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A PROOFS OF GENERALIZATION BOUNDS VIA DIFFERENTIAL PRIVACY

This appendix collects all the proofs of theorems and technical lemma in Section 3. It is organized as follows: (1) in
Appendix A.1, we prove Theorem 2, Theorem 3, and Lemma 1, which are the preparations of the proof of Theorem 1; and
(2) in Appendix A.2 we prove Theorem 1.

A.1 PROOF OF THEOREM 2, THEOREM 3, AND LEMMA 1

We first present the proof of Theorem 2.

Proof of Theorem 2. We first rewrite the expectation of the empirical risk of algorithm B can be rewritten as
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where ~z in the right side of eq.(∗) is defined as {z1, · · · , zk}, and zi is uniformly selected from Si. Since B is (ε, δ)-
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differentially private, we further have
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Let S = S′ ∪ {z0} and z = zi (it is without less of generality since all zi is i.i.d. drawn from D). Since S′ ∪ {z0} ∼ DkN ,
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Rearranging eq. (1), we have
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The other side of the inequality can be similarly obtained.

The proof is completed.

We then prove Theorem 3 based on Theorem 2.



Proof of Theorem 3. By Theorem 2, we have that
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We then calculate the right side of eq.(2) according to the two cases mentioned in Lemma 3:
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The proof is completed.

Before moving on to the proof of Lemma 1, we present a basic lemma about the distance between the output of a exponential
mechanism (defined as Definition 4) and the maximum value of the corresponding utility function:

Lemma 1 (c.f. Corollary 3.12, [Dwork and Roth, 2014] ). For any fixed sample set S and an exponential mechanism
E(S, u, I, ε), we have
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We are now ready to prove Lemma 1.

Proof of Lemma 1. We prove the lemma respectively for the two cases: (1). ε ≤ 1
5 , and (2). ε > 1

5 .

Case 1: Construct algorithm B with input S = {Si}ki=1 ( where Si ∈ ZN ) as follows:

Step 1. Run A on Si, i = 1, · · · , k. Denote the output as hi = A(Si).
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Case 2: We construct B the same as Case 1 except setting the privacy parameter as − ln(0.9). Similar to Case 1, we have
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Combining eq.(5) and eq.(6) completes the proof of Case 2.



A.2 PROOFS OF THEOREM 1

We use Theorem 3 and Lemma 1 to derive the proof of Theorem 1.

Proof of Theorem 1. We prove Theorem 1 by reduction to absurdity. We only prove P
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which contradicts the conclusion of Lemma 1 for ε > 1
5 .

The proof is completed.

B PROOFS OF COMPOSITION THEOREMS

This section proves the composition theorems. It is organized as follows: Section B.1 shows several definitions and lemmas
which will be used throughout the proof; Section B.2 proves a preparation lemma on the KL divergence DKL(A(S)‖A(S′))
between the hypotheses A(S) and A(S′); based on this lemma Section B.3 proves a composition theorem of ε-differential
privacy; Section B.4 extends the composition theorem to (ε, δ)-differential privacy; Section B.5 further tightens the estimate
of δ′ under some assumptions; and Section B.6 analyses the tightness of this estimation.

B.1 PRELIMINARIES

In this section, we define several measures between random variables that is omitted in Lemma 3, and further presents
several lemmas that will be used in the proof of composition theorems.

Definition 1 (Max Divergence; cf. [Dwork and Roth, 2014], Definition 3.6). For any random variables X and Y , the max
divergence between X and Y is defined as

D∞(X‖Y ) = max
U⊆Supp(X)

[
log

P(X ∈ U)

P(Y ∈ U)

]
.

Definition 2 (δ-Approximate Max Divergence; cf. [Dwork and Roth, 2014], Definition 3.6). For any random variables X
and Y , the δ-approximate max divergence between X to Y is defined as

Dδ
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log
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]
.

Definition 3 (Statistical Distance; cf. [Dwork and Roth, 2014]). For any random variables X and Y , the statistical distance
between X and Y is defined as

∆(X‖Y ) = max
U
|P(X ∈ U)− P(Y ∈ U)|.

We then recall the following lemma which shows for any two distributions, there exist another two distributions with the
same max-divergence and order-invariant KL divergence.



Lemma 2 (cf. [Dwork and Rothblum, 2016], Lemmas 3.9 and 3.10). For any two distributions P and P ′, there exist
distributions Q and Q′ such that

max{D∞(Q‖Q′), D∞(Q′‖Q)} = max{D∞(P‖P ′), D∞(P ′‖P )},

and
DKL(P‖P ′) ≤ DKL(Q‖Q′) = DKL(Q′‖Q).

