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1 SUPPLEMENTARY MATERIAL

1.1 LEMMAS AND PROOFS

Lemma 1. For the matrix M = (I −ZW>)−1, the element M1i is equal to the Kronecker delta δ1i, for W ∈ Rd×d and Z
from equation (7).

Proof of Lemma 1. Using Cramers rule M1i = 1
det(I−ZW>)

Ci1, where C is the cofactor matrix of (I − ZW>).

By definition of a cofactor as plus/minus a minor, and that the first row of (I − ZW>) is zero for all but the first element,
Ci1 is zero for i > 1, so Ci1 = δi1C11

By Laplace expansion of det(I − ZW>) along the first row

det(I − ZW>) =

d∑

k=1

(I − ZW>)1kC1k = C11

We conclude M1i = 1
C11

δi1C11 = δ1i

Proof of lemma 1. We need to show the result of equation (9). Introduce M = (I − ZW )−1.

The proof follows by a direct computation, using Lemma 1. The noise covariance under the interventional distribution Σ̃ is
diagonal by assumption, which is also key.

γ(W ) =
C̃ovW [x, y]

ṼarW [x]
(1)

=
C̃ovW [v, v]1,2

C̃ovW [v, v]1,1
(2)

=

∑d
i,j=1M1jM2iΣ̃ij

∑d
i,j=1M1jM1iΣ̃ij

(3)

=

∑d
i=1M2iΣ̃i1

Σ̃11

(4)

=
M21Σ̃11

Σ̃11

(5)

= M21 (6)
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This completes the proof.

We notice that there is nothing in the proofs of Lemma 1 and Lemma 1 specific about the first and second component -
redefining the matrix Z accordingly, it is straight forward to generalize the result if needed. To keep the notation simple,
we do stay with the convention that the first component is the one we intervene on, and that the second is the outcome of
interest.

Lemma 2. The function h of Zheng et al. [2018] has a closed form matrix gradient. It is∇h(W ) = 2W ◦ (exp[W ◦W ])>.

This formula is reported by Zheng et al. [2018], but without derivation. The result follows from liberal application of the
chain rule.

Proof of Lemma 2. ∂
∂Ai,j

trAk = k(Ak−1)>i,j by the product rule for derivation, and cyclicity of traces.

By series expansion and using the equation above ∂
∂Ai,j

tr exp[A] = (exp[A])>i,j

We have that ∂(W◦W )k,l

∂Wi,j
= 2Wi,jδi,kδj,l using the Kronecker delta symbol.

The chain rule for differentiation now says ∂
∂Wi,j

tr exp[W ◦W ] =
∑
k,l

∂ tr exp[W◦W ]
∂(W◦W )k,l

∂(W◦W )k,l

∂Wi,j
= 2Wi,j

∂ tr exp[W◦W ]
∂(W◦W )i,j

=

2Wi,j(exp[W ◦W ])>i,j

The rest is a matter of notation and diffrentiating a constant.

Lemma 3. The set of all DAG:s,W0 in (6), has the following properties

1. All points ofW0 are boundary points (i.e., empty interior)

2. W0 is a direct sum of linear subspaces, so it is a unbounded set, and a cone

3. W0 is nonconvex. The convex hull ofW0 is the set of all real d× d-matrices.

4. h(W ) = 0 iff∇h(W ) = 0.

Proof of Lemma 3. Only point four is a nontrivial result, as the others have a direct geometrical interpretation.

The first point follows from the fact that for q being any matrix with a nonzero on the diagonal, h(W + εq) > 0 ∀ε > 0,
even when W ∈ W
The second point follows from the fact that h(W ) = 0 iff W is the weighted directed adjacency matrix of a DAG, and
positive scaling that matrix will not affect the cyclicity structure.

The third point: Consider the example w =

[
0 1
0 0

]
. Then, w,w> ∈ W , but (w + w>)/2 6∈ W0, so W0 is nonconvex.

Consider also an arbitrary matrix W =
∑d
ij=1 wijE

ij . It is a convex combination of the matrices Eij , which all belong to
W0. Since W was arbitrary, all matrices are in the convex hull ofW0.

