
Generating Adversarial Examples with Graph Neural Networks (Supplementary
material)

Florian Jaeckle and M. Pawan Kumar

Department of Engineering Science
University of Oxford

{florian,pawan}@robots.ox.ac.uk

A NETWORK ARCHITECTURES

We now describe the three models used in this work in greater detail. They have been trained robustly on the CIFAR-10
dataset [Krizhevsky et al., 2009] using the method introduced by Wong and Kolter [2018] to achieve robustness against l∞
perturbations of size up to ε = 8/255 (the amount typically considered in empirical works). The ‘Base’ and the ‘Wide’ model
both have two convolutional layers, followed by two fully connected ones. The ‘Deep’ model has two further convolutional
layers. All three networks use ReLU activations and all three models have been used in previous work [Lu and Kumar, 2020,
Bunel et al., 2020].

Network Name No. of Properties Network Architecture

‘Base’
Model

Training: 2500
Validation: 50
Testing: 641

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

‘Wide’ Model 303

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

‘Deep’ Model 250

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

Table 1: Network Architectures.

B GENERATING THE DATASET

We generate a dataset for three different models: the ‘Base’ model, the ‘Wide’ model, and the ‘Deep’ model. For each of the
three models we generate properties to attack, using the method described in Algorithm 1. The algorithm runs binary search
together with PGD-attack to find the smallest perturbation for each image for which there exists at least one adversarial
example. We generate a dataset setting the confidence parameter η to 1e− 3, the restart number to 20, 000, and run PGD for
2,000 steps with a learning rate of 1e − 2. We generate a dataset consisting of 641 properties for the ‘Base’ model, 303
properties for the ‘Wide’ model, and 250 properties for the ‘Deep’ model. We also create a validation dataset with the same
parameters used as for the test dataset on the ‘Base’ model consisting of 50 properties; we further create a training dataset
also on the ‘Base’ model with 2500 properties using R = 100 restarts and running PGD for 1,000 steps.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).



Algorithm 1 Generating Dataset

1: function GENERATING_DATASET(f,D, η,R, PGD_hparams)
2: Provided: a trained network f : Rd 7→ Rm, a set D of N pairs of images and their respective classes (xi, yi), a

confidence parameter η, a restart parameter R, as well as parameters for PGD.
3: for i = 1, . . . , N do:
4: if arg max f(xi)! = yi then
5: continue . If the network misclassifes the image, skip to the next one
6: end if
7: ŷi ← random number from {0, · · · ,m− 1} \ {yi} . Pick a random incorrect class as target
8: l← 0 . highest perturbation value for which we have failed to find an adversarial example
9: u← 0.5 . lowest perturbation value for which we have found an adversarial example

10: while u− l ≥ η do
11: εi ← l+u

2
12: for j = 1, . . . , R do
13: Run PGD with (f,xi, yi, ŷi, εi) . Run PGD with R restart or until found an adversarial example
14: if attack successful then
15: Break
16: end if
17: end for
18: if found adversarial example then
19: u← εi . Update u as εi is now the lowest perturbation for which we have found an adversarial example
20: else
21: l← εi . Update l as εi is now the highest perturbation for which we have failed to find an adversarial

example
22: end if
23: end while
24: Record (xi, yi, ŷi, εi)
25: end for
26: end function

C GNN ARCHITECTURE

Having described the main structure of the GNN above, as well as the implementation of the forward and backward passes,
and the final update step, we will now explain in greater detail how the node features are computed. The node features
consist of three pieces of information: the gradient at the current point, the intermediate bounds of the neurons in the original
network, and information from solving a standard relaxation of the adversarial loss. We now describe in greater detail how
each of those parts is defined and computed.