Azuma Lemma on concentration inequality of martingales will also be used in the proof of composition theorems.

Lemma 3 (Azuma Lemma; cf. [Mohri et al., 2018], p. 371). Suppose {Yi}Ti=1 is a sequence of random variables, where
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When proving the composition bound of Theorem 4 and Theorem 6, we will need to calculate the form of the (maximum)

optimal point of function f({αi}Ti=1)
4
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∏T
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The proof can be derived by simple reduction to absurdity, and we omit it here.

B.2 PROOF OF LEMMA 2

Proof of Lemma 2. By Lemma 2, we have a random variableM(S) andM(S′), which satisfies
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where eq. (∗) comes from eq. (9).

We now analyse the last integration in eq. (10). Define

k(y)
4
=

dP(M(S) = y)

dP(M(S′) = y)
− 1. (11)

Therefore,
k(y)dP(M(S′) = y) = dP(M(S) = y)− dP(M(S′) = y). (12)

Additionally,
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∫
y∈H
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∫
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By calculating the integration of the both sides of eq. (12), we have∫
k(y)dP(M(S′) = y) = 0.

Also, combined with the definition of k(y) (see eq. 11), the right-hand side (RHS) of eq. (10) becomes

RHS = EM(S′)k(M(S′)) log(k(M(S′)) + 1). (14)

Since M is ε-differentially private, k(y) is bounded from both sides as follows,

e−ε − 1 ≤ k(y) ≤ eε − 1. (15)

We now calculate the maximum of eq. (14) subject to eqs. (13) and (15).

First, we argue that the maximum is achieved when k(M(S′)) ∈ {e−ε − 1, eε − 1} with probability 1 (almost surely).
When k(M(S′)) ∈ {e−ε − 1, eε − 1}, almost surely, the distribution for k(M(S′)) is as following,

P∗(k(M(S′)) = eε − 1) =
1

1 + eε
,

P∗(k(M(S′)) = e−ε − 1) =
eε

1 + eε
.

We argue that it is the distribution that maximizes k(M(S′)).

For the brevity, we denote the probability measure for a given distributionQ as PQ. Similarly, P∗ corresponds the distribution
Q∗. We prove that Q∗ maximizes eq. (14) in the following two cases: (1) PQ(k(M(S′)) ≥ 0) ≤ P∗(k(M(S′)) = eε − 1),
and (2) PQ(k(M(S′)) ≥ 0) > P∗(k(M(S′)) = eε − 1)

Case 1: PQ(k(M(S′)) ≥ 0) ≤ P∗(k(M(S′)) = eε − 1)

We have

EM(S′)∼Q∗(k(M(S′) log(k(M(S′)) + 1))

=P∗(k(M(S′)) = eε − 1) · ε(eε − 1)− P∗(k(M(S′)) = e−ε − 1) · ε(e−ε − 1)

=(P∗(k(M(S′)) = eε − 1)− PQ(k(M(S′)) ≥ 0)) · ε(eε − 1)

+ PQ(k(M(S′)) ≥ 0) · ε(eε − 1)− P∗(k(M(S′)) = e−ε − 1) · ε(e−ε − 1)

≥PQ(k(M(S′)) ≥ 0) · ε(1− e−ε)− P∗(k(M(S′)) = e−ε − 1) · ε(1− e−ε)
+ PQ(k(M(S′)) ≥ 0) · ε(eε − 1)− P∗(k(M(S′)) = e−ε − 1) · ε(e−ε − 1).



Note that

PQ(k(M(S′)) < 0) =P∗(k(M(S′)) = eε − 1)− PQ(k(M(S′)) ≥ 0)

+ P∗(k(M(S′)) = e−ε − 1).

Therefore, together with the condition eq. (15),

EM(S′)∼Q(k(M(S′) log(k(M(S′)) + 1)Ik(M(S′)≤0))

≤(P∗(k(M(S′)) = eε − 1)− PQ(k(M(S′)) ≥ 0)) · ε(1− e−ε)
+ P∗(k(M(S′)) = e−ε − 1) · ε(1− e−ε). (16)

Also,
EM(S′)∼Q(k(M(S′) log(k(M(S′)) + 1)Ik(M(S′))>0) ≤ PQ(k(M(S′)) ≥ 0) · ε(eε − 1). (17)

Therefore, combined inequalities eqs. (16) and (17), we have

EM(S′)∼Q(k(M(S′) log(k(M(S′)) + 1)) ≤ EM(S′)∼Q∗(k(M(S′) log(k(M(S′)) + 1)).