The last point needs some more work, and is detailed below.

We start with the forward implication. Since any DAG W is permutation similar to a strictly upper triangular matrix,
(exp[W ◦W ])> is permutation similar to a strictly lower triangular matrix, with the same similarity transformation.∇h(W )
is therefore permutation similar to the elementwise product between a strictly upper and a strictly lower triangular matrix,
which must be the zero matrix.

For the the reverse implication, assume W is not a DAG, so it has some cycle of length K, and 1 ≤ K ≤ d. Select i and j
such that node i and j lies on that cycle. Now Wi,j 6= 0. One can go from node i to node j in 1 step, so one must be able
to go from node j to node i in K − 1 steps. Therefore (W ◦W )K−1

j,i 6= 0. This makes sure that the exponential factor in
∇h(W ) has a nonzero i, j-entry.

[
(exp[W ◦W ])>

]
i,j

=

∞∑

k=0

[(W ◦W )k]j,i
k!

6= 0



∇h(W )i,j = 2Wi,j

[
(exp[W ◦W ])>

]
i,j

Since this is a product of two positive real numbers, we can conclude that∇h(W ) 6= 0.

This result supplements the discussion of Zheng et al. [2018, p.7]. Not only is the DAG:s the global minima of h, but they are
also the zeroes of∇h.

The fourth point in Lemma 3 has during the time of writing this being reported in Wei et al. [2020, lemma 4], but with a
more different derivation technique valid for a slightly broader class of h-functions. It has also been reported in Ng et al.
[2019, proposition 1], with a proof technique very similar to ours.

Lemma 4. The least-squares objective, and its derivatives are

`θ(v) =
1

2
(Lθ − vec(I))>

[
Σ−1 ⊗ vv>

]
(Lθ − vec(I)) (7)

and its gradient and hessian is
∇`θ(v) = L>

[
Σ−1 ⊗ vv>

]
(Lθ − vec(I)) (8)

∇2`θ(v) = L>
[
Σ−1 ⊗ vv>

]
L

The proof is direct computation, after using the formula tr(A>Y >BX) = (vec(Y ))>[A⊗B] vec(B).

Proof of Lemma 4. Use the vec-trick tr(A>Y >BX) = vec(Y )>[A⊗B] vec(B), and find the objective.

`θ(v) =
1

2
‖Σ−1/2

(
I −mat(Lθ)>

)
v‖2 (9)

=
1

2
tr
[
Σ−1 (mat(Lθ)− I)

>
vv> (mat(Lθ)− I))

]
(10)

=
1

2
(Lθ − vec(I))>

[
Σ−1 ⊗ vv>

]
(Lθ − vec(I)) (11)

The rest is differentiation of a quadratic.

Lemma 5. The quantities of Lemma 3 can be computed to be

Kn = L>
[
Σ−1 ⊗ En

[
vv>

]]
L

Πn = I − (qq>)/(q>q)

q = L> vec(2Wn ◦ (exp[Wn ◦Wn])>)

Jn = L>J̃nL

(J̃n)d(j−1)+i,d(l−1)+k =

d∑

q,r,o,p=1

{(
En [vivqvovk]−

En [vivq]En [vovk]
)
Σ−1
j,rΣ−1

p,l (W − I)q,r(W − I)o,p

}
(12)

Proof of Lemma 5. The expression for Kn follows from Lemma 4.

Kn = En[∇2`θ(v)] =

En
[
L>
[
Σ−1 ⊗ vv>

]
L
]

= L>
[
Σ−1 ⊗ En

[
vv>

]]
L (13)

Πn is a projection matrix with respect to the orthogonal complement of q := ∇θh(mat(Lθn)). Since q is a vector, projection
on the orthogonal complement is Πn = I − (qq>)/(q>q). The expression q = L> vec(2Wn ◦ (exp[Wn ◦Wn])>) follows
from Lemma 2, and Wn = vecLθn.



