uly In this case, the error ¢;

is not independent of the regressor ;. Using the fact that (u”, z) has a bivariate normal distribution, Var(e|z) is
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Var(e|z) = (10)

= V..

Note that V is a constant and does not depend on z. From Eqs. [2]and [3] we know that
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First, we derive the expression for Var(ay) as follows,

Var(ay) = Var(a + A)
= Var(A)

] ) + ElVar(Ale. )

=E

= Var(E[A|z, m]) + E[Var(A|x, m)]
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where, in Eq.|11} we used the result from Eq. and D = SEEDS mz (22 T Using the fact that D has the distribution of
a marginal from an inverse Wishart-distributed matrix, that s, if the matrix M ~ ~ IW(Cov(IM, X])"%,n), then D = M 1,

in Eq.[T2] we get
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where the expression for V is taken from Eq.[I0]

4.2.3 Covariance of a; and ¢2

We prove that Cov(a? 7 C ¢?) = Var(as)Var(¢). This covariance can be written as

Cov(@?,?) = E[(@? — E[a3))(@ - E[))]

= E[(a? Var(ay) — E*[ay])(¢* — Var(e) — E*[d))]
= E[a ¢?) — Var(ay)Var(¢) — a*Var(¢) — ¢*Var(ay) — a*c?. (13)
We can write E[a}¢%] as
]E[&?EQ] E[(a + A)?(c+ C)?]

]E[a A+ A% + a?C? 4+ A2C? + 2aAC? + 2cC A?]
= a%c? + ®Var(a) + a*Var(¢) + E[A%C?] + E[2aAC?] + E[2cC A?]. (14)



Substituting the result from Eq. [I4]in Eq.[T3] we get
Cov(a},c”) = E[A’C?] + E[2¢AC?] + E[2cC A?]. (15)

Now we expand each term in Eq. E separately. E[2a AC?] is
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where, in Eq.[16] the expression for E[e|x] is taken from Eq.
Next, we simplify E[2cC A?] as

E[2cC A?)
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where D = SR Using the fact that ¢ and D are independent of each other (see proof at the end of this

>
Y ymi—(C wim
section), we get

E[cD] = E[¢]E[D]
— E[D]. (19)
Substituting the result from Eq. [I9]in Eq.[T8] we get

E[2¢C A?] = 2¢V, (cE [D] — cE[D])
—0. (20)



We proceed similarly to Eq.[18]to write E[A2C?] as
E[A%C?] = V.E[C? D).
Then we further simplify E[A%2C?] as
E[A%C?) = V.E
E

= V. Var(¢)E[D]

-1
= V. Var(¢) Co:;([j\é, i(]l)l !
Ve 5
= = 3)02 Var(¢)

= Var(ay)Var(c),
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where, in Eq. [21] we used the fact that if the matrix M ~ ZW(Cov([M, X])~!,n), then D = M ; (that is, D has the
distribution of a marginal from an inverse Wishart-distributed matrix), and in Eq.[22} the expression for V, is taken from Eq.

10
Substituting the results from Eqs. [I7] 20} and 23]in Eq.[T3] we get
Cov(&?, ¢?) = Var(ay)Var(c).
Proof that ¢ and D are independent. Let 3 be the following sample covariance matrix:

o L[ Xmi Xomiz
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The distribution of ¥ is a Wishart distribution. That is, ¥ ~ W(Cov([M, X]),n). Then (X11 —

(X2,1, X2,2) are independent [Eaton, [2007, Proposition 8.7]. We can see that
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4.2.4 Finite Sample Variance of a ;¢

The variance of the product of two random variables can be written as

(24)

21)2227,522)1) and

Var(as¢) = Cov(a7,¢%) + (Var(ay) + E*[ay])(Var(¢) + E*[c]) — (Cov(ay,e) + E[as]E[e])? (25)

= Cov(afc,EQ) + (Var(ay) + a?)(Var(¢) + ¢?) — (Cov(ay, ) + ac)?,

where in Eq. 25| we used the facts that E[a¢] = a, and E[c] = ¢ (see Appendix . Using the facts that Cov(a},¢*) =

Var (s ) Var(¢) (tfrom Eq. 23) and Cov(dy,¢) = 0 (from Appendix 2.1), we get
Var(@;¢) = a*Var(¢) + c¢*Var(ay) + 2Var(¢) Var(ay).



