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A FISHER INFORMATION OF THE
GAUSSIAN MECHANISM

We provide a simple derivation of the FIM of the Gaussian
mechanism applied to the empirical risk minimizer, w*.
The conditional probability density of the output perturbed
parameters is given by:

Evaluating the expectation of equation [3| using the above
expressions yields:

E [J] Vi, logp(w' | w*)Js + HV - log p(w | w*)] =
J{E V2, logp(w' | w*)] Js + HE [Vy- log p(w' | w*)] =

Lo

where the second term vanishes since E[w’] = w*. Hence

p(w' | D) = / p(w’ | w*, D)p(w* | D)dw* = p(w' | w*) the FIM is given by:

(1)
where in the last step we use the fact that w* is sufficient
for w’. We also assume f(D) is deterministic, and hence
p(w* | D) is a (shifted) delta function nonzero at the opti-
mal parameters, w*.

Using equation([1] the gradient of log p(w’ | D) with respect
to D is given by:

Vplogp(w' | D) = J/ Ve logp(w' | w*)  (2)

where J is the Jacobian of f(D) with respect to D. The
Hessian is:

Vi logp(w' | D) =

3)
J{ V2, logp(w' | w*)Jy + HV - log p(w’ | w*)
where H is the three-dimensional tensor of second-order
derivatives (in a slight abuse of notation H;;, = 6%%‘, ).
Rl
Using the second-order expression for the FIM requires
evaluating the expectation over w’ of equation[3]

When using zero-mean isotropic Gaussian noise for the per-
turbation, A/ (0, o1 ), the expectation over w’ of equation
simplifies. The gradient of log p(w’ | w*) is:

. w' — w*
vw* Ing(w/ | w ) = 0_2 ’ (4)
and hence the Hessian is:
1
Vo logp(w' | w*) = == 1. (5)
o

1
Zw (D) = —E [V} logp(w' | D)] = ﬁJfTJf. (6)
B JACOBIAN OF THE MINIMIZER

Let /(w " x,%) be a convex, twice-differentiable loss func-
tion. Let f;(a,y) denote the minimizer of the regularized
empirical risk as a function of (x, y) at the i-th example:

. n
file,y) = argmin Y (w2, ;) 4w )+ ]

i
@)

We aim to derive an expression for Jy, | - " the Jacobian of

fi(x,y) with respect to (x, y) evaluated at (x;, y;). Taking
the gradient of equation [7] with respect to w and setting it to
0 gives an implicit function for w* = f;(x,y):

0= Z Vwl(w* "z, y;)+Vpl(w*  z,y)+niw*. (8)
J#i
Implicit differentiation of equation[8| with respect to (x, y)
gives:

0= Z V2w T, y;) T 1+ Ve, Vel (w2, y)+nJy,.
J#i
©))

The second term can be computed using the product rule:

VayVwl(w  z,y) =

Vi,é(w*Ta:, y)in + Vw,vaé(wTa:, y)
w=w™*

(10)
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Evaluating equation at (x;, y;) and substituting into equa-
tion[9]yields:
O =

S Ve Uw T x;,y)Tp, + Vay Vewl(w ' 2,y) + n\Jy,
=1 w* T, Y;

= [Hw*in + VoVl (w z,y) , (11)

w*,Ti,Yi

where the Hessian H,« = Z?:l VZ l(w* Tz, y;) +nAl.
Solving for Jy, yields:
Jy, =—H_ !V, Vol(w m,y).  (12)
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