The derivation of Jn is an mostly tracking indices. Start with Jn = En[∇`θn(v)∇`θn(v)>]− En[∇`θn(v)]En[∇`θn(v)]>

and apply to Lemma 4. First factor out the L matrix of (8), and then covert the rest into indices. Apply the index conversion
for vectorizations vecAd(j−1)+i = Ai,j and for kronecker products [A⊗B]d(i−1)+j,d(k−1)+l = Ai,kBj,l when A and B
are d× d sized.

The next lemma collects the assumption verification for applying Corollary 6 in proof of Lemma 3. Herein we use the
redundant norm-constraint, that is in some parts skipped.

Lemma 6. Using the loss function (13), and the parameter set Θ := {θ | |h (mat(Lθ)− ε = 0 ∧ ‖θ‖ ≤ B}, we see that

1. The techincal conditions for M-estimation [Wooldridge, 2010, Theorem 12.2] holds.

2. The loss function `θ(v) is two times continously diffrentiable in v.

3. Θ := {θ ∈ Rp | g(θ) = 0} for some vector-valued constraint function g such that Θ is bounded.

4. The Jacobian matrix∇g(θn) has full rank for all n.

5. En
[
∇2`θ(v)

]
is invertible for all θ.

6. θ◦ is the unique minimizer of E[`θ(v)]

Proof. First notice that (13) is quadratic in θ, but also in v, which is more clearly seen in (11).

1. The technical conditions are (a) that Θ is compact, which follows from closed and boundedness (b) that `θ(v) is borel
measurable in v for each θ, which follow from being quadratic, (c) that `θ(v) is continuous in θ for each v, which
follows from being a quadratic and (d) that there is a dominating function d(v) ≥ |`θ(v)| for all θ so that E[d(v)] <∞,
which needs a few steps to prove. Observe

|`θ(v)| = 1

2
‖Σ−1/2(I −mat(Lθ))v‖22 (14)

≤ 1

2
σ1(Σ−1/2)2σ1(I −mat(Lθ))2‖v‖2 (15)

≤ C‖v‖2 =: d(v), (16)

where σ1 denotes the largest singular value and

C :=
1

2
σ1(Σ−1/2)2 max

θ∈Θ
σ1(I −mat(Lθ))2,

utilizing compactness of Θ. Finally E[d(v)] = CE[‖v‖2] = C tr [(I −W>)−1Σ(I −W )−1] ≤ ∞, using the assumed
data generating process (5).

2. `θ(v) is two times continously diffrentiable in v, since it is a quadratic in v

3. The form of Θ := {θ | |h (mat(Lθ)− ε = 0 ∧ ‖θ‖ ≤ B} can be transformed into equality form by introduction of a

slack variable s, so that Θ := {θ, s | |h (mat(Lθ)− ε = 0 ∧ ‖θ‖+ s2 −B = 0}, so g(s, θ) =

[
h (mat(Lθ)− ε
‖θ‖+ s2 −B

]
.

4. By lemma 3, ∇g(θn) is nonzero over Θ, but the gradient with respect to the slack is zero. Furthermore ∇s[‖θ‖+ s2 −
B] = 2s, which is zero only for s = 0, but we know from 2 that s 6= 0. So the two components of g must have linerarly
independent gradients, and the jacobian has full rank. Do note that the slack-formulation used here is supressed from
the formalism in the rest of the article, since it is an inactive constraint, making the proofs and text less clear with no
gain.

5. En
[
∇2`θ(v)

]
= L>

[
Σ−1 ⊗ En[vv>]

]
L, which almost surely has full rank. We ignore the measure zero case.

6. The unicity of θ◦ we have to take by assumption, as discussed elsewhere in this article.

Lemma 7. The gradient of the causal effect γ with respect to the parameter θ is

[∇θγ(θ)]k = − ([MZ ⊗ I]L)d+1,k (17)



Proof of Lemma 7. Start from Lemma 1. Apply derivation rules for matrix inverses, and utilize the unit basis matrices Ei,j

which zero in every entry, except the i, j-entry.

