
Measuring Data Leakage in Machine-Learning Models
with Fisher Information (Supplementary material)

Awni Hannun1 Chuan Guo1 Laurens van der Maaten1

1 Facebook AI Research

A FISHER INFORMATION OF THE
GAUSSIAN MECHANISM

We provide a simple derivation of the FIM of the Gaussian
mechanism applied to the empirical risk minimizer, w∗.
The conditional probability density of the output perturbed
parameters is given by:

p(w′ | D) =
∫
w∗

p(w′ | w∗,D)p(w∗ | D)dw∗ = p(w′ | w∗)
(1)

where in the last step we use the fact that w∗ is sufficient
for w′. We also assume f(D) is deterministic, and hence
p(w∗ | D) is a (shifted) delta function nonzero at the opti-
mal parameters, w∗.

Using equation 1, the gradient of log p(w′ | D) with respect
to D is given by:

∇D log p(w′ | D) = J>f ∇w∗ log p(w
′ | w∗) (2)

where Jf is the Jacobian of f(D) with respect to D. The
Hessian is:

∇2
D log p(w′ | D) =

J>f ∇2
w∗ log p(w

′ | w∗)Jf + H∇w∗ log p(w
′ | w∗)

(3)

where H is the three-dimensional tensor of second-order
derivatives (in a slight abuse of notation Hijk = ∂2fk

∂DiDj
).

Using the second-order expression for the FIM requires
evaluating the expectation over w′ of equation 3.

When using zero-mean isotropic Gaussian noise for the per-
turbation,N (0, σ2I), the expectation over w′ of equation 3
simplifies. The gradient of log p(w′ | w∗) is:

∇w∗ log p(w
′ | w∗) = w′ −w∗

σ2
, (4)

and hence the Hessian is:

∇2
w∗ log p(w

′ | w∗) = − 1

σ2
I. (5)

Evaluating the expectation of equation 3 using the above
expressions yields:

E
[
J>f ∇2

w∗ log p(w
′ | w∗)Jf + H∇w∗ log p(w | w∗)

]
=

J>f E
[
∇2

w∗ log p(w
′ | w∗)

]
Jf + HE [∇w∗ log p(w

′ | w∗)] =

− 1

σ2
J>f Jf ,

where the second term vanishes since E[w′] = w∗. Hence
the FIM is given by:

Iw′(D) = −E
[
∇2
D log p(w′ | D)

]
=

1

σ2
J>f Jf . (6)

B JACOBIAN OF THE MINIMIZER

Let `(w>x, y) be a convex, twice-differentiable loss func-
tion. Let fi(x, y) denote the minimizer of the regularized
empirical risk as a function of (x, y) at the i-th example:

fi(x, y) = argmin
w

∑
j 6=i

`(w>xj , yj)+`(w
>x, y)+

nλ

2
‖w‖22.

(7)
We aim to derive an expression for Jfi

∣∣
xi,yi

, the Jacobian of
fi(x, y) with respect to (x, y) evaluated at (xi, yi). Taking
the gradient of equation 7 with respect to w and setting it to
0 gives an implicit function for w∗ = fi(x, y):

0 =
∑
j 6=i

∇w`(w
∗>xj , yj)+∇w`(w

∗>x, y)+nλw∗. (8)

Implicit differentiation of equation 8 with respect to (x, y)
gives:

0 =
∑
j 6=i

∇2
w`(w

∗>xj , yj)Jfi+∇x,y∇w`(w
∗>x, y)+nλJfi .

(9)
The second term can be computed using the product rule:

∇x,y∇w`(w
∗>x, y) =

∇2
w`(w

∗>x, y)Jfi +∇x,y∇w`(w
>x, y)

∣∣∣∣
w=w∗

.

(10)
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Evaluating equation 10 at (xi, yi) and substituting into equa-
tion 9 yields:

0 = n∑
j=1

∇2
w`(w

∗>xj , yj)Jfi +∇x,y∇w`(w
>x, y) + nλJfi


w∗,xi,yi

=

[
Hw∗Jfi +∇x,y∇w`(w

>x, y)

]
w∗,xi,yi

, (11)

where the Hessian Hw∗ =
∑n

j=1∇2
w`(w

∗>xj , yj)+nλI .
Solving for Jfi yields:

Jfi

∣∣∣∣
xi,yi

= −H−1w∗∇x,y∇w`(w
∗>xi, yi). (12)
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