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Abstract

In this paper, we propose a new stochastic opti-
mization algorithm for Bayesian inference based
on multilevel Monte Carlo (MLMC) methods. In
Bayesian statistics, biased estimators of the model
evidence have been often used as stochastic objec-
tives because the existing debiasing techniques are
computationally costly to apply. To overcome this
issue, we apply an MLMC sampling technique to
construct low-variance unbiased estimators both
for the model evidence and its gradient. In the the-
oretical analysis, we show that the computational
cost required for our proposed MLMC estimator
to estimate the model evidence or its gradient with
a given accuracy is an order of magnitude smaller
than those of the previously known estimators. Our
numerical experiments confirm considerable com-
putational savings compared to the conventional
estimators. Combining our MLMC estimator with
gradient-based stochastic optimization results in
a new scalable, efficient, debiased inference algo-
rithm for Bayesian statistical models.

1 INTRODUCTION

In empirical Bayes estimation, the model evidence (or, the
log marginal likelihood) is maximized to estimate param-
eters. As such, the evidence maximization is considered a
fundamental problem in Bayesian statistics and has been
studied extensively for a long time. Perhaps the most com-
mon approach for the evidence maximization would be the
expectation-maximization (EM) algorithm (Dempster et al.|
1977)). In the EM algorithm, the analytical form of the poste-
rior distribution given data and parameters is required. In the
case where the exact posterior distribution is not available,
the algorithm can be extended by various approximation
techniques such as variational EM algorithm (Jordan et al.,

1999) and Monte Carlo EM algorithm (Wei and Tanner,
1990), which maximized the lower bound of the evidence.
However, such approximation methods usually maximize a
lower bound of the model evidence and thus the resulting
estimates are biased.

To reduce the bias from evidence estimation, application of
importance sampling (Robert and Casella, [2013) is often
considered. The estimate of the model evidence obtained
by importance sampling is known to have a negative bias as
discussed in Section 2.2} thus it serves as a stochastic lower
bound of the true model evidence.

This stochastic lower bound can be maximized for the empir-
ical Bayes method, by using its gradient with respect to the
model parameters in stochastic optimization (Robbins and
Monrol [1951)). Especially, if the size of the data is too large
to compute the gradient of the objective for all data points
in each iteration, we can randomly pick a subset of the data
to carry out doubly stochastic optimization. However, to
reduce the bias of the objective, the number of Monte Carlo
samples required to compute the gradient for each data point
needs to get larger, leading to a computational inefficiency
in the optimization of the objective based on importance
sampling.

We tackle this problem by using a sophisticated Monte Carlo
simulation technique called the multilevel Monte Carlo
(MLMC) method. Although the MLMC was originally stud-
ied in the context of parametric integration (Heinrichl [1998])
and stochastic differential equations (Giles} 2008)), it can be
applied to many other contexts as well, in situations where
the computational cost per Monte Carlo sample increases
as we reduce the bias of an objective. By considering a hi-
erarchy of different bias levels from a true objective and
constructing a tightly coupled Monte Carlo estimator for
the difference between two successive biased objectives, the
true objective can be estimated quite efficiently compared
to the standard Monte Carlo method which only estimates a
single biased objective at a fixed bias level. In a favorable
setting, the MLMC estimator can be even made unbiased for
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Figure 1: A graphical model of Bayesian models with local
latent variables.

the true objective by some randomization (Rhee and Glynn,
2015).

After the seminal work by |Giles| (2008), the MLMC has
been applied to various areas such as partial differential
equations with random coefficients (Cliffe et al.| [2011),
continuous-time Markov chains (Anderson and Higham|,
2012)) and Markov Chain Monte Carlo sampling (Dodwell
et al.,[2015)). We refer the reader to a review on recent devel-
opments of the MLMC (Giles|, 2015)). Recently, the MLMC
has been studied intensively for an efficient estimation of
nested expectations, motivated by various applications such
as computational finance (Bujok et al.l [2015), Bayesian
computation (Giles et al.,|[2016)), decision-making under un-
certainty (Giles and Godal [2019; Hironaka et al.| [2020) and
experimental design (Goda et al.||2020; |Goda et al., |2021).
In Appendix [A] we give a brief introduction to the MLMC
method and its basic theory.

In this paper, the above-cited works on nested expectations
are leveraged to obtain a computationally efficient, debi-
ased estimator for the model evidence. We also provide an
efficient, debiased estimator for the gradient of the model
evidence with respect to the model parameters, which can
be combined well with stochastic optimization to search for
a good estimate of the parameters learned from a large data
set.

2 BACKGROUND
2.1 PROBLEM SETTINGS

In this paper, we consider Bayesian statistical models with
local latent variables that are formulated by the following
i.i.d. data generating process:

Zn Np9(z)7

wn|zn = Zn Np@(w‘zn)a

ey

for n = 1, ..., N. Here, the bold letters x,, and z,, denote
random variables, whereas the normal letter x,, denotes the
corresponding realization. This latent variable model can
be expressed as a graphical model shown in Figure[I] The
problem we are interested in is to estimate the parameter 6
from the data x4, ...,z .

Throughout the paper, we will omit the dependence of the
model py on the parameter 6, and simply write p instead of

pe Where it is obvious from the context. We also abbreviate
a vector such as (x1,...,x,) as x1., for the simplicity of
notation. To estimate the parameter #, we maximize the
model evidence of the data 1, ..., x, which is defined by

E(xl:N; 0) = logpg(xl:N)

N
n=1

Additionally, we assume that the size N of the data is so
large that stochastic or mini-batch optimization of the above
objective is more desirable than batch optimization. Our aim
of this paper is to introduce efficient, debiased Monte Carlo
estimators of the model evidence (2) and its gradient with
respect to 6 and then to propose a new scalable, stochastic
optimization algorithm of this objective.

Remark 1. Actually, it is possible to treat the parameter 6
in a Bayesian manner and obtain a similar debiased, efficient
estimator using MLMC. Bayesian treatment of parameters
enables us to quantify the uncertainty of the estimated pa-
rameters. To calculate the debiased posterior, we can com-
bine a gradient-based variant of the stochastic variational
inference (Hoffman et al.| [2013)) with our proposed algo-
rithm. Such a combination can be implemented very simply
with almost no additional effort. The details on this point
are discussed in Appendices [D]and [E]

2.2 NESTED MONTE CARLO ESTIMATION OF
MODEL EVIDENCE AND ITS GRADIENT

As discussed before, the model evidence can be estimated by
importance sampling. The estimator of the model evidence
by importance sampling, denoted here by L, is given by

N K

R 1 (| Zni)D(Zn k)
Li(zin) =) log | = ’ |

K (71.N) P % | K ; 4n(Znk) 7

where, for each n, Z,, 1, ..., Z,, i are i.i.d. random samples
from a proposal distribution g, (2, ). In general, g, is taken
so that it approximates the true posterior distribution of z,,
given x,, = x,. This is because the Monte Carlo average
inside the logarithm becomes exactly equal to the marginal
distribution p(x,,) with variance 0, if we can set g, (z,,) to
the conditional distribution p(z,|x, = x,). In practice,
we choose the proposal distribution ¢,, as an approximate
posterior of z,, computed from z,,. So hereafter we will
write q(zp; ) instead of g, (z,) to express the proposal
distribution of Z,,’s.

There are a few useful properties of this estimator for the
model evidence based on importance sampling, as proven in
Theorem 1 of Burda et al.|(2016)). First, when we increase K,
the number of the samples in the Monte Carlo average inside
the logarithm, to infinity, we recover the model evidence
thanks to the law of large numbers, i.e., we have

li [:K(xlzN) = L(r1.N).
K—oo



SAecond, when we denotg the expectation of the estimator
Lk (z1.8) by Lk = E[Lk(21.5)], LK is always smaller
than or equal to £ 1. That is, we have

L1 < <Lg <Lgy1 < < Lo =L(71:8), (3)
which implies that the larger K we use, the better lower
bound on the model evidence we obtain. Thus, the maxi-
mization of this lower bound with respect to 6 is a good
approximation of the evidence maximization if K is chosen

large enough.