∂(γ(W ))

∂Wi,j
=
∂(M21)

∂Wi,j
(18)

=

d∑

k,l=1

M2k
∂(I − ZW>))kl

∂Wi,j
Ml1 (19)

= −
d∑

k,l=1

M2kZkmE
ij
lmMl1 (20)

= −(MZ)2jMi1 (21)

= −
[
MZ ⊗M>

]
d+1,d(j−1)+i

(22)

(23)

As an aside, we can note that the matrix with these entries has a compact definition, −(
[
MZ ⊗M>

]
) = ∂ vec(MT )

∂ vecW . Armed
with this expression and

∂Wi,j

∂θk
= Ld(j−1)+i,k (24)

we can compute

[∇θγ(θ)]k =

d∑

i,j=1

∂(γ(W ))

∂Wi,j

∂Wi,j

∂θk
(25)

=− ([MZ ⊗ I]L)d+1,k (26)

1.2 NUMERICAL EXPERIMENTS

1.2.1 Detailed sensitivity study

In section 4.5 we studied the impact of ε in relation to our causal effect measure γ◦. In this section, we provide additional
results (in Figure 1) that shed more light on the behavior of the solution.

The computations are performed as in in section 4.5, but with 20 random graphs instead of 10, and a wider range of ε

Comparing Figures 1d and 1b, we note that while setting ε > ε? yields an inaccurate non-DAG matrix W◦(ε), it may
occasionally produce accurate γ̂◦(ε) depending on the unknown data-generating process and the nonlinear mapping in (9).

In Figure 1c we see that to improve the DAG-fidelity (quantified by h(W )), we need to reduce η. However, in the numerical
runs, we could see that required raising ρmax further, which may lead to numerical inaccuracies.

1.2.2 Linearity assumptions violations

All numerical experiments above been performed using data drawn from linear SCMs. We now consider the behavior of the
method when the data-generating process is non-linear and study the coverage of the target quantity γ◦. It is still defined
in (10a) as the average causal effect of the optimal linear SCM (although it will diverge from the unknown distribution
parameter γ depending on the type of nonlinearity).

We use the same models as Yu et al. [2019]:

1. Linear: v = W>v + e where

2. Nonlinear 1: v = W> cos(v + 1) + e,
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(a) The average causal effect estimated for various ε.
Absolute value imposed to allow log-log-plot.
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(b) The absolute error in the estimate of the causal
effect. Smilar to figure 5.
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(c) The constraint function h at the numerical approxi-
mation of the ε-almost DAG W◦. If the numerical solver
is good and ε ≤ ε?, we should have h(Ŵ (ε) ≈ ε,
which is what we observe down to circa 10−12 = η,
the tolerated constraint violation of Algorithm 1. We
can also see that when ε > ε?, the solution does not
depend on ε.

10−15 10−11 10−7 10−3 101

10−4

10−2
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ε

‖W
−
Ŵ

(ε
)‖
∞

(d) The maximum error in the point estimate of the
adjacency matrix W . The results indicate ε → 0 is a
necessary condition to retrieve the true DAG-matrix W ,
but numerical precision limits this convergence.

Figure 1: Detailed graphs for the extended sensitivity analysis. We conclude that ε → 0 is a strong indication that
W◦(ε)→W◦(0)..

3. Nonlinear 2: v = 2 sin(W>(v + 0.5 · 1)) +W>(v + 0.5 · 1) + e

The coefficient matrix W is generated as in section 4 and the random elements of e are drawn independently asN (0, 1). Let
1 denote a vector of ones, and cos(·) and sin(·) on vectors be defined entry-wise. For each of these models n = 103 data
points are generated.

We performed 200 Monte Carlo runs and report the empirical coverage rate CR of Γα,n in Table 1, d is the number of nodes
in the SCM and k denotes the number of number of expected edges per node. We find that in all cases the empirical coverage
rate exceeds the target 1− α = 95%, in accordance with the theory, but the confidence interval is more conservative in the
nonlinear cases than the linear case.