4.2.5 Asymptotic Variance of a ;¢

Using asymptotic normality of OLS estimators, which does not require Gaussianity, we have

(1) 4 505 )
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where Var,,(ay) and Var,(c) are the asymptotic variances of a¢ and ¢, respectively. The expressions for asymptotic
variances are
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In order to compute the asymptotic variance of @ ¢¢, we use the Delta method:

Vn(ise - ac) iuv(a [c d [Varoa(af) 0 } H)

Var,, (¢)| |a
V(@ —ac) 5 N (0, Varg (@5) + aVare (©)) .
4.3 COMBINED ESTIMATOR

4.3.1 Finite sample variance of @,

We can write the regression of Y on {M, W} as y; = am; + bw; + u!. Let £, = Cov([M, W]). Using Eq.|I| we get

_ Var(u) (5511 _ oy,

n—3 (n—3)(c?02 +02 )

Var(a.)

4.3.2 Bounding the finite sample variance

We first compute the lower bound of the combined estimator. Since the estimator is unbiased (see Appendix [2.2)), we can
apply the Cramer-Rao theorem to lower bound the finite sample variance.

Let the vector s; = [x;, y;, w;, m;] denote the i sample. Since the data is multivariate Gaussian, the log-likelihood of the
data is

LL = ,g log (det ) + Tr (iz*)} :
where ¥ = Cov([X,Y, W, M]) and 3 = LS o sisi|. Let e = ac and € = G.c. Since we want to lower bound the
variance of €, we reparameterize the log-likelihood by replacing ¢ with e/a to simplify calculations. Next, we compute the
Fisher Information Matrix for the eight model parameters:
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Therefore, using the Cramer-Rao theorem, we have
Var(e) = Var(a.c)
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Next, we compute a finite sample upper bound for Cov(a?, ¢®). We derive this in a similar manner as the frontdoor estimator
in Appendix .2.3] From Egs. [f|and[7} we know that
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Then, similarly to Eq.[T3] we get

Cov(a?,¢?) = E[A%C?] + E[2a AC?] + E[2cC A?]. (26)

Now we simplify each term in Eq. [26|separately. E[2a AC?] can be simplified as
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where, in Eq.[27] we used the fact that E[u¥] = 0.
Next, we simplify E[2¢C A?] as

E[2cCA?%) = 2E - ( Zg ;m > <Z w;;%;%; m? —Z&Zﬂ%w > ]

| () (s )

]
e (Zgl )Va““y) (waz%f <z wm>>}
— 20? E[CD], (29)

= 2cE




2

where D = DD n%i”(z RER We can upper bound the expression in Eq.[29|as

E[2¢CA?] = 2co;, E[CD]

< 2|e|oz E[CD] (30)
< 2|cloz +/E[C?E[D?]
= 2|c|o7. \/Var(¢)(Var(D) + E[DJ?) 31)

= 2|c\aiy Var(¢)
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where, in Eq. 30| we used the Cauchy—Schwarz inequality, and in Eq. [31] we used the fact that if the matrix M ~

IW(Cov([M,W])~1,n), then D = M ; (that is, D has the distribution of a marginal from an inverse Wishart-distributed
matrix).