In order to process a large data set efficiently, it is sensible to
apply a gradient-based doubly stochastic optimization. For
this, instead of looking at all the data points at each iteration,
we randomly pick a subset (mini-batch) of the data points
with size M, and estimate the corresponding log-marginal
likelihood (or its gradient). This is equivalent to rewriting
the model evidence (@) into a nested expectation

L(z1.ny) = NEx |:10g/p9(X|Z)p9(Z) dZ} )

where X is a random variable taking z;, ...,z x uniformly
and E x denotes the average with respect to X, and to esti-
mate it by the nested Monte Carlo method:

M K
~ N 1 p m‘ka ( mk)
Larg =3 log| =
ML 28 [K Xom)

1 m ks
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Here, it is important to note that Xi,..., X, denote
iid. random samples of X. For each sample X,,,
Zm,s--+,Zm,Kk are conditionally i.i.d. random samples
from a proposal distribution ¢(z,; X,,). Because of the
linearity of expectation, we have E[ﬁ MK] = E[ﬁL K] =
Lr < L(z1.N).

Later in the paper, when we have only one sample of X,
we write L1 g as Lx = Lk (X1, Z1,1.x) for notational
simplicity.

The gradient of the model evidence with respect to 6 can
be estimated by the gradient of the nested Monte Carlo
estimator (@), which is explicitly given by

p(Xm|Zm,k)p(Zm’k)

Q(Zm,k§ Xm)

1 K Ve( ( m‘ka) ( mk’))
Z (mk7 )

K
m=1 1 Z p(Xm|Zm,k)p(Zm,k)
Q(Zm,k; Xm)

Note that, by using automatic differentiation software, we
can avoid coding the gradient in the presented form. We
would emphasize here that VoL, i is a biased estimator

of the gradient of the true model evidence, and so, applying
a gradient-based doubly stochastic optimization based on
Vol M,k does not converge to the optimal parameter 6 in
general.

Let us focus on the nested Monte Carlo estimation of the
model evidence at this moment. A similar argument applies
to the gradient of the model evidence. The mean squared
error of £ M,k 18 decomposed into the sum of the variance
and the squared bias:

E {(.CMK - L(mLN))Q]

=V {ﬁ]\/I,K} + (E [ﬁM,K] - E(afl:N))Q

= V[f\}’K] + (,CK - ,C($1;N))2 .

Therefore, in order to make the mean squared error small, we
need to increase both the mini-batch size M and the number
of inner Monte Carlo samples K, so that the variance and
the bias become small, respectively. Here, it follows from
(@) that the bias converges to 0 as K approaches infinity.
More precisely, in order to estimate the model evidence with
a mean squared accuracy £2, it suffices to have

—i % and  (Lx — L(z1n))? < %
Assuming that V[£; x| ~ V[£ o] for large enough K and
that the bias |Lx — L(z1.n5)| decays with the order K~
for some o > 0, we need to set M = O(¢7?) and K =
O(a_l/ @), respectively. Since the computational cost of
LAMJ( is given by the product M x K, it is of O(e=2~1/®).
Although another balancing between the variance and the
squared bias is possible, the cost of O(¢~2~1/®) cannot be
improved by nested Monte Carlo methods.

2.3 RELATED METHODS

As discussed above, the nested Monte Carlo estimation is
computationally inefficient. Thus, there have been some at-
tempts to improve the efficiency of the debiased estimation
for the model evidence and its gradient. In the context of
variational autoencoder (VAE) (Kingma and Welling}, 2014),
the use of the nested Monte Carlo estimator has been ac-
tively studied (Burda et al [2016) as it naturally extends
the ELBO, the original objective of the VAE. As a more
efficient variant of the nested Monte Carlo objective, appli-
cations of the Jackknife method and the Russian roulette
estimator were proposed.

The Jackknife method is a bias removal method in statis-
tics. It uses resampling techniques to remove low order bias,
e.g., the bias of the first order Jackknife estimator becomes
O(n=2) as the O(n~1) bias can be removed. Nowozin
(2018)) applied this idea to the estimation of the model evi-
dence and its gradient of VAE.



More related to our work is a Russian roulette estimator in-
troduced in|Luo et al.|(2020). Their estimator, called SUMO,
randomly picks a positive integer X from distribution

P@gk){vk | ifk<a
1/a-(1-0.1)k ifk>a,

for which a = 80 is recommended in the paper. Here, the
exponential decay of P(k < K) for k larger than a serves
as a soft truncation of the /X as the /C sufficiently larger than
the a cannot be sampled with high probability. This random
sampling is applied to each data point X and the SUMO
outputs the following weighted sum:

Lir<ky Lk

ﬁiUMO(X):Z (]4;<IC)£ —£k 1](X),

where K is distributed identically to . The differences

in the summation are defined by [L£ KTZK,l](X ) =
Lx(X;Z1.x) — Lx-1(X;Z1,(k-1)), where we ex-
plicitly wrote the dependence of LAK(:C;ZL K) =

x| Zk)p(Z
log |4 Yj, HElZeZ

0. The function 1 (<K} is the indicator function. Having
defined the point-wise definition of the SUMO, the SUMO
for mini-batch can simply defined as the following sum:
LENO(Xnar) = Xy LIMO(Xom).

It should be also noted that this estimator is similar to the
randomized MLMC estimator discussed in the next sec-
tion, in that they both use estimators of differences with
shared inner Monte Carlo samples. However, even though
the SUMO attempted to construct an unbiased estimator
of the model evidence, a truly unbiased estimation is in-
feasible in the sense that both the expected computational
cost and the variance of the SUMO approach infinity as the
bias tends to zero (Luo et al.l [2020). Our estimator using
the MLMC method, on the other hand, can completely re-
move the bias while requiring finite expected computational
cost and having a bounded variance. We refer the reader to
Appendix |B|for a detailed theoretical comparison between
different estimators.

on Z1.x and ﬁo is defined as

Aside from Jackknife method and SUMO, there are several
works on unbiased estimation of the model evidence that
are based on Markov chain Monte Carlo method (MCMC)
instead of nested Monte Carlo method (Ruiz et al., [2020;
Rischard et al.| 2018} [Wei and Murrayl, 2017). Though their
approaches are different from ours, they share some of the
key ideas such as the random truncation of telescoping sum
decomposition and the coupling of Monte Carlo samples.

3 PROPOSED ALGORITHM

To reduce the necessary computational cost from
O(e=27Y/) to O(e~2) for estimating the model evidence,

we apply the MLMC methods. Later in this section, we also
discuss the case for the gradient of the model evidence.

The main difference from the nested Monte Carlo estimation
is to consider a geometric hierarchy of the biased objectives

L1,Lo,...,Loe,...and to represent the model evidence by
the following telescoping sum
L(z1n) = D (Lor — Loe-1),
£=0

where we set L1 = 0. We call the term with ¢ = 0 main
term and the remaining terms correction terms. Note that
truncating the infinite sum over ¢ up to the first L terms
yields the objective L,r. The nested Monte Carlo method
estimates the single term Loz only, whereas the MLMC
method estimates the main term and the correction terms
(up to level L) independently and sums them up.

The key ingredient is in how to estimate the correction terms.
In order to estimate Lo¢ by L M,2¢ for some mini-batch size
M, we generate 2 i.i.d. samples of Z,,, from a proposal
distribution ¢(z,; X,,) for m = 1,..., M. Here, for the
same mini-batch, two halves of the i.i.d. samples of Z,,
can be used to compute L M,2¢—1 twice, which we denote by

25»3)’22 , and ng oe—1, respectively. Defining
Lara if £ =0,
¢ = (a) A(b)
AEM,Q’« EM ge—1 T ;CM)2[_1 )
Lo — 5 otherwise,

the linearity of expectation ensures that
]E |:A,CAM722:| == £2£ - ,CQZ—I.