C.1 INTERMEDIATE BOUNDS

We recall the definition of the original network we are trying to attack: f(x0) = x̂L ∈ Rm, where

x̂i+1 = W i+1xi + bi+1, for i = 0, . . . , L− 1, (1)
xi = σ(x̂i), for i = 1, . . . , L− 1. (2)

The adversarial problem can then be written as

min x̂L[y]− x̂L[ŷ] (3)

x̂i+1 = W i+1xi + bi+1, for i = 0, . . . , L− 1, (4)
xi = σ(x̂i), for i = 1, . . . , L− 1, (5)

x0 ∈ C ⊆ Rd (6)



We now aim to compute bounds on the values that each neuron xk[j] can take, where k indexes the layer, and j the neuron
in that layer. The computation of the lower bound of a neuron can be described as finding a lower bound for the following
minimization problem:

min x̂k[j] (7)

x̂i+1 = W i+1xi + bi+1, for i = 0, . . . , k − 1, (8)
xi = σ(x̂i), for i = 1, . . . , k − 1, (9)

x0 ∈ C ⊆ Rd. (10)

We solve this using the method by Wong and Kolter [2018] and using Interval Bound Propagation [Gowal et al., 2018] and
record the tighter of the two. We get the upper bound by changing the sign of the weights of the k-th layer function. We
denote the lower and upper bounds for the j-th neuron in the k-th layer as lk[j] and uk[j], respectively.

C.2 SOLVING A STANDARD RELAXATION WITH SUPERGRADIENT ASCENT

We now describe a standard relaxation of the adversarial problem from the verification literature. Neural Network verification
methods aim to solve the opposite problem of adversarial attacks. They try to prove that for a given network f , an image x,
a convex neighbourhood around it, C, a true class y, and an incorrect target class ŷ, there does not exists an example x′ ∈ C
that the network misclassifies as ŷ. In other words, it aims to show that no adversarial attack would be successful at finding
an adversarial example. This is equivalent to showing that the minimum in (3) is strictly positive.

We now summarize the work of Bunel et al. [2020] who solve this problem using standard relaxations. First they relax the
non-linear ReLU activation functions using the so-called Planet relaxation [Ehlers, 2017] before computing lower bounds
using a formulation based on Lagrangian decompositions.

Planet Relaxation. We denote the output of the k-th layer before the application of the ReLU as ẑk and the output of
applying the ReLU to ẑk as xk. Given the lower bounds lk and upper bounds uk of the values of ẑk, we relax the ReLU
activations xk = σ(ẑk) to its convex hull cvx_hullσ(ẑk,xk, lk,uk), defined as follows:

cvx_hullσ(ẑk,xk, lk,uk) ≡


xk[i] ≥ 0 xk[i] ≥ ẑk[i]

xk[i] ≤ uk[i](ẑk[i]−lk[i])
uk[i]−lk[i] if lk[i] < 0 and uk[i] > 0

xk[i] = 0 if uk[i] ≤ 0

xk[i] = ẑk[i] if lk[i] ≥ 0.

(11)

To improve readability of our relaxation, we introduce the following notations
for the constraints corresponding to the input and the k-th layer respectively:

P0(x0, ẑ1) ≡

{
x0 ∈ C
ẑ1 = W1x0 + b1

Pk(ẑk, ẑk+1) ≡


∃xk s.t.
lk ≤ ẑk ≤ uk

cvx_hullσ(ẑk,xk, lk,uk)

ẑk+1 = Wk+1xk + bk+1.

(12)

Using the above notation, the Planet relaxation for computing the lower bound can be written as:

min
x,ẑ

ẑn s.t. P0(x0, ẑ1);Pk(ẑk, ẑk+1) for k ∈ [1, . . . , L− 1]. (13)

Lagrangian Decomposition. We often merely need approximations of the bounds rather than the precise values of them:
if we show that some valid lower bound of (3) is strictly positive, then it follows that (3) is also strictly positive and no
adversarial example exists. We can therefore make use of the primal-dual formulation of the problem as every feasible
solution to the dual problem provides a valid lower bound for the primal problem. Following the work of Bunel et al. [2020]
we will use the Lagrangian decomposition Guignard and Kim [1987]. To this end, we first create two copies ẑA,k, ẑB,k of
each variable ẑk:

min
x,ẑ

ẑA,n s.t. P0(x0, ẑA,1);Pk(ẑB,k, ẑA,k+1) for k ∈ [1, . . . , L− 1]

ẑA,k = ẑB,k for k ∈ [1, . . . , L− 1].
(14)



Next we obtain the dual by introducing Lagrange multipliers ρρρ corresponding to the equality constraints of the two copies of
each variable:

q(ρρρ) = min
x,ẑ

ẑA,n +
∑

k=1,...,n−1

ρρρ>k (ẑB,k − ẑA,k)

s.t. P0(x0, ẑA,1); Pk(ẑB,k, ẑA,k+1) for k ∈ [1, . . . , L− 1].