Similarly to Eq.[29} we simplify E[A2C?] as
E[A%’C?] = o7 E[C?D). (33)
The expression in Eq.[33|can be upper bounded using the Cauchy-Schwarz inequality as

E[A%C?] = ¢2 E[C?D]

2
< agy E[C4]E[D?]
%, VE[CY(Var(D) +E[D])
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We can simplify E[C*] as follows,
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Xz(l), and in Eq. , we used the fact that zlw? has a scaled inverse Chi-squared distribution, that is, ﬁ ~
(d auu,+aiz>2)
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Substituting the result from Eq.[37)in Eq.[34] we get

3(n — 3)(n — 2)

E[A2C?] < Var(a,.) Var(¢) =) =1

(38)

Substituting the results from Eqs. 28] [32] and[38]in Eq.[26] we get

Cov(@2, &) < 4/ Z - g (20|Var(ac)\/Var(€) +3/ Z - ZVar(ac)Var(6)> .




The variance of the product of two random variables can be written as

Var(a.c) = Cov(a?,c) + (Var(a.) + E%[a.])(Var(¢) + E*[¢]) — (Cov(a,, ¢) + E[a.]E[c])?
= Cov(a?,e®) + (Var(a.) + a?)(Var(¢) + ¢*) — (Cov(ae, ¢) + ac)?,

Where we used the facts that E[a.] = a, and E[c] = ¢ (see Appendix [3.3). Using the fact that Cov(a,, ¢) = 0 (see Appendix
2)) and the upper bound for Cov(a?, ¢?), we get

Var(a.c) <

c*Var(a.) + a*Var(c) + 1/ <2|0Var )/ Var(¢) + V3

Var(ac)Var( )) .

4.3.3 Asymptotic variance

Using asymptotic normality of OLS estimators, which does not require Gaussianity, we have
Q. a d Varo (G.) Cov(y/na, ¢)
Vi ( M M ) N (0 o, [Cov(fac, D Vare (@)
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where Var, (a.) and Var. (¢) are the asymptotic variances of a. and ¢, respectively. The expressions for the asymptotic

variances are
o2

Uy

~\ y —1 _
Vary, (@) = Var(u))(X, )11 = 202+ 02

o2

U

In order to compute the asymptotic variance of a.c, we use the Delta method:

V(@ — ac) S5 N (07 [c d] [Varoto)(aC) Vari(ﬁ)] [ZD

— Vn(ac — ac) 5 N (0, Vary (@) + a®Vary (2)) .

S COMPARISON OF COMBINED ESTIMATOR WITH BACKDOOR AND FRONTDOOR
ESTIMATORS

In this section, we provide more details on the comparison of the combined estimator presented in [3]to the backdoor and
frontdoor estimators.

5.1 COMPARISON WITH THE BACKDOOR ESTIMATOR

In Section[5.1] we made the claim that
dN,s.t.,Vn > N, Var(ac/c\) < Var(d\c)backdoor-

In this case, by comparing Egs. [5|and [I3] we have

2 <afwa + dgaiw (O'ZWD + 0,2% F)+ 020& \/0208'm D%(F + 2\/3012“”))

N =
o2 D? ’

where D = d?02 + 031, FE = 0202 + O'u ,and F = FE+ (1 + 2\[) . Thus, for a large enough n, the combined

Uw

estimator has lower variance than the backdoor estimator for all model parameter values.



5.2 COMPARISON WITH THE FRONTDOOR ESTIMATOR
In Section [5.1] we made the claim that
3N, s.t.,¥n > N, Var(a.c) < Var(asc).

In this case, by comparing Egs. [8]and [I3] we have

2 <Ugm +2V3c%oh o —clo? ol + (D + o5 \/aﬁm +4V3c%02 o2 — 20403m>)
N —

D2 ’

where D = c6agw. Thus, for a large enough n, the combined estimator has lower variance than the frontdoor estimator for
all model parameter values.