This means that AL M,2¢ 1 an unbiased estimator for the
correction term. Now the truncated telescoping sum is esti-
mated by

MLMC

Z AEMZ 2, )

for mini-batch sizes My, ..., My > 0. This is our MLMC
estimator for the model evidence, and we refer the readers
to Algorithm ] for its summary.

We give a heuristic explanation on why our MLMC estima-
tor is more efficient than the nested Monte Carlo estimator.
It is easy to see that the computational cost and the variance
of (3)) are given by

Aﬁl 22

ZMﬂg and Z ,

respectively. Because of the shared use of i.i.d. samples

of Z,,, in computing EM gt—1s EE\Z)%_l and EAM’Qe, the dif-

ference AL M ,2¢ is expected quite small in magnitude, par-
ticularly for large levels £. In fact, by Theorem [2] and



Algorithm 1 MLMC estimation of Ly = E[£; »z]
1: form=1,..., My do
2 sample X, randomly from x1,...,xn
3:  sample Z,, ~ q(zm; Xm)
4: end for
M Xm|Zm)p(Xm
5: Al:Mo,1 — Mo Dome log (711( q(‘Zm;))(Z:,(l) ))
6: for{=1,...,L do
7 form=1,..., M, do
8: (re-)sample X, randomly from z1, ..., xn
9: fork=1,..,2°do
10: (re-)sample Z,, 1k ~ q(2m; Xm)
11: end for

. Ala 2¢-1 (Xm|Zm, ) (Zm, )
12: ﬁégll < N . log [2[%] k=1 W]
13: LY - N

2t P(X'm‘Zm, )P(Zm, )
log [2,5%1 D k2141 W]

. A 20 p(Xm|Zm k)P (Zm.k)
14: Loe + N -log [2% P P ow }
15: Az[‘,m — ﬁ2e — % (Z‘,gz)_l + ﬁgz)_l)

16: end for
17: A[:M[ DY M Z A/ﬁ
18: end for

AMLMC L A
D Lo Do ALy, o

we can assume that the variance per one randomly chosen
data point, i.e., V[AL, 5], decays exponentially fast with
respect to £:

V[Aﬁlyl] > V[Aﬁlyg] > > V[Aﬁlgtz} >
Thus, in order to estimate higher-level correction terms ac-
curately so that

is satisfied, we can decrease mini-batch sizes M, exponen-
tially fast:

My>M;>--->M;>---

This leads to a substantial saving of the required total compu-
tational cost as compared to the nested Monte Carlo method.

Let us assume that VAL, 5] decays with the order of
275¢ for some 3 > 0. The method of Lagrange multi-
pliers leads to an optimal allocation of mini-batch sizes
My, M, ..., My by minimizing the total cost with keeping
the variance bounded by £2/2:

L L A
VIAL, 5] €2
¢ =LA =
E M2 —I—)\<E , 5 |-

It is an easy exercise to obtain

VAL o]

My x 5 = 0(2—(/3+1)fz/2)_
If 6 > 1 holds, the terms with small ¢ are dominant in the
sum Eé::o M,2¢, whereas, if 3 < 1 holds, the terms with
large ¢ are dominant. For the dividing case 5 = 1, all the

terms are approximately equal.

Remark 2. For the case 8 > 1, our MLMC estimator
can be even made unbiased by applying a randomization
technique from Rhee and Glynn|(2015)). For any sequence
w = (wo,w1,...) such that w, > 0 and |jw|; = 1,itis
possible to represent the model evidence by the weighted
telescoping sum

: £[scir]

,C((ELN) _ Zw Egl - Eze 1 Zwe

£=0

For a mini-batch size M > 0,let /1) ... /M) > (beiid.
random samples from a discrete distribution with probabili-
ties wg, w1, . . .. Then the randomized MLMC estimator

B ﬁ/[: A‘Cl 9e(m)

m=1 Wem)

becomes an unbiased estimator of £(z1.y ). The expected
computational cost and the variance per one data point from
the mini-batch are given by

Z w;2£ and Z

respectively. In order for these quantities to be both finite, it
suffices to set wy oc 27 (BTDE/2_ Sych a discrete probability
distribution does not exist if 5 < 1.

Aﬁl 2£

We now come to estimation of the gradient of the model ev-
idence. Similarly to the model evidence itself, we represent
the gradient by the telescoping sum

VQ,C Cﬂl N Z V(;ﬁgz — V9£2e71) .
{=0

The correction terms can be estimated by

veﬁle 1 +V6£]\42[ 1

VAL = VoL — 5 )

which is unbiased. In this way the truncated telescoping sum
for the gradient is estimated by

VoLYMC = ZVGA,CMK 2t

£=0



for mini-batch sizes My, ..., My > 0. This is our MLMC
estimator for the gradient of the model evidence. By a rea-
soning similar to before, we can expect a situation with

V[VoAL11] > - > V[VoALy o] > -+,
which allows for a rapid decrease

My>--->My>---,

resulting in a substantial computational saving as compared
to the nested Monte Carlo estimator. Although it is not
necessarily the case that V[Vg AL, 5] decays with the order
of 2= for the same 3 appearing in the decay of VAL, 5],
the theoretical results given in the next section state under
some assumptions that we have § = 2 for both the model
evidence and its gradient. Therefore, by following Remark 2]
the gradient of the model evidence can be estimated by the
randomized MLMC method without any bias.

4 THEORETICAL RESULTS

In order to show that the necessary computational cost for
our MLMC estimator of the model evidence to achieve a
mean squared accuracy 2 is of O(¢~2), we need to intro-
duce the fundamental theorem on MLMC methods proven
by |Giles| (2008) and Cliffe et al.[(2011). Although a gen-
eral statement is given in Appendix [A] (Theorem [}, the
statement below is adapted for the current context.

Theorem 1. Assume that there exist positive constants
c1, Ca, o, 3 such that

1. a > min(p,1)/2,
2. |Lge — L(z1.8)| < 127 and
3. VAL ge] < ep27PC

Then, for any given accuracy € < exp(—1), there exists a
positive constant cg such that there are the corresponding
maximum level L and the mini-batch sizes My, M-, ..., My,
for which the mean squared error of the MLMC estimator
LMLMC s Jess than €2 with the total computational cost C'
bounded by

63872, ﬁ > 1,
E[C] < { c3e7?|loge™ %, B=1,
c3e2=(=B)/a 3 1,

Remark 3. If 5 > 1, the MLMC estimator can achieve
the optimal computational complexity O(e~?2) to estimate
the model evidence. Notably, even if 5 < 1, the cost of
order e =2~ (1=A)/e till compares favorably with the nested
Monte Carlo estimator for which the cost is of O(e~271/®).

Remark 4. A statement similar to Theorem [Tl also holds for
the gradient of the model evidence. The difference is that,
since the gradient is represented as a vector, the second and
third assumptions should be replaced, respectively, by

2. ||VQ£QK — VQE(.TLN)”Q S 6127(12, and
3. E || VoAL, —E[vgmmemg} < 2P,

and that the mean squared error is given by the sum of
the mean squared errors over all the elements. We refer to
Section 2.5 of |Giles| (2015)) for an extension of the MLMC
theory to multi-dimensional outputs.

Based on Theorem [T} it suffices to characterize the values
of a and 3 for the MLMC estimator. The following result
for the model evidence is an immediate consequence from
Goda et al.|(2020). We show a full proof in Appendix [C]for
the sake of completeness.

Theorem 2. If there exist s,t > 2 with (s —2)(t —2) >4

such that
po(X|Z)pe(Z) |
]EX[ WZGX) dZ}<oo, and
Ex V’ Po X|ZZ“’(X)) 4z

the MLMC estimator for the model evidence satisfies

o= min{s(t% 1),1} and 3 = min{s(t% 2),2}.