(15)

Solving the Relaxation using Supergradient Ascent We solve the dual problem (15) using the supergradient ascent
method proposed by Bunel et al. [2020]. We run supergradient ascent together with Adam for 100 steps to get a set of dual
variables ρρρ, as well as a matching set of primal variables x0 which, henceforth, we denote as xlp.

C.3 NODE FEATURES

For each node vk[i] we define a corresponding q-dimensional feature vector fk[i] ∈ Rq describing the current state of that
node. We define the node features for the input layer as follows:

f0[i] :=
(
xt[i], sgn(∇xL(xt, y, y′)[i]), l0[i],u0[i],xlp[i]

)>
, (16)

and for the hidden and final layers as:
fk[i] := (lk[i],uk[i], ρρρk[i])

>
. (17)

Here, xt is our current point,∇xL(x, y, y′) is the gradient at the current point, and lk[i], and uk[i] are the bounds for each
node as described above (§C.1). Further, ρρρk is the current assignment to the corresponding dual variables computed using
supergradient ascent and xlpk is the input corresponding to the primal solution of the dual (see §C.2). Other features can be
used depending on the exact task or experimental setup. We note that there exists a trade-off between using more expressive
features that are difficult to compute or simpler ones that are faster to compute.

C.4 EMBEDDINGS.

For every node vk[i] we compute a corresponding p-dimensional embedding vector µµµk[i] ∈ Rp using a learned function g:

µµµk[i] := g(fk[i]). (18)

In our case g is a simple multilayer perceptron (MLP), which is made up of a set of linear layers Θi and non-linear ReLU
activations. We train two different MLPs, one for the input layer, ginp, and one for all other layers g. We have the following
set of trainable parameters:

Θinp
0 ∈ R5×p, Θ0 ∈ R3×p Θinp

1 , . . . ,Θinp
T1
, Θ1, . . . ,ΘT1

∈ Rp×p (19)

Given feature vectors f0, . . . , fL we compute the following set of vectors:

µµµ0
0 = relu(Θinp

0 · f0), µµµl+1
0 = relu(Θinp

l+1 ·µµµ
l
0), for l = 1, . . . , T1 − 1 (20)

µµµ0
k = relu(Θ0 · fk), µµµl+1

k = relu(Θl+1 ·µµµlk), for l = 1, . . . , T1 − 1; k = 1, . . . , L. (21)

We initialize the embedding vector to be µµµk = µµµT1

k , where T1 + 1 is the depth of the MLP.

D RUNNING STANDARD ALGORITHMS USING AdvGNN

We show that our method is strictly more expressive than FGSM, I-FGSM, and PGD by showing that it can simulate each of
them exactly.

FGSM aims to generate an adversarial example with the following update step:

x′ = x + ε sgn(∇xL(x′, y, ŷ)). (22)

Let Θ0 be the zero-matrix with non-zero elements Θ0[1, 4] = 1, Θ0[2, 4] = −1. Moreover, setting T1 = 1, Θ1 = 1 and
b0 = b1 = 0, we get

f0[i] :=
(
xt, sgn(∇xL(xt, y, y′)), lk[i],uk[i],xlpk [i]

)>
, (23)



µµµ0
k =

(
sgn(∇xL(xt, y, y′)),− sgn(∇xL(xt, y, y′)),0, . . . ,0

)>
, (24)

µµµ =
((

sgn(∇xL(xt, y, y′))
)
+
,−
(

sgn(∇xL(xt, y, y′))
)
− ,0, . . . ,0

)>
. (25)