5.3 COMBINED ESTIMATOR DOMINATES THE BETTER OF BACKDOOR AND FRONTDOOR

In this section, we provide more details for the claim in Section 5.1] that the combined estimator can dominate the better of
the backdoor and frontdoor estimators by an arbitrary amount. We show that the quantity

min {Var(d\c)backdoora Var(Zif /C\)}

R =
Var(a.c)

is unbounded.

We do this by considering the case when Var(ac)vackdoor = Var(a¢c). Note that

Var( CZ\C) backdoor — Var (af 6)

—D(=a’oy, ((n = 2)da3, +03,) + (=(n = 2)d%03, (03, — Po3,) + 07, E)oy)
— b= vt v _tm i MW (39)
¥ (n—2)D)

2 4 2
o2 os (202

where D = d*02 + 02 ,and E = (n — 2)c?02 — (n—4)o2 . Hence, if the parameter b is set to the value given in Eq.
the backdoor and frontdoor estimators will have equal variance. We have to ensure that the value of b is real. b will be a

real number if

< Uum 1 20—72‘1 d
el < Ou, (n—2)D’ an
n > 2.

For the value of b in Eq. [39] the quantity R becomes

_ Var(aAc) backdoor

= a0

(n—2)DE(a*0?  + Ugy)

2 _ 2 2 2 2 2 _ _ Tum
o2, ((n 3)a*0;, B+ o3, (0 + V303, (m +lel(n =2)D ('C| M “m»))

_ 2.2 2 _ 2.2 2 _ n—3 _ n—2
where D = d cruw—i—aux,E—ca +0y,,,.T1 =4/ 7= and ry = -

>
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R does not depend on the parameter b. It is possible to set the other model parameters in a way that allows R to take any
positive value. In particular, it can be seen that as o,,, — 0, R — oo, which shows that R is unbounded.

6 COMBINING PARTIALLY OBSERVED DATASETS



6.1 CRAMER-RAO LOWER BOUND

We are interested in estimating the value of the product ac. Let e = ac. We reparameterize the likelihood in Eq. [T by
replacing ¢ with e/a. This simplifies the calculations and improves numerical stability. Now, we have the following eight
unknown model parameters: {e, a, b, d, Jﬁw ,o2 o2 o2

Uy ? U ) P Uy I

In order to compute the variance of the estimate of parameter e = ac, we compute the Cramer-Rao variance lower bound.
We first compute the Fisher information matrix (FIM) I for the eight model parameters:

d%LL d%LL 92LL 9LL

Oe? Oeda Oedb T 0edoy,

d*LL 8*LL d2LL o2LL
I—_F Oalde Oa? 0adb T dadoy,
9%LL 8%LL 82LL 9LL

00y, Oe 90y, Oa 00y, 0b T 82auy

Let € be the MLE. Since standard regularity conditions hold for our model (due to linearity and Gaussianity), the MLE is
asymptotically normal. We can use the Cramer-Rao theorem to get the asymptotic variance of e. That is, for constant k, as
N — oo, we have

VN@E-e) % N(0,V,), and
Vo= (T4

Below, we present the closed form expression for V.. Let V., = % Then

X =(a*0? +o?
b2ai o2 ( d*(o? ) + d? iw( 2(k5+1)aum (—2k2+2k+1)aum)+auz(02kaim+
oh,)) + o 3 (d2 Zﬁ%)( d¥(oy,)? + dPoy, (*(k + D)oy, + (3= 2k)ay, )+

ko, (CPoy, +o3,)) —da’bed(k — Dkoy o7 (03 ) (doy, +07))

(bzaiu,aim Uuy(d%ﬁw +ou)) +at(on )20 (0h, ) (00, )2 (d (a7, )P+

ol (23(—k* +k+ 1ol + (k+1)o. )+ o5 (P(—2k* +2k+ 1) +202 ))—
bgai 2 02 (d203w+05z)(202d4( )(0 ) +d203w(c (4k* — 3k — )oi +2
(k?
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uw