It is important to see that 8 > 1 whenever (s — 2)(¢t —
2) > 4, which directly implies that the MLMC estimator
achieves the optimal order of computational cost. Moreover,
if (s —4)(t —2) > 8, wehave § = 2.

Regarding the gradient of the model evidence, we need to
extend the result from the work by |[Hironaka et al.| (2020)
which has been studied in a different context and only dealt
with a scalar output instead of vector. The following result
is an analogy of the one shown in|Goda et al.|(2021)). A full
proof is given in Appendix [C]

Theorem 3. If there exists s > 2 such that
B [/ pe(X|Z2)pe(2) |”

< PO 2)PONZ)
po(X)q(Z; X)
sup || Vg log po (#]2)pe (2) ||

dZ} < oo, and

< 00,

the MLMC estimator for the gradient of the model evidence
satisfies

a =min{s/2,1} and [ =min{s/2,2}.

Again we see that § > 1, which directly implies that the
MLMC gradient estimator achieves the optimal order of
computational cost in Theorem E} Moreover, if s > 4, we
have 8 = 2. Therefore, the assumptions made in Theorems
and [3] are satisfied simultaneously for large s and ¢, the
MLMC estimators for the model evidence and its gradient
both attain 3 = 2, which will be supported by the numerical
results given in the next section.



5 EXPERIMENTS

To illustrate the effectiveness of our MLMC approach, we
compared the computational efficiency of several evidence
estimation methods using a random effect logistic regression
model. In Appendix [E| we additionally provide experimen-
tal results of Bayesian version of random effect logistic
regression and (sparse) Gaussian process classification. In
all experiments, our algorithm was run on a single CPU,
and Python codes used in our experiment are available at
https:\github.com/Goda-Research-Group/
mlmc—-model—-evidence.

5.1 EXPERIMENTAL SETTINGS

The random effect logistic regression is a model of the
following i.i.d. data generating process forn =1,2,..., N
andt=1,...,T":

zn ~ N(0, 7'2)
Yn,t ~ Bernoulli (p,,) ,

where we set the logit p,, to p, = (2, +wo +w’ z,,+) for
the sigmoid link function o(x) = 1/(1 4 exp(—=z)). This
model explains the binary response y,, ; of each individual
n at each time point ¢ given an explanatory variable x,, ;.
By adding a random effect term z,, to the simple logistic
regression model, we can estimate the effect (wp,w) of
Zp,t ON Yy, ; more accurately by removing the individual
variations in the data.

In our experiment, we used a synthetic data generated from
a model whose parameters are given by n = 1.0, wy = 0,
w = (0.25,0.50,0.75)7. Here, we parametrized 72 with
a non-constrained parameter 7 by softplus transformation
as 72 = log (1 + exp(n)) to keep 72 positive. The explana-
tory variables x,, ;’s are all taken from a standard normal
distribution and " was set to 2. For choosing a proposal dis-
tribution ¢(zy; p,1.7), we used the Laplace approximation
(Bishop, [2006). For the optimization, the Adam optimizer
(Kingma and Bal 2015) was used.

5.2 CONVERGENCE OF MLMC COUPLING

To examine whether the assumptions required for the
MLMC estimation in Theorem [1] are satisfied, we evalu-
ated the convergence behavior of the corrections AL o

and their gradient counterparts Vy Aﬁmz.

Figure [2al shows the convergence behaviors of E[A[ﬁme]
and V[Aﬁl,ge]. We see that ]E[AEALQ@] and V[Aﬁme} ap-
proximately decay with the orders of 27¢ and 272, respec-
tively, implying that we have « = 1 and § = 2 in the
assumptions of Theorem I

Figure shows the convergence behaviors of E[Vg AL o]

1072

107°

1078

1071t

— ElAL] 10t — |IEV(AL)|l
Var[AL] tr(Cov[V(AL)])
o(27h),0(27%) 107 0(27h),0(2°%)
1075
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107
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(a) Decay of Aﬁl,Qe

(b) Decay of VoAL; o

Figure 2: Convergence of the mean and variance of the
coupled correction estimators.

and COV[V@ALA‘LQA in Ly norm and in trace, respec-
tively. The trace of the covariance is equivalent to
E |:||VQA£1721{ - E[VQALALMH%} appearing in Remark
Again, the requirements for the MLMC method, i.e., the
exponential decays of the corrections terms, are satisfied
for the mean and the variance of the gradient counterparts.
These numerical results support the theoretical findings
given in Section 4]

5.3 ACCURACY OF ESTIMATION BY MLMC

Next, we compared the estimation accuracy of several evi-
dence estimation methods by changing K (= 27) for biased
objective L. In Table [T} the means and standard devia-
tions of the estimated parameters obtained from different
objectives are listed. For each method and objective, the
parameters were estimated 100 times to obtain these quan-
tities. The soft truncation of the SUMO was replaced by
hard truncation, to match the bias of all estimators for given
K. We can see that the biases become smaller as we in-
crease K and the smallest bias is attained for K = 512 (or
L = 9). When we look at the standard deviations of the esti-
mates, both randomized (RandMLMC) and non-randomized
MLMC methods yield smaller standard deviations and mean
squared errors (MSEs) than other methods with the same
bias. This is because the gradient estimation by the MLMC
method has a smaller variance than other methods.

Additionally, we compared the progression of stochastic
optimization in Figure 3] Each objective was optimized 100
times, and the means and the standard deviation are rep-
resented by the lines and error bands, respectively. Again,
we can see that the MLMC method and the randomized
MLMC method converge to the smallest MSEs than others.
Though the SUMO did not converge as fast as other estima-
tors in this experiment, it converged to good solutions after
sufficient time was elapsed, as shown in Table E}


https:\github.com/Goda-Research-Group/mlmc-model-evidence
https:\github.com/Goda-Research-Group/mlmc-model-evidence

Table 1: Accuracy of Parameter Estimation by Different Objectives and Estimation Methods.

n Wo w1 w2 w3 MSE
Ground Truth 1.0 0.0 0.25 0.5 0.75 0.0
NMC (K=1) -0.272 £0.121  -0.003 £0.023 0.231 £0.021 0.456+£0.021 0.684 £0.022 1.6412
NMC (K=8) 0.546 £0.086 -0.005+£0.023 0.244 £0.021 0.485+0.020 0.712+0.018 0.2167
NMC (K=64) 0.894 + 0.059 0.002 £0.024 0.252+0.019 0.480+0.021 0.744+0.022 0.0169
NMC (K=512) 1.038 £ 0.049 0.012+0.021 0.244 £0.021  0.496 = 0.020 0.747 £ 0.022  0.0059
MLMC (L=9) 1.052 £ 0.033 0.010£0.006 0.250 £0.005 0.511 £0.003 0.741 £0.003  0.0041
RandMLMC (L=9) 0.966 = 0.033 -0.003£0.006 0.241 £0.004 0.507 £0.003 0.744 £0.003  0.0026
SUMO (K=512) 0.951 £0.083 -0.011 £0.013 0.242+0.008 0.506 £0.009 0.739 +£0.009 0.0101
Jackknife (K=512) 0.959£0.053 -0.016£0.020 0.248 £0.021 0.494+£0.022 0.745+0.016 0.0065
101
—— NMC (K=512) I
MLMC (L=9) MLMC
, RandMLMC (L=9) —— RandMLMC
10 SUMO (K=512) SUMO

Jackknife (K=512)
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Figure 3: Learning curves of the different objective func-
tions. Instead of the loss function, the mean squared errors
from the true parameters are plotted.