Since the distribution Q is arbitrary, the distribution Q∗ maximizes the k(M(S′) log(k(M(S′)) + 1).

Case 2: PQ(k(M(S′)) ≥ 0) > P∗(k(M(S′)) = eε − 1)

We first prove that if PQ(1− e−ε < k(M(S′)) < 0) 6= 0, there exists a distribution Q′ such that

PQ′(k(M(S′)) ≥ 0) = PQ(k(M(S′)) ≥ 0),

PQ′(k(M(S′)) < 0) = PQ(k(M(S′)) < 0),

PQ′(k(M(S′)) < 0) = PQ′(k(M(S′) = e−ε − 1),

EQ′(k(M(S′) log(k(M(S′)) + 1)) > EQ′(k(M(S′) log(k(M(S′)) + 1)),

while the two conditions (eqs. 13, 15) still hold.

Additionally, we have assumed that

PQ(k(M(S′)) ≥ 0) > P∗(k(M(S′)) = eε − 1).

Therefore,
PQ(k(M(S′)) ≤ 0) < P∗(k(M(S′)) = e−ε − 1).

Also, since the distribution Q′ is arbitrary, let it satisfy

PQ′(k(M(S′)) < 0) = PQ(k(M(S′)) < 0) = PQ′(k(M(S′) = e−ε − 1).

Then, in order to meet the condition eq. (13), let

PQ′(k(M(S′) = eε − 1) > PQ(k(M(S′) = eε − 1),

and
PQ′(0 < k(M(S′)) < eε − 1) ≤ PQ(0 < k(M(S′)) < eε − 1),

Since x log(x+ 1) increases when x > 0 and decreases when x < 0, we have

EQ′(k(M(S′) log(k(M(S′)) + 1)) > EQ(k(M(S′) log(k(M(S′)) + 1)).

Therefore, we have proved that the argument when PQ(k(M(S′)) < 0) 6= PQ(k(M(S′)) = e−ε − 1). We now prove the
case that

PQ(k(M(S′)) < 0) = PQ(k(M(S′)) = e−ε − 1),



where

EQ(k(M(S′) log(k(M(S′)) + 1)Ik(M(S′))<0) = ε(1− e−ε)PQ(k(M(S′)) < 0).

Applying Jensen’s inequality to bound the EQ(k(M(S′) log(k(M(S′)) + 1)Ik(M(S′))≥0), we have

EQ(k(M(S′)) log(k(M(S′)) + 1)Ik(M(S′))≥0)

=PQ(M(S′) ≥ 0)EQ′(k(M(S′)) log(k(M(S′)) + 1)|k(M(S′)) ≥ 0)

(∗)
≤PQ(M(S′) ≥ 0)EQ (k(M(S′))|k(M(S′)) ≥ 0) · log(EQ (k(M(S′))|k(M(S′)) ≥ 0) + 1), (18)

where the inequality (∗) uses Jensen’s inequality (x log(1 + x) is convex with respect to x when x > 0). The upper bound in
eq. (18) is achieved as long as

PQ(k(M(S′)) ≥ 0) = PQ(k(M(S′)) = EQ(k(M(S′))|k(M(S′)) ≥ 0)).

Furthermore,

PQ(k(M(S′)) < 0) = PQ(k(M(S′)) = e−ε − 1).

Therefore, the distribution Q is determined by the cumulative density functions PQ(k(M(S′)) < 0) and PQ(k(M(S′)) ≥
0).

Hence, maximizing EQ(k(M(S′) log(k(M(S′)) + 1)) is equivalent to maximizing the following object function,

g(q) = q(1− e−ε) log eε + (1− q) q

1− q
(1− e−ε) log

(
q

1− q
(1− e−ε) + 1

)
,

subject to

q

1− q
≤ eε, (19)

where g(q) is the maximum of eq. (14) subject to PQ(k(M(S′)) < 0) = q, and the condition eq. (19) comes from the
PQ(k(M(S′)) ≥ 0) > P∗(k(M(S′)) = eε − 1) (the assumption of Case 2).

Additionally, g(q) can be represented as follows,

q(1− e−ε) log

(
q

1− q
(eε − 1) + ε

)
.