1.2.3 Misspecified latent covariance structure

One of the major challenges of the method is the assumption of an approximately known latent covariance Σ. This section
explores the sensitivity to misspecification in this parameter.

First, we restate Loh and Bühlmann [2014, Theorem 9]. Let W1 �W0 if the directed graph encoded by W1 is a supergraph
of W0. I.e. for all indices i, j, [W0]i,j 6= 0 implies [W1]i,j 6= 0. The converse, W1 6� W0 means that there is some
component of W1 that is zero, even though the corresponding component of W0 is not. Define the additive gap ξ to be



Table 1: Empirical coverage rates of Γn,α% from numerical experiment on linear assumption violation. Nominal coverage
set to 1− α = 95%.

d k linear nonlinear1 nonlinear2

5 1 98.0% 97.0% 99.5%
5 2 97.5% 96.5% 100.0%

10 1 96.0% 98.5% 99.5%
10 2 95.5% 96.5% 100.0%

the difference in expected squared loss between the optimal DAG adjacency matrix and the second best one among the
non-supergraph-models. Compare the following with (10b). Define

score(W ) :=E
[
‖Σ−1/2

(
I −W>

)
v‖2
]

(27)

W0 := arg min
W∈W0

score(W ) (28)

ξ := min
W∈W0
W 6�W0

{score(W )} − score(W0) (29)

This gap is defined from the data generating process uniquely, and can only be computed if the the data generating latent
covariance Σ is known - at least up to a scale factor. When this is not known, we assume some latent variance structure Σ̂,
and quantify our misspecification by the condition number κ

(
Σ̂−1Σ

)
.

Lemma 8 (Loh Bühlmann, Lemma 9). If

κ
(

Σ̂−1Σ
)
≤ 1 +

ξ

d

then W0 ∈ arg minW∈W0
E
[
‖Σ̂−1/2

(
I −W>

)
v‖2
]
. If the inqeuality is strict, then W0 is the unique minimizer.

If the structure is correctly assumed, i.e. Σ = sΣ̂ for some scaling factor s, then

min
W∈W0

E
[
‖Σ̂−1/2

(
I −W>

)
v‖2
]

= sd

so we can estimate the scale factor s from data, assuming that we have the correct latent covariance structure Σ̂.[Loh and
Bühlmann, 2014, Corollary 8] Denote this empirical estimate ŝ.

How does these results affect the confidence interval of Theorem 4? We replace Σ in (17) with ŝΣ̂ using the biased estimate
of the scale s. 1 We conducted numerical studies aiming to illustrate that the confidence interval is good when κ

(
Σ̂−1Σ

)
is

small enough.

We generate data as in 4.3, but with a random latent noise matrix Σ. The matrix is diagonal, with entries drawn uniformly iid
from from the interval [1−∆, 1 + ∆], and ∆ = 1−κmax

1+κmax
. We use Σ̂ = I as before. This guarantees that κ

(
Σ̂−1Σ

)
≤ κmax.

For each draw of n data points, compute κ
(

Σ̂−1Σ
)

, as well as γ◦ and Γ as described in section 4.

1The estimate is most likely biased since most likely Σ̂ is not proportional to the true data generating Σ.
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Figure 2: The average causal effect γ◦ is in general close to the true value, except when the condition number κ
(

Σ̂−1Σ
)

becomes larger than some threshold value. This computation is not dependant on the number of data points drawn. Every
run is marked with an x, and the true average causal effect is denoted with a dashed hosrizontal line, mostly occluded by the
x-marks.
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Figure 3: For n = 100. Empirical coverage, as the misspecification is increased. 1000 runs with random noise matrices Σ
run. For each run, we have computed if γ◦ ∈ Γ or not. The runs have been binned in groups of nb = 100, and each bin b has

an empirical coverage rate p̂b computed. The shaded area represent p̂± 2
√

p̂(1−p̂)
nb

. In general, the misspecification voids the
guarantee for the coverage rate, but as long as the misspecification is small, the coverage rate is close to the promised one.

.
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Figure 4: Setup as in Figure 3, but n = 10000.
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