54 COMPUTATIONAL EFFICIENCY OF MLMC

To quantitatively compare the computational efficiency of
each estimator, we plotted the variance of the gradient es-
timator of VyL,r against each level L, for a given com-
putational cost (runtime) in Figure il As the variance of
Monte Carlo estimators decreases reciprocally to the num-
ber of samples (or, the computational cost), we multiplied
the variance of each estimator by the runtime the estimator
spent to obtain a measure of computational efficiency. The
Jackknife estimator is not compared, because its bias for
given L is not equal to those of the other estimators. Since
the level corresponds to the magnitude of bias, the plot can
also be interpreted as the comparison of the computational
efficiency for different bias size. In this experiment, we used
the largest batch size that fits in the memory to ignore the
implementational inefficiencies of our Python code. Unlike
the nested Monte Carlo estimator, the iteration over multiple
levels in MLMC and SUMO cannot be written with basic
array operations, and this causes runtime overhead when the
batch size is small.

Theoretically, the variance per computational cost becomes
O(1) for the MLMC-based estimators, while O(2%) and

H
3
b

Variance ( tr(Cov) ) per Reciprocal Runtime
[ =
o o
A Y

1 evel

Figure 4: Computational efficiency of the gradient at each
level. Two to the power of the level corresponds to the
number of inner Monte Carlo samples, i.e. 2L = K.

O(L?) costs are required for the nested Monte Carlo and
the SUMO, respectively. For large levels, the MLMC-based
estimators are 10 to 100 times more efficient than other
estimators. However, in the low-level regions (L < 3),
although the corresponding objective is quite biased, the
nested Monte Carlo estimator is the most efficient.

6 CONCLUSIONS

This paper introduced a new estimator for the model evi-
dence and its gradient based on the MLMC sampling tech-
nique. In the theoretical analysis, we showed that the com-
putational complexity of our MLMC estimator is an order
of magnitude smaller than the standard nested Monte Carlo
estimator and the estimator can be made unbiased while hav-
ing finite variance and expected computational cost. This
property is unprecedented by any other existing debiasing
methods for the model evidence estimation. In the experi-
ments, we confirmed that our MLMC estimator performs as
expected from the theory and observed its superiority over
the existing estimators.
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Appendix: Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
Sampling

A A REVIEW OF MULTILEVEL MONTE CARLO METHODS
A.1 BACKGROUND ON MLMC METHODS

MLMC has been originally introduced by Heinrich| (1998)) for parametric integration and then applied to the context of
stochastic differential equations by |Giles| (2008). Thereafter MLMC has been applied to a variety of subjects, partial
differential equations with random fields (Cliffe et al.,[2011), continuous time Markov chains (Anderson and Highaml, [2012),
Markov chain Monte Carlo sampling (Dodwell et al., [2015), and nested expectations. Applications of MLMC to nested
expectations can be found in Bujok et al.| (2015)), |Giles and Goda| (2019)), Hironaka et al.|(2020) and |Goda et al.| (2021)
among many others. As far as the authors know, no study has been conducted for applications to evidence estimation.

Roughly speaking, MLMC can be regarded as an extension of control variate technique. Let us consider a problem of
estimating the expectation E[f]. The control variate technique is to find a good auxiliary random variable g with known E[g]

and to estimate E[f] by
N

1
E[f] =E[f —g] +Elg] ~ > _(f —9)™ +E[g].
k=1
When V[f — g] < V[f] and the cost for computing f — ¢ is almost of the same order with that for f, one can expect a
significant cost saving as compared to the standard Monte Carlo estimator (1/N) Zivzl f*) to achieve the same mean
squared accuracy.

A two-level version of MLMC considers an auxiliary variable g with not-necessarily known E[g] and estimates E[f] by

1 Ny 1 N2
Elf] = EIf - g] + Elg) ~ 5~ S (-9 + W > g™
k=1 k=1

Here, E[f — g] and E[g] are estimated independently with different numbers of samples. Now if we have g ~ f such that
Vig] = V[f] > V[f — g] and the cost for computing g, denoted by ¢, is much smaller than that for f, denoted by ¢y, the
two-level Monte Carlo estimator compares favorably with the standard one. In fact, the variance and the cost of the two-level
Monte Carlo estimator are given by

Vif—gl | Vg

Tl + 72 and (Cf + Cg)N1 + CgNQ,

respectively, whereas those of the standard one are

Vis
N

The method of Lagrange multipliers leads to optimal numbers of samples N; and N» which minimize the cost of the
two-level Monte Carlo estimator with its variance equal to V[f]/N:

V(s +¢)VIf —gl+ VeVigl |VIf —g]

and cyNN.

Ni=N V[f] crtey’
g+ eg)VIf —gl+/cegVIgl |Vg]
Na=N V[f] cg

respectively, giving the total cost

(Vier T e VIF =4l + Ve Vi)
V7] |

Recall that we are in the situation where ¢, < ¢y and V[g] = V[f] > V[f — g]. If (¢; + ¢4)V[f — g] > ¢4V][g], the total
cost is approximately equal to ¢y N (V[f — g]/V[f]). On the other hand, if (c¢; + ¢,)V[f — g] < ¢4V[g], the total cost is

(cf+cg)N1+cgNo = N




approximately equal to c,/V. In both cases, the cost for the two-level Monte Carlo estimator is smaller than that for the
standard one, which is c¢ N.

The MLMC estimator is a natural extension of this two-level Monte Carlo estimator. Let us consider a sequence of auxiliary
random variables fo, f1, . ... Then the following telescoping sum holds:

L

E[fr] = E[fo] + E[fs = fo] + - + E[fr = fr-1] = ) _E[fe — fe-1),

£=0

where we write f_; = 0. By estimating each of the terms on the rightmost side above independently, the MLMC estimator
is given by

Loy M
Z N, (fe — fe-1)™®,
[
£=0 k=1
with different numbers of samples Ny, V1, ..., Nr. More generally, if we have a sequence of "correction" random variables
Afo,Af1,...suchthat E[A fo] = E[fo] and E[A f] = E[f; — f¢—1] for £ > 1, the MLMC estimator reduces to
Loy M
IR SUIALY
£=0 k=1

The key quantities in the MLMC estimator are

1. the decay of the bias E[f; — foo],
2. the decay of V[A f¢], and
3. the expected cost per one evaluation of A fy, denoted by Cp.

The first item determines the maximum level L of the MLMC estimator such that the bias is sufficiently small. The second
and third items determine the optimal allocation of the numbers of samples Ny, N1, ..., Ny, such that the total cost is
minimized while achieving a given variance. Here, the variance and the total cost of the MLMC estimator are given by

L

L
Z V[Afz] and Z CzNg,

Ny
=0 =0

respectively.

A.2 BASIC THEORY OF MLMC METHODS

Let us assume that the following conditions hold for the key quantities of the MLMC estimator. That is, assume that there
exist positive constants «, 3,7, ¢1, ¢2, 3 such that

l. > min(8,7v)/2,

2. [Blfy — foll < 1279,
3. V[Afy] < 2278, and
4. Cy < e,

Then we have the following basic MLMC theorem, proven by |Giles| (2008) for the case v = 1 and by Cliffe et al.| (201 1)) for
a general . Here, we recall that our Theoremcorresponds to the case v = 1 as we use 2¢ inner Monte Carlo samples to
define ALy 5.

Theorem 4. If the above conditions hold, for any given accuracy € < exp(—1), there exists a positive constant c4 such that
there are the corresponding maximum level L and the numbers of samples Ny, N1, ..., Ny, for which the mean squared
error of the MLMC estimator for B[ fo] is less than €% with the total cost C bounded by

645727 ﬂ > s
E[C] < § cae?[loge™!?, B =1,
cac 20 =P/ g < 7.



In what follows, we give a rough sketch on the proof of Theorem @]

First we note that the mean squared error of the MLMC estimator is decomposed into the squared bias and the variance:

(6)

VIA fi]
-

L
2
Bl = £+ 307

Thus, in order to make @ less than or equal to €2, it suffices to have

€ N
|E[fL_foo“§E and ; NK SE’

simultaneously. Given the second condition on the decay of the bias, the first inequality holds for L satisfying

Therefore, we choose

L= P%(\/ﬁclg_l) w . ™

!
An argument similar to that used in the two-level Monte Carlo estimator leads to an optimal allocation of the numbers of
samples Ny, Ny, ..., N which minimize the cost of the MLMC estimator with its variance no larger than e? /2:

L
Ny = 272 M Z \ C[/V[Afgl] .
Ce (o

The corresponding total cost is bounded above by

L
ZC@N[SZCZ 1+ 2¢2 V[géfz]pz()\/Cz/V[Afp]

= Z Cy+ 272 <Z \/ CgV[Afd)

L

I 2
<c3 Z 278 4 2¢903e72 <Z 2_(5_7”/2) .
£=0

£=0

The remaining task to complete the proof is to substitute the choice of the maximum level (7) into the rightmost side above
and give bounds for the respective cases 3 > v, f = v, and 8 < - through an elementary computation.

B COMPARISON OF NMC, SUMO AND MLMC

To illustrate the difference in efficiency between the several estimation methods of the model evidence, we summarize
their convergence properties in Table 2] Here, we consider the case where MLMC is efficiently applicable (o = 1 and
B > 1). The results for the nested Monte Carlo estimator and the MLMC estimator are established in the main article. The
variance of the Jackknife estimator, called JVI, is hard to analyze in general as discussed in Nowozin| (2018). For the SUMO
estimator, we derive the variance and cost in the following proposition, as they are not provided in its original article by [Luo
et al.| (2020). Our analysis on the SUMO estimator assumes an estimator with hard truncation where the random level K is
upper bounded. This is because the cost and the variance of the SUMO estimator with soft truncation become both infinities.
Though our analysis does not consider the gradient of the SUMO, a similar analysis reveals that the same efficiency holds
for the gradient counterpart.



Table 2: Bias, variance, cost and computational efficiency of gradient estimator of model evidence using different estimation
methods, in the case of « = 1 and 8 > 1.

NMC  MLMC SUMO VI (order m)

Bias O(1/K) 0(27%) O(1/K) O(1/K™*1)

Variance per data point o) o) O(log K) hard to know
Expected Cost per data point ~ O(K) o) O(log K) O(K)

Efficiency (Cost x Var) O(K) O(1)  O((logK)?) hard to know

Proposition 1. Consider the SUMO estimator with hard truncation at random level K < K,

K
1

/:SUMO :Z {k<K} Ay,

k<

where we let A}, == [L'kf\ﬂk,l](X) =L (X;Z1.x) — LA'K,l(X; Z1.(k—1)) for notational simplicity. Assume that the
parameter o in Theoremsatisﬁes a = 1 and that K is bounded above by K and follows P(k < K) = % K is distributed
identically to KC. Then, the variance and cost of the estimator /:’EU%O both become O(log K).

Proof. AsP(k <K) =, wehave Pk =K < K)=Pk<K<K)-Pk+1<K<K)=
easy to calculate the expected cost E[C ﬁiulth] as

m. From this, it is

K
E[C gsio] = Exc[E[C gm0 [K]] = Ex[O(K)] = > mo(k) = O(log K).
k=1

Though the cost of computing each Ay, is O(k), the cost of computing £SUMO( )=, ;({;2% A, given K becomes

O(K) by using an efficient algorithm discussed in|Luo et al.{(2020), from which the second equality follows.

Now, we show the convergence rate of the variance of ESUMO When o = 1,|Luo et al.| (2020) showed that the convergence
behavior of Ay, becomes:

Ok™2) ifk=1
O(k=2172) otherwise.

E[ALA] = {

Also, as we show later, we have
EA;, = O(k™2). (®)

Using these properties, we can analyze the order of the variance of ESUMO

K
1
Var [ESUMO] = Var;QAI:K lz 7(169 Ak
k=1

P(k < K)
K K
= ExVara, . | kAR|K| + VarcEa, . | kAy|K
k=1 k=1
rc K K
=Ex Z Z ki - COVAI:K [AkAlVC] + Varg Z kEAl:K [AkVC]
Lk=11=1 k=1
rc K K
<Ex [>> k- (BAA, — EAGEA)| + Varg | > KEA,
Lk=1 [=1 k=1
K K
=Ex | > kl-O(k™217%) + Zk2 k~2)| + Varg Zk@(k—Q)]
kfcl;é:ll k=1




=Ex [0 ((log K)?) + O(K)] + Vark [O(log K)]
= O(log K)

Now we show (8] by following the proof techniques used in|Nowozin|(2018) and|Luo et al.{(2020). Let w; = %}f;{)&)

and Yy, = % Zle w; so that EY; = Ew = pu. Let us consider the Taylor expansion:

log Vi = log [pn + (Vi — )] = log pn — Z
t=1

Here, the condition |Y;, — p| <  is assumed for the convergence of power series. Now, we can calculate the order of EA,
using the third-order expansion as

— (-1’
EA; =E loguf; (= n) logu+z )

=B |~ (¥~ )~ (Vi )—L(Y— )2+L(Y P (Vi) (Vi — )| 4O
= 7 k 1Y 1 k—1 1% 2#2 k 1 2#2 k—1 1% 6”3 k 12 6[u3 k—1 "
= — — e — 7E _ 3 E 3 -2

00 gVl gy VI G — )~ s — e O
_ 1 2% — 1 , »
B e Vo
=O0(k?),

where we used the results on the second and third central moments for the sample mean as stated in Nowozin| (2018). [

Though the property (8) is somewhat counter-intuitive compared to EA? = O(k~2), it makes sense by considering the
decay of the bias, (z1.8)| < e K% with o = 1. By the convexity of the log function, Jensen’s inequality leads to
EAj > 0 for any k, and the bias can be written as

Lx — L(x1.8) = Z EA;, = Z O(k O(K™h).

k=K+1 k=K+1

Thus, the order of the bias agrees with the condition o = 1.

C PROOFS OF THEOREMS 2 AND 3

Here, we give proofs of Theorems [2]and [3] We note that the essential argument for the former theorem follows from [Goda
et al.|(2020), whereas the latter follows from Hironaka et al.| (2020) and|Goda et al.| (2021)).

Proof of Theorem[2] Recalling that £(a) . and £ / . are computed by using the first and second halves of the samples

Z1, ..., Z9e to compute Lqc, respectively, we have
L(‘I) £(
6525_62[14_62(1_ ZpX|Zk )
2 20 (Z; X)
This equality leads to
. L, 4+ £
ALy = Lo — —%
. a) A A (b)
\ . I I
= Lon — L —eFar™F - 220 2 - 5

A (a) pla) A 3(b)
eFarm E) —efr 741 og <e£2“1 E) —efar T

2 B 2

. log (
log( 20 E) i



Using Jensen’s inequality and an elementary inequality
|logz —x + 1] < |z — 1" max(—log z, 1),

which holds for z > 0 and 1 < r < 2, we obtain a bound
. 5 2
(ACy) <2 (log ( 26~ L) eFar =L 4 1)

o 2
(log( Lila= E)—eﬁéf)*l_ﬁ—i—l)

2

A(b) 3(b)
+ (log (e£2@*1_£> —efaE 4 1)

A 2r 2
< 2lef7% —1| max ( log e~ Car =L 1)
(@) 2r A(a) £ 2r A(0) 2
+ ‘ecﬂ 175 1| max (—logeﬁz’f*lfﬁ7 1) + ’e 20-17% _ 1| max (—logeﬁzf**ﬁ, 1)
Applying Hélder inequality with the exponents ¢/(t — 2) and ¢/2 and choosing r = min( 5(;2) ,2), we have

v [Afjﬂ} <E

o

9 (E Ueﬁﬂc 1 2rt/(t2)D(t—2)/t (E [max( log ¢ et 1)t]>2/t

e (ke )T (o o (s ) )
e (s fesme )T (e (oo ) )

Let us focus on the first term on the rightmost side above, as the other two terms can be shown bounded in the same manner.
Using the Marcinkiewicz-Zygmund inequality, the first factor is bounded above by

IN

3(a)
log Lot

)
loge 26-1

, 2rt/(t—2)
E |:‘e[:22—£ 4 2rt/(t2):| _ i Z p(Xle)p(Zk) 1
2¢ X)q(Zy; X)
< Oy || X1 2)p(2) [
= 2rt/(t=2) "N [ p(X)g(Z; X) ’

with some positive constant Cs,.¢/(;—2). Here, the last expectation is assumed to be finite in the theorem, as the exponent
2rt/(t — 2) is less than or equal to s by our choice of r. Moreover, noting that the function z — max(— log x, 1) is convex
and applying Jensen’s inequality twice, we see that the second factor is bounded above by

r t

N
1 > p(X|Zy)p(Zy)

max

t
E{max( log e~ Cor =L 1) } =E

— p(X)q(Z1; X)’
RS Pp(X1Z0)p(Zi)
?kzﬂmax <_logp(X)Q(Zk;X)’ 1>

(X Zp(Ze) )"
()2 X)’ 1)

2[
1
? Z max ( log

t

X207 o

(ZkvX)

p(X|Z)p(2)

fog p(X)q(Z; X)

)

t
+1> =Ex l

%z(!



where the last quantity is assumed finite in the theorem. Therefore, the variance of Af,ge is shown to decay with the order of
(tfz) . . . .
,2). This directly implies that

2778 with r = min(*5;
. (s(t—2)
= 2 .
S = min ( T )

The result for the other parameter o can be shown similarly. O

Proof of Theoremrj Here, again, we only show a proof for the result on the parameter 3, as the result for « can be shown
similarly. Let us recall that the noisy gradient VL4« is given by the ratio

\Y% XZ
2420 |Z1)p(Z))

R ZkvX)
VGCQZ =
Z p(X|Zy)p )
2€ Z/m
In what follows, we write
2¢ 2¢
A 1 (p(X|Zx)p(Zk)) 4 1 (X | Zy)p(Zy)
{V@Ezf} 2t 2:1 q(Zi; X) ’ [vgﬁQe}D L — q(Zk;X) ’
sa) ] _ (p(X|Zk)p(Zk)) 3(a) p(X|Zy)p )
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2[
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k=2¢-141 k 2641

Here, we have
Vaﬁ P Veﬁ(
2 )

wherein, with the above notation, each term on the right-hand side is given by

VGAZQZ = V(JEAQZ -

[VGL:%] {V(’ﬂ:%)—l} , and Veﬁél; L=
[vgﬁ;ll}
D

N VL)

T, T

It is obvious that the following equalities hold:

[V(yﬁgz),l} N + [V@ﬁgz),l} N {V(;ﬁgz),l} b + [V@ﬁgz),l} b

[wij}N - . . and {vgﬁge]D - : ©)
Now let us consider an event
|:V0L‘gj) 1} D 1 {V9£A(Ql;)—1} D 1
Sl l7e S T RSN | e (it A
Then we have
E[IIVoALolf] =B [IVoALol314] + E[IVoALy|F1ae] 10)

where 14 denotes the indicator function of the event A and A€ denotes the complement of A. Thus, it suffices to prove that
each of the two terms on the right-hand side of (T0) decays with an order no slower than 277 with 8 = min(s/2, 2).



Consider the first term on the right-hand side of (I0). As we assume that Cyy;, := supy z || Ve log p(X|2)p(Z)|| , is finite,
each of the three terms of VQA[:QE is bounded by

VoL |3, VLY 13, Vo L5: I3 < 2card(6)C,

20—1 sup’

where card () denotes the cardinality of #. Thus, it follows from Jensen’s inequality that

VAL |3 < 2 VoLoel2 + VoLl 12 + | VoLY), |12 < 8card(8)C2

sup’
so that we have R
E HV9A£213||§1A:| < 8card(0)C2, E [14] = 8card(9)C2 P[A].

sup sup

The probability of the event A, P [A], can be bounded by applying Markov inequality and then the Marcinkiewicz-Zygmund
inequality as

I Vaﬁze 1} 1 |:V0£21 1:| 1
PA<P||l—L2 -1|> | +P||—F—L —1| > =
4] (%) 2 (%) 2
[ ’ [ A(b) ’
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L 271G p(X1Z2)p(2) |
= 207277 || p(X)q(Z; X) ’

with some positive constant C';. As the last expectation is assumed finite in the theorem, we see that the first term on the
right-hand side of (T0) is of order 2*/2.

We move on to the second term on the right-hand side of (I0), where the following always holds

3(a) A(b) 5
[W;(i)lh —1, {VGZ;C(?;)I}D 1, [v:(ij,;h -1 < % (11)

Using (9), we obtain an equality
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Applying Jensen’s inequality and the inequality leads to
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We close the proof by showing that the expectations of the first and second terms on the right-most side above are of order
2~ ¢min(s/2,2) "regpectively, as the other terms can be bounded in the same way.

For the first term, it follows from Holder’s inequality with the exponents min(s/2, 2) and its conjugate, Jensen’s inequality,
and the Marcinkiewicz-Zygmund inequality that
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The two expectations appearing in the right-most side can be shown to be finite by the assumptions given in the theorem.
This way we see that the expectation of the first term decays with an order 2~ ™in(s/2,2),

For the second term, a similar argument goes through as

R 4
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Since the last expectation is assumed finite, we see that the expectation of the second term decays with an order

D BAYESIAN TREATMENT OF PARAMETERS

D.1 MODEL SETTINGS

To treat the parameter 6 in a Bayesian manner, we introduce a probabilistic model described by the following data generating
process:

0 ~ p(0)

200 =6 ~ p([6)

Tnl|zn = 2,,0 =0 ~ p(x|2,,0).

This model can be also expressed as the graphical model in Figure [5| wherein 6 is treated as a random variable.

@

Figure 5: A graphical model with local and global latent variables.

D.2 LOCALLY MARGINALIZED VARIATIONAL INFERENCE

For the estimation of this model, we use the variational inference (Jordan et al.l [1999). In the variational inference, the
evidence lower bound (ELBO) for a latent variable model py(x, z) = pg(z|2)pg(2) plays a central role. It is defined by

ELBO = log py(z) — KL[gy(2)][pe(2]2)],

where KL[||-] stands for the Kullback-Leibler (KL) divergence. This quantity is maximized with respect to the model
parameter 6 as well as the parameter ¢ of the variational posterior.

In our probabilistic model described above, the standard ELBO becomes
ELBO = Ing(ifl:N) - KL[q(ZI:N7 9)||p(21N7 a‘xlN)]

However, we can obtain a tighter lower bound on the model evidence by marginalizing out the local variables z,,’s. We call
our lower bound the locally marginalized ELBO (LMELBO) here, and define it as follows:

LMELBO := log p(z1.5) — KL[q(0)||p(0|z1.x)]-



Let us consider the mean-field assumption ¢(z1.n,6) = ¢(0) ngl q(zy) of the variational posterior distribution. By
definition, our lower bound on the evidence is tighter than the ELBO due to the following property of the KL divergence:

KL[q(0)q(z1:n)|[p(0, z1:n |z1:8)] = KL[q(0)[p(0]21:~)] + EongKL[g(21:3)|[P(21:8 (0, 21:n)]
> KL[g(0)llp(0]z1:n)],
where the inequality follows from the non-negativity of the KL divergence. As the LMELBO is a tighter lower bound than
the normal ELBO, this approximates the evidence better and can be used to estimate the variational posterior of 8 with

smaller bias in the stochastic variational inference settings (Hoffman et al.,|2013)). To obtain the objective for the variational
inference, we can rewrite our lower bound as a nested expectation as:

LMELBO = log p(z1.x) — KL[q(0)||p(6]x1.5)]

T2, p(2a|0)p(0)
q(0)

N
P(Tn, 2,10) p(0)
= Eovgo) {log e ) [q(zn'xn) +Egq(o) |log 70

)

where we recall that X is a random variable taking x; . ..,z y uniformly. Here, an outer expectation is taken with respect to
both X and 0 simultaneously, whereas an inner conditional expectation is with respect to Z.

= Eo~q(0) llog

n=1

(X, Z|0
=N EngNq(g) |:1OgEZ~q(z;X) [W:” +]E9Nq(9) |:10g

D.3 APPLICATION OF MLMC

Applying the MLMC method to estimate the LMELBO is straightforward; we just have to change the definition of L M,k tO

the following:
M
u = 3y Yon | 13- P T lon

m=1 m ks

p(9)
— EgN 9 |:10g :| .
1O 17 4(6)
Here, for each m, X,,’s are uniformly random samples taken from the data z1, ..., x y and ©,,’s are taken from ¢(6). The
inner Monte Carlo samples Z,, 1, ..., Zp, i are i.i.d. random samples from a proposal distribution g(z;,; X, ). The second
term, which corresponds to the KL divergence between ¢(6) and p(6), can be computed independently from the first term, to

which MLMC is applied. In some cases, the KL term can be calculated analytically if we choose ¢(#) and p(6) appropriately,
e.g., when we use Gaussian for both, the KL divergence between them has an analytical form.

D.4 THEORETICAL RESULTS FOR MLMC

The theorems for the coupled correction terms for the MLMC estimator can be obtained for the LMELBO after minor
modifications to Theorems 2 and Bl of the main article:

Theorem 5. If there exist s,t > 2 with (s — 2)(t — 2) > 4 such that

p(X, Z]0)
EXE@Nq(O |:/‘ |

(X[0)q(Z; X)
p(X , 2410)
ExEg~ —_—
AOra® V p(X©)q(Z; X)
the MLMC estimator for the LMELBO satisfies
L [s(t—1) L [s(t—2)
a—mm{ 5 ,1} and B—mm{ 57 20,

where the parameters o and 3 in the last line indicate the positive constants in Theorem|[I| of the main article.

S

dZ} < oo, and

t

log dz




S

Theorem 6. If there exists s > 2 such that
p(X, Z]9)

ExEo _—
X F6r~a() U p(X|0)q(Z; X)
sup ||V log p(z, 2(0)|| ., < oo

x,z,0

dZ} < oo, and

the MLMC estimator for the gradient of the model evidence satisfies
a =min{s/2,1} and [ = min{s/2,2},
where the parameters o and (3 in the last line indicate the positive constants in Theorem([l|of the main article.

Here, the only difference from the theorems for the model evidence is that the outer expectations or the supremum are taken
with respect not only to = and z but also to the global parameter 6.

E EXPERIMENTS USING LOCALLY MARGINALISED ELBO

To confirm our MLMC approach can be efficiently applied to the locally marginalized variational inference, we checked the
convergence order of the coupled correction term of the Bayesian random effect logistic regression model. Furthermore, we
examined a Gaussian process classification model combined with LMELBO. In the latter experiment, we observed that the
MLMC approach actually works well in a real-world example.

E.1 BAYESIAN RANDOM EFFECT LOGISTIC REGRESSION

To treat the coefficients wy and w in a Bayesian manner, we set the following prior distribution to them:
wo ~ N(0,1)
w ~ ]\7(07 ID)

Then, conditionally on wq and w, Bayesian random effect logistic regression has the i.i.d. data generating process identical
to the non-Bayesian model forn =1,2,...,Nandt=1,...,T":

Zpn N(O7 T2)
Yn,¢ ~ Bernoulli (p,,),

where we set the logit p,, to p, = o(2, + wo + wl 'z, ¢).

Again, in the experiment, we used a synthetic data generated from a model whose parameters are given by n = 1.0, wg = 0,
= (0.25,0.50,0.75)T". To keep the parameter 72 positive, we parametrized it with a non-constrained parameter 7 by the
softplus transformation as 72 = log (1 + exp(n)).

To examine whether the assumptions required for the MLMC estimation in Theorem [[] are satisfied, we evaluated the
convergence behavior of the corrections A£1 o¢ and their gradient counterparts Vg A£1 9.

Figure @ and |6b| shows the convergence behaviors of E[A[,mz], V[Aﬁme] and their gradient counterparts. We see that
the expectation and the variance approximately decay with the orders of 2~¢ and 272, respectively, implying that we have
a = 1and B = 2 in the assumptions of Theorem|I}

In Tables [3|and |4] the posterior estimates obtained by optimizing LMELBO and ELBO are presented. Though the posterior
mean estimated with ELBO is biased, the bias for the LMELBO is much smaller. Moreover, the true parameters are in the
one standard deviation intervals of the estimated posterior when LMELBO is used. This implies that the estimates of the
standard deviations are good measures of the uncertainty of the estimation.

E.2 GAUSSIAN PROCESS CLASSIFICATION

To see the effectiveness of locally marginalized variational inference, we considered a Gaussian process classification model
with fully independent training conditional (FITC) approximation (Snelson and Ghahramani| 2006/ and Hensman et al.
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Figure 6: Convergence of the mean and variance of the coupled correction estimators of Bayesian random effect logistic
regression.

Table 3: Posterior of coefficients (w) of the Bayesian random effect regression model estimated by the LMELBO with
K =512,

wo w1 w2 w3

Ground Truth 0.0 0.25 0.5 0.75
Posterior Mean 0.0069 0.2700 0.5197 0.7764
Posterior Stddev ~ 0.0351  0.0335 0.0335 0.0348

2013)), which can be written as

f~ GPgrrc  and
Y,, ~ Bernoulli(o(f(x,))),

where o(z) = 1/(1 + exp(—=)) is the sigmoid link function. Under the FITC approximation, we approximate the Gaussian
process evaluated at x1.;y with the following joint distribution:

prre(f(z1), ..., f(zn), f(z1:m) H pep (f(@n)|f(21:00))pap (f (21:01))-

Here, z1.)/ is a vector of inducing points. The densities pap (f(25)|f(21:ar)) and pap(f(z1.a1)) denote the conditional
distribution of f(x,,) and distribution of f(z1.,s) induced by the original Gaussian process. Each of f(x,,) is the local latent
variable to be marginalized in LMELBO, and f(z;.5/) is the global latent variable to which variational inference is applied.

In the experiment, we applied the above Gaussian process classification model on the adult dataset (Dua and Graff]
2017) to predict if the income is more than S0K. We used the automatic relevance detection (ARD) kernel and optimized
its parameter along with the parameter of the variational posterior ¢(f(z1.2)). As a conditional proposal distribution
q(f(xn)|f(z1.0)) given the global latent variable f(z1.pr), we used p(;p( f(xz)|f(z1:0)). The MLMC estimator was
constructed as £%LE’ILC L6+ 0 AL Mo.16.2¢» a8 we found that £; 16 is more numerically stable and has a much
smaller variance than EAM.

Figure andﬂ shows the convergence behaviors of E[Aﬁl’w,ze], V[AKAMG_QL]] and their gradient counterparts on the
adult dataset. We again see the exponential decays, confirming that the assumptions for the MLMC method are satisfied.
Moreover, we observed that the model trained by LMELBO has a higher average log marginal likelihood for test data
(-0.395£0.02), than the model trained by the ELBO (-0.436+0.03). This is as expected from the construction of the objectives,
LMELBO and ELBO, as the former is a tighter lower bound of the log marginal likelihood. Here, we approximated the log
marginal likelihood by the Monte Carlo average of IWELBO with k£ = 512.



Table 4: Posterior of coefficients (w) of Bayesian random effect regression model estimated by the ELBO, which is
equivalent to the LMELBO with K = 1.

wWo w1 w2 w3

Ground Truth 0.0 0.25 0.5 0.75
Posterior Mean 0.0163 0.2356 0.4613 0.6645
Posterior Stddev  0.0295  0.0293  0.0300 0.0310
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Figure 7: Convergence of the mean and variance of the coupled correction estimators of Gaussian process classification with
FITC approximation.
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