Since both q and q
1−q monotonously increase, g(q) monotonously increases. Therefore, Q∗ maximize eq. (14), which

finishes the proof.

B.3 PROOF OF THEOREM 5

Based on Lemma 2, we can prove the following composition theorem for ε-differential privacy as a preparation theorem of
the general case.



Proof of Theorem 5. We begin by calculating log
PS({Wi}Ti=0)
PS′({Wi}Ti=0)

as follows,

log
PS
(
{Wi}Ti=0

)
PS′

(
{Wi}Ti=0

) = log

(
T∏
i=0

PS (Wi|Wi−1, ...,W0)

PS′ (Wi|Wi−1, ...,W0)

)

=

T∑
i=0

log

(
PS (Wi|Wi−1, ...,W0)

PS′ (Wi|Wi−1, ...,W0)

)
(∗)
=

T∑
i=1

log

(
PS (Wi|Wi−1, ...,W0)

PS′ (Wi|Wi−1, ...,W0)

)

=

T∑
i=1

log

(
PS (Mi(Wi−1, S) = Wi|Wi−1, ...,W0)

PS′ (Mi(Wi−1, S′) = Wi|Wi−1, ...,W0)

)
(∗∗)
=

T∑
i=1

log

(
PS,Wi−1 (Mi(Wi−1, S) = Wi)

PS′,Wi−1 (Mi(Wi−1, S′) = Wi)

)
,

where eq. (∗) comes from the independence of W0 with respect to S and eq. (∗∗) is because the independence ofMi to Wk

(k < i) when the Wi−1 is fixed.

By the definition of ε-differential privacy, one has for arbitrary Wi−1,

D∞ (Mi(Wi−1, S)‖Mi(Wi−1, S
′)) < εi,

D∞ (Mi(Wi−1, S
′)‖Mi(Wi−1, S)) < εi.

Thus, by Lemma 2, we have that

ES
(

log

(
P (Mi(Wi−1, S) = Wi)

P (Mi(Wi−1, S′) = Wi)

)
|Wi−1, · · · ,W0

)
=DKL(Mi(Wi−1, S)‖Mi(Wi−1, S

′))

≤εi
eεi − 1

eεi + 1
. (20)

Combining Azuma Lemma (Lemma 3) and eq. (20), we can finally derive the following equation

PS
(
{W ′i}

T
i=0 :

PS (Wi = W ′i , i ∈ {0, · · · , T})
P (Wi = W ′i , i ∈ {0, · · · , T})

> eε
′
)
< δ′,

where S and S′ are adjacent sample sets.

Therefore, the algorithm A is ε′-differentially private.

The proof is completed.

B.4 PROOF OF THEOREM 6

Now, we can prove our composition theorems for (ε, δ)-differential privacy. We first prove a composition algorithm of
(ε, δ)-differential privacy whose estimate of ε′ is somewhat looser than the existing results. Then, we tighten the results and
obtain a composition theorem that strictly tighter than the current estimate.

Proof of Theorem 6. It has been proved that the optimal privacy preservation can be achieved by a sequence of independent
iterations (see [Kairouz et al., 2017], Theorem 3.5). Therefore, without loss of generality, we assume that the iterations in
our theorem are independent with each other.



Fixed any two adjacent sample sets S and S′, and rewrite Wi(S) as W 0
i , and Wi(S

′) as W 1
i . Then, by Lemma 3, for i ≥ 1

there exist random variables W̃ 0
i and W̃ 1

i , such that

∆
(
W 0
i ‖W̃ 0

i

)
≤ δi

1 + eεi
, (21)

∆
(
W 1
i ‖W̃ 1

i

)
≤ δi

1 + eεi
, (22)

D∞

(
W̃ 0
i ‖W̃ 1

i

)
≤εi, (23)

D∞

(
W̃ 1
i ‖W̃ 0

i

)
≤εi. (24)

Applying Theorem 6 (here, δ = δ̃), we have that

Dδ̃
∞

(
{W̃ 0

i }Ti=0‖{W̃ 1
i }Ti=0

)
≤ ε′,

Dδ̃
∞

(
{W̃ 1

i }Ti=0‖{W̃ 0
i }Ti=0

)
≤ ε′.

Apparently, for any sequence of hypothesis setsH0, · · · ,HT ,

P(W 0
i ∈ Hi)−min

{
δi

1 + eεi
,P(W 0

i ∈ Hi)
}
≥ 0.

Therefore,

P(W 0
0 ∈ H0)

(
P(W 0

1 ∈ H1)−min

{
δ1

1 + eε1
,P(W 0

1 ∈ H1)

})
· · ·
(
P(W 0

T ∈ HT )−min

{
δT

1 + eεT
,P(W 0

T ∈ H1)

})
≤P(W̃ 0

0 ∈ H0) · · ·P(W̃ 0
T ∈ HT )

≤eε
′
P(W̃ 1

0 ∈ H0) · · ·P(W̃ 1
T ∈ HT ) + δ̃. (25)

Furthermore, by eq. (24), we also have that

P(W̃ 0
i ∈ Hi) ≤ min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

i ∈ Hi).

Therefore,

P(W̃ 0
0 ∈ H0) · · ·P(W̃ 0

n ∈ HT ) ≤
T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

0 ∈ H0) · · ·P(W̃ 1
T ∈ HT ) + δ̃.

Then, we prove this theorem in two cases: (1)
∏T

i=1 min
{
eεi , 1

P(W̃1
i ∈Hi)

}
≤ eε

′
; and (2)∏T

i=1 min
{
eεi , 1

P(W̃1
i ∈Hi)

}
> eε

′
.

Case 1-
∏T

i=1 min
{
eεi , 1

P(W̃1
i ∈Hi)

}
≤ eε

′
.

We have that

P(W̃ 1
0 ∈ H0)

(
P(W̃ 1

1 ∈ H1)− δ1
1 + eε1

)
· · ·
(
P(W̃ 1

T ∈ HT )− δT
1 + eεT

)
≤P(W 1

0 ∈ H0) · · ·P(W 1
T ∈ HT ).



By simple calculation, we have that

T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

0 ∈ H0) · · ·P(W̃ 1
T ∈ HT )

≤
T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W 1

0 ∈ H0) · · ·P(W 1
T ∈ HT )

+

T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

0 ∈ H0) · · ·P(W̃ 1
T ∈ HT )

−
n∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

0 ∈ H0)(
P(W̃ 1

1 ∈ H1)− δ1
1 + eε1

)
· · ·
(
P(W̃ 1

T ∈ HT )− δT
1 + eεT

)
.

Apparently,

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ i

0 ∈ Hi) ≤ 1,

and when A > B, f(x) = Ax− (x− a)B increases when x increases.

Therefore, we have that

T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P(W̃ 1

0 ∈ H0) · · ·P(W̃ 1
T ∈ HT )

−
T∏
i=1

min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
P (W̃ 1

0 ∈ H0)(
P(W̃ 1

1 ∈ H1)− δ1
1 + eε1

)
· · ·
(
P(W̃ 1

T ∈ HT )− δT
1 + eεT

)
≤1−

T∏
i=1

(
1−min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
δi

1 + eεi

)
.

Combining with eq. (25), we have that

δ′ ≤ 1−
T∏
i=1

(
1−min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
δi

1 + eεi

)
+ 1−

T∏
i=1

(
1− δi

1 + eεi

)
+ δ̃.

Case 2-
∏T

i=1 min
{
eεi , 1

P(W̃1
i ∈Hi)

}
> eε

′
:

There exists a sequence of reals {αi}Ti=1 such that

eαi ≤ min

{
eεi ,

1

P(W̃ 1
i ∈ Hi)

}
,

T∑
i=1

αi = ε′.

Therefore, similar to Case 1, we have that

δ′ ≤ 1−
T∏
i=1

(
1− eαi δi

1 + eεi

)
+ 1−

T∏
i=1

(
1− δi

1 + eεi

)
.



Overall, we have proven that

δ′ ≤ 1−
T∏
i=1

(
1− eαi δi

1 + eεi

)
+ 1−

T∏
i=1

(
1− δi

1 + eεi

)
,

where
∑T
i=1 αi ≤ ε′ and αi ≤ εi.

From Lemma 4, the minimum is realised on the boundary, which is exactly this theorem claims.

The proof is completed.

Then, we can prove prove Theorem 4.

Proof of Theorem 4. Applying Theorem 3.5 in [Kairouz et al., 2017] and replacing ε′ in the proof of Theorem 6 as

ε′ = min {ε′1, ε′2, ε′3} .

The proof is completed.

B.5 PROOF OF COROLLARY 2

Proof of Corollary 2. Let P0 and P1 be two distributions whose cumulative distribution functions P0 and P1 are respectively
defined as following:

P0(x) =



δ , x = 0

(1− δ)eε

1 + eε
, x = 1

1− δ
1 + eε

, x = 2

0 , x = 3

,

and

P1(x) =



0 , x = 0

(1− δ)eε

1 + eε
, x = 1

1− δ
1 + eε

, x = 2

δ , x = 3

.

By Theorem 3.4 of [Kairouz et al., 2017], the largest magnitude of the (ε′, δ′)-differential privacy can be calculated from the
P
⊗
T

0 and P
⊗
T

1 .

Construct P̃0 and P̃1, whose cumulative distribution functions are as follows,

P̃0(x) =



eεδ

1 + eε
, x = 0

(1− δ)eε

1 + eε
, x = 1

1− δ
1 + eε

, x = 2

δ

1 + eε
, x = 3

,



and

P̃1(x)



δ

1 + eε
, x = 0

(1− δ)eε

1 + eε
, x = 1

1− δ
1 + eε

, x = 2

eεδ

1 + eε
, x = 3

.

One can easily verify that

∆(P0‖P̃0) ≤ δ

1 + eε
,

∆(P1‖P̃1) ≤ δ

1 + eε
,

D∞(P̃0‖P̃1) ≤ ε,
D∞(P̃1‖P̃0) ≤ εi.

Let Vi(xi) = log
(
P̃0(xi)

P̃1(xi)

)
and S(x1, · · · , xT ) =

∑T
i=1 Vi(xi).

We have that for any t > 0,

PP̃T0 ({xi} : S({xi}) > ε′) ≤ e−ε
′tEP̃

⊗
T

0
(etS) = e−ε

′t

(
etε+ε

1 + eε
+

e−tε

1 + eε

)T
= e−ε

′t−Ttε
(
e2tε+ε

1 + eε
+

1

1 + eε

)T
.

(26)

By calculating the derivative„ we have that the minimum of the RHS of eq. (26) is achieved at

e2εt = e−ε
Tε+ ε′

Tε− ε′
. (27)

Since ε′ ≥ T eε−1
eε+1 ,

e−ε
Tε+ ε′

Tε− ε′
> 1.

Therefore, by applying eq.(27) into the RHS of eq. (26), we have that

PP̃T0 ({xi} : S({xi}) > ε′) ≤ e−
ε′+Tε

2

(
1

1 + eε

(
2Tε

Tε− ε′

))T (
Tε+ ε′

Tε− ε′

)− ε′+Tε2ε

. (28)

Define RHS of eq. (28) as δ′. We have (P̃b)
⊗
T (b = 0, 1) have ε′ δ′-approximate max divergence. Then, using similar

analysis of the Proof of Theorem 6, we prove this theorem.

B.6 TIGHTNESS OF THEOREM 2

This section analyses the tightness of Theorem 2. Specifically, we compare it with our Theorem 4.

In the proof of Theorem 4 (see Section B.3), ε′3 is derived through Azuma Lemma (Lemma 3). Specifically, the δ′ is derived
by

P
[
ST ≥ ε′ − T

eε − 1

eε + 1

]
≤ e−t(ε

′−T e
ε−1
eε+1 )E

[
etST

]
= e−t(ε

′−T e
ε−1
eε+1 )EP̃

⊗
(T−1)

0

[
etST−1E

[
etVT |x1, . . . , xT−1

]]
≤ e−t(ε

′−T e
ε−1
eε+1 )EP̃

⊗
(T−1)

0

[
etST−1

]
e4t2ε2/8

≤ e−t(ε
′−T e

ε−1
eε+1 )eTt

2ε2/2,



where Vi is defined as log
PP̃0

(xi)

PP̃1
(xi)
− EP̃0

[
log

PP̃0
(xi)

PP̃1
(xi)
|x1, · · · , xi−1

]
and Sj is defined as

∑j
i=1 Vi.

Since P
[
ST ≥ ε′ − T eε−1

eε+1

]
does not depend on t,

P
[
ST ≥ ε′ − T

eε − 1

eε + 1

]
≤ min

t>0
e−

(ε′−T e
ε−1
eε+1

)2

2Tε2 = δ′,

By contrary, the approach here directly calculates E[etST ], without the shrinkage in the proof of Theorem 4 (see Section
B.3). Specifically,

e−ε
′t−Ttε

(
e2tε+ε

1 + eε
+

1

1 + eε

)T
= e−tεE

[
etST

]
≤ e−t(ε

′−T e
ε−1
eε+1 )eTt

2ε2/2.

Therefore,

min
t>0

e−ε
′t−Ttε

(
e2tε+ε

1 + eε
+

1

1 + eε

)T
≤ min

t>0
e−t(ε

′−T e
ε−1
eε+1 )eTt

2ε2/2,

which leads to

e−
ε′+Tε

2

(
1

1 + eε

(
2Tε

Tε− ε′

))T (
Tε+ ε′

Tε− ε′

)− ε′+Tε2ε

≤ δ′.

It ensures that this estimate further tightens δ′ than Section B.3 (which is also the δ̃ in Theorem 4) if the ε′ is the same.

C SUPPLEMENTARY MATERIALS OF THE APPLICATIONS

This appendix collects the formal description of SGLD and agnostic federated learning, together with the proof for the
application in IGMM and the asymptotic generalization bound for agnostic federated learning.

C.1 DETAILED DESCRIPTION OF SGLD AND AGNOSTIC FEDERATED LEARNING

SGLD and agnostic federated learning are described respectively as the following two charts.

Algorithm 1 Stochastic Gradient Langevin Dynamics (SGLD)

Require: Sample S = {z1, ...zN}, Gaussian noise variance σ, size of mini-batch τ , iteration steps T , learning rate {η1, ...ηT }, loss

function `(z,W ), and the diameter of the gradient space D
4
= maxW,z,z′ ‖∇`(z,W )−∇`(z′,W )‖.

1: Initialize W0 randomly.
2: For t = 1 to T do:
3: Uniformly sample a mini-batch Bt of size τ from S without replacement;
4: Sample gt from σN (0, I);
5: Update Wt ←Wt−1 − ηt

[
1
τ

∑
z∈Bt ∇`(z,Wt−1) + gt

]
.

Algorithm 2 Differentially Private Federated Learning

Require: Clients {c1, ...cN}, Gaussian noise variance σ, size of mini-batch τ , learning rate {η1, · · · , ηT }, iteration steps T , positive
constant L.

1: Initialize W0 randomly.
2: For t = 1 to T do:
3: Uniformly sample a mini-batch of clients Bt of size τ without replacement;
4: Randomly sample gt fromN (0, L2σ2I);
5: Central curator distributes Wt−1 to the clients in the mini-batch Bt;

6: Update Wt ←Wt−1 + ηt

(
1
τ

∑
c∈Bt

ClientUpdate(c,Wt−1)

max

(
1,
‖ClientUpdate(c,Wt−1)‖2

L

) + gt

)
.



By the above two charts, one can easily observe that SGLD is a special case of IGMM with g = ∇`, and agnostic federated
learning is also a special case of IGMM with g = ClientUpdate

max
(

1,
‖ClientUpdate‖2

L

) and D = 2L.

C.2 PROOF OF THEOREM 7

IGMM applies the sub-sampling technique (i.e., mini-batch) to amplify differential privacy. Therefore, before the proof of
Theorem 7, we first present a lemma from [Balle et al., 2018] which provide bound of differential privacy parameters after
sub-sampling uniformly without replacement.

Lemma 5 (c.f. Theorem 9, [Balle et al., 2018]). LetMo : Zm 7→ ∆H be any mechanism preserving (ε, δ) differential
privacy. Let Mwo : ZN 7→ ∆Zm be the uniform sub-sampling without replacement mechanism. Then mechanism
Mo ◦Mwo satisfy (log(1 + (m/N)(eε − 1)),mδ/N) differential privacy.

Proof of Theorem 7. Before the start of the proof, we define several notations. We denote GB(W )
4
= 1
‖B‖

∑
z∈B g(z,W )

as the mean of g over B for brevity. We also use p as the probability density, with pV the probability density conditional on
any random variable V .

We first calculate the differential privacy of each step. To begin with, step 3 in Algorithm 1 is equivalent to uniformly
sampling a mini-batch It from index set [N ] with size τ without replacement and letting Bt = SIt . Furthermore, for fixed
Wt−1, I, and any two adjacent sample sets S and S′, we have

pS,It(Wt = W |Wt−1)

pS′,It(Wt = W |Wt−1)
=

pS,It(ηt(GSI (Wt−1) +N (0, σ2I)) = W −Wt−1)

pS′,It(ηt(GS′I (Wt−1) +N (0, σ2I)) = W −Wt−1)

=
pIt,Wt−1(N (0, σ2I) = W ′)

pS,S′,It,Wt−1(GS′I (Wt−1)−GSI (Wt−1) +N (0, σ2I) = W ′)
,

where ηtW ′ = W − Wt−1 − ηtGSI (Wt−1). Therefore, if W ∼ Wt−1 + ηt(GSI (Wt−1) + N (0, σI)), then W ′ ∼
GSI (Wt−1) +N (0, σI). Define

DS,S′,It,Wt−1(W ′) = log
pIt,Wt−1(N (0, σ2I) = W ′)

pS,S′,It,Wt−1(GS′I (Wt−1)−GSI (Wt−1) +N (0, σ2I) = W ′)
,

which by the definition of Gaussian distribution further leads to

D(W ′) =− ‖W
′‖2

2σ2
+
‖W ′ −GS′I (Wt−1) +GSI (Wt−1)‖2

2σ2

=
2〈W ′,−GS′I (Wt−1) +GSI (Wt−1)〉+ ‖GS′I (Wt−1)−GSI (Wt−1)‖2

2σ2
.

Denote −GS′I (Wt−1) +GSI (Wt−1) as v. By the definition of D, we have that

‖v‖ < 1

τ
D.

On the other hand, since 〈v,W ′〉 ∼ N (0, ‖v‖2σ2), by Chernoff Bound technique,

P

(
〈v,W ′〉 ≥

√
2Dσ

τ

√
log

1

δ

)
≤ P

(
〈v,W ′〉 ≥

√
2‖v‖σ

√
log

1

δ

)
≤ min

t
e−
√

2t‖v‖σ
√

log 1
δE(et〈v,W

′〉)

= δ.

Therefore, with probability at least 1− δ with respect to W ′, we have that

D(W ′) ≤

√
2Dσ 1

τ

√
log 1

δ + 1
τ2D

2

2σ2
.



By Lemma 5, we have that step t is (ε̃, τN δ)-differentially private. Applying Theorem 2 with ε = ε′3 we can prove the
differential privacy.

By applying Theorem 1, we can prove the generalization bound.

The proof is completed.

C.3 PROOF OF COROLLARY 3

Proof of Corollary 3. We first calculate the asymptotic bounds for privacy parameters. Let δ = Θ(1/N2), we have

ε̃ = log

N − τ
N

+
τ

N
exp

√2Dσ 1
τ

√
log 1

δ + 1
τ2D

2

2σ2


= log

(
N − τ
N

+
τ

N
exp

(
Θ(
√

logN)
))

= log
(

1 +
τ

N

((
exp

(
Θ(
√

logN)
))
− 1
))

=Θ̃

(
1

N

)
. (29)

Furthermore, let δ̃ = Θ( 1
N2 ). By eq.(29), we have

ε′ =

√
2T log

(
1

δ̃

)
ε̃2 + T ε̃

eε̃ − 1

eε̃ + 1

=Θ

(√
logNΘ̃

(
1

N

))
+ Θ

(
Θ̃

(
1

N

)2
)

= Θ̃

(
1

N

)
.

On the other hand, by δ̃′ ≤ δ̃ = O(1/N2), and

2−
(

1− δ

1 + eε̃

)T
−
(

1− δeε̃

1 + eε̃

)⌈Nε′
τε̃

⌉(
1− δ

1 + eε̃

)T−⌈Nε′τε̃ ⌉

=O(δ) = O
(

1

N2

)
,

we have

δ′ =2−
(

1− δ

1 + eε̃

)T
−
(

1− δeε̃

1 + eε̃

)⌈Nε′
τε̃

⌉(
1− δ

1 + eε̃

)T−⌈Nε′τε̃ ⌉
+ δ̃′ = O

(
1

N2

)
.

When N is large enough, we have Afed is
(

Θ̃(1/N), Õ(1/N)
)

-differentially private, and thus
(

Θ̃(1/
√
N), Õ(1/N)

)
-

differentially private. By

2e−2ε′δ′

ε′
ln

(
2

ε′

)
=

2e
−2Θ̃( 1√

N
)O( 1

N2 )

Θ̃( 1√
N

)
ln

(
2

Θ̃( 1√
N

)

)
= Õ

(
1

N
3
2

)
.

Since when N is large enough,

N ≥ 2

0.077Θ̃( 1√
N

)2
ln

 43

254e
−1.7Θ̃( 1√

N
)Õ
(

1

N
3
2

)
 ,

by Theorem 1, the proof is completed.
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