42k — 3)(os. )+ d%op (P(2k* — k —3)os + (k—3)o.. )+ koo (*(2k —3)os, —

2013,”)))—4a3de(k?—1)kU2 ou, (00, ) 2on, (dPas + oy (Vo on +on (o + o5 )+
GQUi,,L(bQUZ on, +on (dPoy, + o3 )0 (h, ) (00, ) (P (dPay, — (k—2)oy,) + o5 )+
b202 0 0 (202d4( ) —1—2012 2 (02( kz)ai k(0202 +U )+2(: )—‘rO’uw( 2¢2
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Figure 1: Cases where collecting a mix of confounders and mediators is better than collecting only confounders or mediators.

and

Y =(a*oy, (07, +07,)
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where k = N

6.2 COMPARISON WITH FRONTDOOR AND BACKDOOR ESTIMATORS

In this section, we show some examples of regimes where the combining partially observed datasets results in lower variance
than applying either of the backdoor or frontdoor estimator even when the total number of samples are the same. In other
words, there exist settings of model parameters such that, for some k € (0, 1), we have

V. < Var(VN@t)vackdoor, and V, < Var(V NG ;).

Figure|l[shows three examples where the optimal value of % is between 0 and 1. We plot the variance as predicted by the
expression for V. versus the value of k. The plots show that in some cases, it is better to collect a mix of confounders and
mediators rather than only mediators or only confounders. The expression for V, in the previous section allows us to verify
that. This happens when the variance of the frontdoor and backdoor estimators do not differ by too much.

In Figure the model parameters are {a = 10,b=3.7,c=5,d =5,02 =1,02 =1,02 =0.64, 037! = 1}. In this
case, the variance of the frontdoor estimator is lower than the backdoor estimator. Despite this, it is not optimal to only
collect mediators. The optimal value of k is 0.303, that is, 30% of the collected samples should be confounders and the rest
should be mediators to achieve lowest variance.

In Figure(1b| the model parameters are {a = 10,b = 3.955,c = 5,d = 5, 02 =102 =1,02 =064,02 =1}.In
this case, the variance of the frontdoor estimator is almost equal to that of the backdoor estimator. The optlmal ratio k is
0.505, that is, we should collect the same of amount of confounders as mediators.



In Figure , the model parameters are {a = 10,b =4.3,¢c=5,d = 5,0, =1,02 =1,0, =0.64, Uﬁy = 1}. In this
case, the variance of the frontdoor estimator is greater than the backdoor estimator. The optimal ratio k is 0.735, that is, we
should collect the more confounders than mediators.

6.3 PARAMETER INITIALIZATION FOR FINDING THE MLE

The likelihood in Eq.[I6]is non-convex. As a result, we cannot start with arbitrary initial values for model parameters because
we might encounter a local minimum. To avoid this, we use the two datasets to initialize our parameter estimates. Each of
the eight parameters can be identified using only data from one of the datasets. For example, d can be initialized using the
revealed-confounder dataset (via OLS regression of X on W). The parameter e is can be identified using either dataset, so
we pick the value with lower bootstrapped variance.

After initializing the eight model parameters, we run the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm [Fletcher,
2013]] to find model parameters that minimize the negative log-likelihood.

7 MORE DETAILS ON EXPERIMENTS

Here we provide more details for how results in Table|l|are generated. We initialize the model parameters by sampling 200
times from the following distributions:

a, b, ¢, d ~ Unif[—10, 10]

Oa s OunsOn 00, ~ Unif0.01,2].

U ? Yz Cum o Cuy

(40)

For each initialization, we compute the Mean Absolute Percentage Error (MAPE) of the theoretical variance as a predictor
of empirical variance:

‘Vartheoretical — Var, empirical‘

MAPE = * 100%

Varempirical

We report the mean and standard deviation of the MAPE across 1000 realizations of datasets sampled from Eq. 0} We find
that the theoretical variance is close to the empirical variance even for small sample sizes (Table [I).
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