If we set Θfor
2 = Θfor

3 = Θback
2 = Θback

3 = 0 and Θfor
1 = Θback

1 = 1, then the forward and backward passes don’t change
the embedding vector. We now just need to set ΘΘΘout = (1,−1, 0, . . . , 0)> to get the new direction:

x̃ = ΘΘΘout ·µµµ0 =
(

sgn(∇xL(xt, y, y′))
)
+

+
(

sgn(∇xL(xt, y, y′))
)
− = sgn(∇xL(xt, y, y′)). (26)

We now update as follows

xt+1 = ΠB(x,ε)
(
xt + αx̃

)
= ΠB(x,ε)

(
xt + α sgn(∇xL(xt, y, y′))

)
. (27)

Setting α = ε we get the same update as FGSM. We have shown that we can simulate FGSM using our GNN architecture
by running AdvGNN once. Moreover, we can also simulate T iterations of PGD or I-FGSM by running AdvGNN T times.

E HYPER-PARAMETER ANALYSIS FOR BASELINES

E.1 PGD ATTACK

PGD aims to generate adversarial examples by picking x0 ∈ B(x, ε) uniformly at random and then running the following
update step for T steps or until L(xt, y, ŷ) > 0:

xt+1 = ΠB(x,ε)
(
xt + α sgn(∇L(xt, y, ŷ))

)
. (28)

We need to pick optimal values for the hyper-parameters T and α. We run a hyper-parameter analysis on the validation
dataset described in section §B. We try every combination of T ∈ {50, 100, 250, 1000} and α ∈ {1e− 1, 1e− 2, 1e− 2}
and rank them both for the average time taken and the percentage of properties they time out. Taking the average of the two
ranks we see that choosing T = 100 and α = 0.01 is the best combination (Table 2). We repeat the hyper-parameter on an
easier version of the validation dataset which we get by adding a delta of 0.001 to the value of every perturbation. Just like
for the original validation dataset, the following two combinations of hyper-parameters perform significantly better than all
other combinations: (T = 1000, α = 0.001) and (T = 100, α = 0.01). They time out on the same number of properties but
the former has a slightly lower average solving time this time.



Table 2: Hyper-parameter analysis for PGD attack on the Validation Set

T α average_time timeout rank_time rank_timeout average_rank

100 0.01 87.740020 0.843137 1.0 2.0 1.50
1000 0.001 91.157906 0.862745 2.0 3.5 2.75

250 0.01 92.968972 0.823529 5.0 1.0 3.00
500 0.01 91.378347 0.862745 3.0 3.5 3.25

1000 0.01 91.607033 0.882353 4.0 5.0 4.50
50 0.01 93.659832 0.921569 6.0 6.5 6.25

500 0.001 94.735763 0.921569 7.0 6.5 6.75
100 0.1 99.852496 0.980392 8.0 8.0 8.00

1000 0.1 101.000000 1.000000 12.0 12.0 12.00
100 0.001 101.000000 1.000000 12.0 12.0 12.00
250 0.001 101.000000 1.000000 12.0 12.0 12.00
250 0.1 101.000000 1.000000 12.0 12.0 12.00
500 0.1 101.000000 1.000000 12.0 12.0 12.00

50 0.001 101.000000 1.000000 12.0 12.0 12.00
50 0.1 101.000000 1.000000 12.0 12.0 12.00

E.2 MI-FGSM+ ATTACK

Adding momentum to the MI-FGSM attack was first suggested by Dong et al. [2018]. The original implementation is
described in Algorithm 2. This version does not perform well on our challenging dataset however. In fact it doesn’t manage
to find a single counter example on the validation dataset for any combination of hyper-parameters. One reason for this
behaviour could be that often adversarial examples lie near the boundary of the input domain (at least in one dimension) and
to reach those points every single update step needs to have the correct sign for that particular dimension (as we take T steps
of the form ±ε/T) . In order to improve its performance on difficult datasets we run it with random restarts. However, as the
original implementation has no statistical elements, every run on the same image with the same hyper-parameters would
have the same outcome. We thus adapt MI-FGSM to initialize the starting point uniformly at random from the input domain
rather than starting at the original image. We further observed that initializing α as done in the original implementation
greatly reduces its rate of success. We thus treat it as a hyper-parameter and give it as input to the function. We denote this
optimized version of MI-FGSM as MI-FGSM+ and describe it in greater detail in Algorithm 3. Similarly to PGD-Attack
we now optimize over the hyper-parameters on the validation dataset. We try the following values: T ∈ {10, 100, 1000},
α ∈ {1e− 1, 1e− 2, 1e− 3}, η ∈ {0.0, 0.25, 0.5, 1.0}. As we did for PGD we rank the performance of all combinations of
hyper-parameters with respect to the number of properties successfully attack and average time taken (Table 3). We get the
following optimal set of hyper-parameters: T = 100, α = 0.1, η = 0.5.

We also perform a similar analysis on an easier version of the validation dataset, where we add a constant (0.001) to the
allowed perturbation value for each image. We reach the same optimal assignment for the three hyper-parameters as before.

Algorithm 2 MI-FGSM [Dong et al., 2018]

1: function MI-FGSM(f,x, y, ŷ, µ, T )
2: α← ε/T . Initialize stepsize parameter
3: x0 ← x . Initialize starting point
4: g0 ← 0 . Initialize momentum vector
5: for t = 1, . . . , T do:
6: gt+1 ← µ · gt + ∇xL(xt,y,ŷ)

‖∇xL(xt,y,ŷ)‖1
. Update the momentum term

7: xt+1 = xt + α · sgn(gt+1) . Update the current point
8: end for
9: return xT

10: end function



Algorithm 3 MI-FGSM+

1: function MI-FGSM+(f,x, y, ŷ, µ, T, α)
2: sample x0 from B(x, ε) . Initialize starting point
3: g0 ← 0 . Initialize momentum vector
4: for t = 1, . . . , T do:
5: gt+1 ← µ · gt + ∇xL(xt,y,ŷ)

‖∇xL(xt,y,ŷ)‖1
. Update the momentum term

6: xt+1 = ΠB(x,ε)
(
xt + α · sgn(gt+1)

)
. Update the current point and project

7: end for
8: return xT

9: end function

Table 3: Hyper-parameter analysis for MI-FGSM+ on the Validation Set

T α µ average_time timeout rank_time rank_timeout average_rank

100 0.1 0.5 43.513870 0.305556 1.0 1.0 1.00
100 0.1 1.0 55.608030 0.500000 2.0 2.5 2.25

1000 0.01 0.5 59.396192 0.500000 3.0 2.5 2.75
1000 0.1 1.0 61.623909 0.527778 4.0 4.5 4.25
1000 0.1 0.5 63.214772 0.527778 5.0 4.5 4.75
1000 0.01 1.0 65.085730 0.583333 6.0 7.0 6.50

100 0.1 0.25 70.484347 0.555556 9.0 6.0 7.50
1000 0.01 0.25 67.918430 0.638889 7.0 8.5 7.75

100 0.01 0.5 69.199902 0.638889 8.0 8.5 8.25
100 0.01 0.25 75.356267 0.722222 10.0 10.5 10.25

1000 0.001 0.5 76.749888 0.722222 11.0 10.5 10.75
1000 0.001 0.25 82.939370 0.805556 12.0 12.5 12.25

10 0.1 0.5 83.524314 0.833333 13.0 14.5 13.75
100 0.01 1.0 83.739845 0.833333 14.0 14.5 14.25

1000 0.1 0.25 88.323196 0.805556 16.0 12.5 14.25
1000 0.001 1.0 87.845959 0.861111 15.0 16.0 15.50

10 0.1 1.0 90.158706 0.888889 17.0 17.0 17.00
10 0.1 0.25 94.782105 0.916667 18.0 18.0 18.00
10 0.01 0.25 100.012025 1.000000 19.0 23.0 21.00
10 0.001 0.5 100.012147 1.000000 20.0 23.0 21.50
10 0.001 1.0 100.012219 1.000000 21.0 23.0 22.00
10 0.01 1.0 100.012781 1.000000 22.0 23.0 22.50
10 0.01 0.5 100.013981 1.000000 23.0 23.0 23.00
10 0.001 0.25 100.015674 1.000000 24.0 23.0 23.50

100 0.001 1.0 100.119291 1.000000 25.0 23.0 24.00
100 0.001 0.5 100.124259 1.000000 26.0 23.0 24.50
100 0.001 0.25 100.134148 1.000000 27.0 23.0 25.00



E.3 CARLINI AND WAGNER ATTACK

We run the l∞ version of the Carlini and Wanger Attack (C%W ) [Carlini and Wagner, 2017]. C&W aims to repeatedly
optimize

min
δ

c · h(x+ δ) +
∑
i

[(δi − τ)+], (29)

for different values of c and τ , where h is a surrogate function based on the neural network we are trying to attack. The
method is described in greater detail in Algorithm 4.

C&W has six hyper-parameters we search over: T, cinit, cfin, γτ , γc, α. Running every possible combination of assignments
to the hyper-parameters like we did for PGD and MI-FGSM+ becomes computationally too expensive as the number
of assignments increases exponentially in the number of parameters. Instead we split the search into three rounds.
We initialize the parameters with those suggested in the original paper. In the first round we change one parameter
at a time, keeping all other parameters constant. At the end of the first round we record the optimal values for each
parameter. We evaluate the performance by taking the average of the minimum perturbation for which C&W managed
to return a successful attack for each image. We then repeat this process twice more: each time searching over the
optimal hyper-parameter assignment one at a time, and updating the values at the end of each round. At the end of
the third round we reach the following assignment: T = 100, cinit = 1e−5, cfin = 1000, γτ = 0.99, γc = 1.5, α = 1e−4.

Algorithm 4 C&W

1: function C&W (h,x, y, ŷ, T, cinit, cfin, γτ , γc, α)
2: c← cinit
3: τ ← 1.0
4: while τ < 0.1 and c < cfin do
5:

min
δ

c · h(x+ δ) +
∑
i

[(δi − τ)+] (30)

6: Optimize 30 using the Adam optimizer with a learning rate of α, and a step number of T
7: if found a counter example with δi ≤ τ ∀i then
8: τ ← τ ∗ γτ . Decay τ using the decay factor γτ
9: c← c ∗ 1/2 . Decay c using factor γc

10: else
11: c← c ∗ γc
12: end if
13: end while
14: return Best δ found
15: end function



T α cinit cfin γτ γc Avg (εval − εC&W )

Round 1 1000 1e-2 1e-5 20 0.9 2.0 -
10 - - - - - -0.170515

100 - - - - - -0.134574
1000 - - - - - -0.146015

- 1e-3 - - - - -0.050695
- 1e-2 - - - - -0.146015
- 1e-1 - - - - -0.717864
- - 1e-5 - - - -0.146015
- - 1e-4 - - - -0.140346
- - 1e-3 - - - -0.130972
- - 1e-2 - - - -0.149450
- - - 0.1 - - -0.199197
- - - 1 - - -0.197057
- - - 10 - - -0.160842
- - - 100 - - -0.105023
- - - 0.5 - -0.221801
- - - 0.9 - -0.146015
- - - 0.99 - -0.180077
- - - - 1.5 -0.161380
- - - - 2.0 -0.146015
- - - - 5.0 -0.162026

Round 2 100 1e-3 1e-3 100 0.9 2.0 -
10 - - - - - -0.068567

100 - - - - - -0.051525
1000 - - - - - -0.052210

- 1e-4 - - - - -0.059814
- 1e-3 - - - - -0.051525
- 1e-2 - - - - -0.101191
- - 1e-5 - - - -0.051074
- - 1e-4 - - - -0.050897
- - 1e-3 - - - -0.051525
- - 1e-2 - - - -0.053127
- - - 10 - - -0.053124
- - - 100 - - -0.051525
- - - 1000 - - -0.051488
- - - 0.5 - -0.180116
- - - 0.9 - -0.051525
- - - 0.99 - -0.036093
- - - - 1.5 -0.051445
- - - - 2.0 -0.051525
- - - - 5.0 -0.052622

Round 3 100 1e-3 1e-4 1000 0.99 1.5 -
10 - - - - - -0.045861

100 - - - - - -0.035893
1000 - - - - - -0.101963

- 1e-4 - - - - -0.033943
- 1e-3 - - - - -0.035893
- 1e-2 - - - - -0.098903
- - 1e-5 - - - -0.035488
- - 1e-4 - - - -0.035893
- - 1e-3 - - - 0.035676
- - - 10 - - -0.035957
- - - 100 - - -0.035893
- - - 1000 - - -0.035893
- - - 0.9 - -0.049217
- - - 0.99 - -0.035893
- - - 0.999 - -0.128462
- - - - 1.25 -0.037318
- - - - 1.5 -0.035893
- - - - 2.0 -0.037543

Table 4: Hyper-parameter analysis for C&W attack on the Validation Set



F FURTHER EXPERIMENTAL RESULTS

F.1 MAIN EXPERIMENTS

All methods apart from C&W use random initialization. We therefore run every experiment in this paper three times, each
time with a different random seed (using the Pytorch implementation of random seeds). We manually set the time taken to
100 if a method times out on a property. We summarize the results in Table 5 and Figure 1. We can see that even though the
random seed makes a significant different for a single attack, when taking the average over the entire dataset the differences
are very small. In particular, the difference between the results for the same attack with different seeds is much smaller than
the difference between methods. This shows that our results are statistically significant.

‘Base’ Model ‘Wide’ Model ‘Deep’ Model
Method Seed Time(s) Timeout(%) Time(s) Timeout(%) Time(s) Timeout(%)
PGD Attack 2222 87.354 82.995 80.542 74.917 83.764 79.2
PGD Attack 3333 87.396 83.151 80.301 75.908 84.930 81.2
PGD Attack 4444 87.488 82.839 80.404 75.248 84.355 81.2
MI-FGSM+ 2222 39.897 26.677 31.583 21.122 59.887 46.4
MI-FGSM+ 3333 39.763 26.053 30.761 20.462 61.380 49.2
MI-FGSM+ 4444 41.655 28.705 31.087 19.802 60.467 48.0
C&W 0 97.385 95.164 96.366 93.729 99.321 97.6
AdvGNN 2222 14.152 10.296 24.429 18.812 52.337 43.6
AdvGNN 3333 12.937 8.580 23.501 17.822 50.054 42.0
AdvGNN 4444 13.490 9.360 24.338 18.812 52.616 44.0

Table 5: We compare average (mean) solving time and the percentage of properties that the methods time out on when using a cut-off
time of 100s and the random Pytorch seeds specified. The best performing method for each subcategory is highlighted in bold. AdvGNN
is the best performing method as every single run of AdvGNN beats every other run by any of the other methods on each model.

0 20 40 60 80 100
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Base' Model

PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

0 20 40 60 80 100
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Wide' Model

PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

0 20 40 60 80 100
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Deep' Model
PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

Figure 1: Cactus plots for the main datasets on the ‘Base’ , ‘Wide’ and ‘Deep’ models. For each, we compare the attack
methods by plotting the percentage of successfully attacked images as a function of runtime.

F.2 EASY EXPERIMENTS

As mentioned above, we also run experiments on an easier dataset. In practice there may be use cases where we want to
generate easy adversarial examples very quickly, hence it is beneficial for strong methods to also work well on easier tasks.
As all methods will generate adversarial examples more quickly on this easier version of the dataset we reduce the timeout
to 20 seconds. The results are summarized in Tables 6 and 7 and Figure 2. AdvGNN outperforms all baselines on all three
models. On the ‘Base’ model in particular we reduce the percentage of properties on which our method times out by over
98% compared to each of the three baselines. When comparing the results for the different seeds we see that every single
run of AdvGNN beat every other run of any of the baselines, again showing that changing the random seed does not change
the outcome significantly.



‘Base’ -Easy ‘Wide’ -Easy ