Measuring Data Leakage in Machine-Learning Models with Fisher Information (Supplementary material)

Awni Hannun¹

Chuan Guo¹

Laurens van der Maaten¹

¹ Facebook AI Research

A FISHER INFORMATION OF THE GAUSSIAN MECHANISM

We provide a simple derivation of the FIM of the Gaussian mechanism applied to the empirical risk minimizer, w^* . The conditional probability density of the output perturbed parameters is given by:

$$p(\boldsymbol{w}' \mid \mathcal{D}) = \int_{\boldsymbol{w}^*} p(\boldsymbol{w}' \mid \boldsymbol{w}^*, \mathcal{D}) p(\boldsymbol{w}^* \mid \mathcal{D}) d\boldsymbol{w}^* = p(\boldsymbol{w}' \mid \boldsymbol{w}^*) \text{ the FIM is given by:}$$

where in the last step we use the fact that w^* is sufficient for w'. We also assume $f(\mathcal{D})$ is deterministic, and hence $p(w^* \mid \mathcal{D})$ is a (shifted) delta function nonzero at the optimal parameters, w^* .

Using equation 1, the gradient of $\log p(w' \mid \mathcal{D})$ with respect to \mathcal{D} is given by:

$$\nabla_{\mathcal{D}} \log p(\boldsymbol{w}' \mid \mathcal{D}) = \boldsymbol{J}_f^{\top} \nabla_{\boldsymbol{w}^*} \log p(\boldsymbol{w}' \mid \boldsymbol{w}^*)$$
 (2)

where J_f is the Jacobian of $f(\mathcal{D})$ with respect to \mathcal{D} . The Hessian is:

$$\nabla_{\mathcal{D}}^{2} \log p(\boldsymbol{w}' \mid \mathcal{D}) = J_{f}^{T} \nabla_{\boldsymbol{w}^{*}}^{2} \log p(\boldsymbol{w}' \mid \boldsymbol{w}^{*}) J_{f} + \mathbf{H} \nabla_{\boldsymbol{w}^{*}} \log p(\boldsymbol{w}' \mid \boldsymbol{w}^{*})$$
(3)

where **H** is the three-dimensional tensor of second-order derivatives (in a slight abuse of notation $\mathbf{H}_{ijk} = \frac{\partial^2 f_k}{\partial \mathcal{D}_i \mathcal{D}_j}$). Using the second-order expression for the FIM requires evaluating the expectation over w' of equation 3.

When using zero-mean isotropic Gaussian noise for the perturbation, $\mathcal{N}(0, \sigma^2 \mathbf{I})$, the expectation over \mathbf{w}' of equation 3 simplifies. The gradient of $\log p(\mathbf{w}' \mid \mathbf{w}^*)$ is:

$$\nabla_{\boldsymbol{w}^*} \log p(\boldsymbol{w}' \mid \boldsymbol{w}^*) = \frac{\boldsymbol{w}' - \boldsymbol{w}^*}{\sigma^2}, \tag{4}$$

and hence the Hessian is:

$$\nabla_{\boldsymbol{w}^*}^2 \log p(\boldsymbol{w}' \mid \boldsymbol{w}^*) = -\frac{1}{\sigma^2} \boldsymbol{I}.$$
 (5)

Evaluating the expectation of equation 3 using the above expressions yields:

$$\begin{split} & \mathbb{E}\left[\boldsymbol{J}_{f}^{\top}\nabla_{\boldsymbol{w}^{*}}^{2}\log p(\boldsymbol{w}'\mid\boldsymbol{w}^{*})\boldsymbol{J}_{f} + \mathsf{H}\nabla_{\boldsymbol{w}^{*}}\log p(\boldsymbol{w}\mid\boldsymbol{w}^{*})\right] = \\ & \boldsymbol{J}_{f}^{\top}\mathbb{E}\left[\nabla_{\boldsymbol{w}^{*}}^{2}\log p(\boldsymbol{w}'\mid\boldsymbol{w}^{*})\right]\boldsymbol{J}_{f} + \mathsf{H}\mathbb{E}\left[\nabla_{\boldsymbol{w}^{*}}\log p(\boldsymbol{w}'\mid\boldsymbol{w}^{*})\right] = \\ & -\frac{1}{\sigma^{2}}\boldsymbol{J}_{f}^{\top}\boldsymbol{J}_{f}, \end{split}$$

where the second term vanishes since $\mathbb{E}[w'] = w^*$. Hence the FIM is given by:

$$\mathcal{I}_{\boldsymbol{w}'}(\mathcal{D}) = -\mathbb{E}\left[\nabla_{\mathcal{D}}^2 \log p(\boldsymbol{w}' \mid \mathcal{D})\right] = \frac{1}{\sigma^2} \boldsymbol{J}_f^{\top} \boldsymbol{J}_f.$$
 (6)

B JACOBIAN OF THE MINIMIZER

Let $\ell(\boldsymbol{w}^{\top}\boldsymbol{x}, y)$ be a convex, twice-differentiable loss function. Let $f_i(\boldsymbol{x}, y)$ denote the minimizer of the regularized empirical risk as a function of (\boldsymbol{x}, y) at the *i*-th example:

$$f_i(\boldsymbol{x}, y) = \arg\min_{\boldsymbol{w}} \sum_{j \neq i} \ell(\boldsymbol{w}^{\top} \boldsymbol{x}_j, y_j) + \ell(\boldsymbol{w}^{\top} \boldsymbol{x}, y) + \frac{n\lambda}{2} \|\boldsymbol{w}\|_2^2.$$
(7)

We aim to derive an expression for $J_{f_i}|_{x_i,y_i}$, the Jacobian of $f_i(\boldsymbol{x},y)$ with respect to (\boldsymbol{x},y) evaluated at (\boldsymbol{x}_i,y_i) . Taking the gradient of equation 7 with respect to \boldsymbol{w} and setting it to 0 gives an implicit function for $\boldsymbol{w}^* = f_i(\boldsymbol{x},y)$:

$$0 = \sum_{j \neq i} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}_j, y_j) + \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}, y) + n\lambda \boldsymbol{w}^*.$$
(8)

Implicit differentiation of equation 8 with respect to (x, y) gives:

$$0 = \sum_{j \neq i} \nabla_{\boldsymbol{w}}^{2} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}_{j}, y_{j}) \boldsymbol{J}_{f_{i}} + \nabla_{\boldsymbol{x}, y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}, y) + n\lambda \boldsymbol{J}_{f_{i}}.$$
(9)

The second term can be computed using the product rule:

$$\nabla_{\boldsymbol{x},y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}, y) = \left. \nabla_{\boldsymbol{w}}^{2} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}, y) \boldsymbol{J}_{f_{i}} + \nabla_{\boldsymbol{x},y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{\top} \boldsymbol{x}, y) \right|_{\boldsymbol{w} = \boldsymbol{w}^{*}}.$$
(10)

Evaluating equation 10 at (x_i, y_i) and substituting into equation 9 yields:

$$0 = \left[\sum_{j=1}^{n} \nabla_{\boldsymbol{w}}^{2} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}_{j}, y_{j}) \boldsymbol{J}_{f_{i}} + \nabla_{\boldsymbol{x}, y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{\top} \boldsymbol{x}, y) + n \lambda \boldsymbol{J}_{f_{i}} \right]_{\boldsymbol{w}^{*}, \boldsymbol{x}_{i}, y_{i}}$$
$$= \left[\boldsymbol{H}_{\boldsymbol{w}^{*}} \boldsymbol{J}_{f_{i}} + \nabla_{\boldsymbol{x}, y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{\top} \boldsymbol{x}, y) \right]_{\boldsymbol{w}^{*}, \boldsymbol{x}_{i}, y_{i}}, \tag{11}$$

where the Hessian $m{H}_{m{w}^*} = \sum_{j=1}^n \nabla_{m{w}}^2 \ell(m{w}^{*\top} m{x}_j, y_j) + n \lambda m{I}$. Solving for $m{J}_{f_i}$ yields:

$$\left. \boldsymbol{J}_{f_i} \right|_{\boldsymbol{x}_i, y_i} = -\boldsymbol{H}_{\boldsymbol{w}^*}^{-1} \nabla_{\boldsymbol{x}, y} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}^{*\top} \boldsymbol{x}_i, y_i). \tag{12}$$

References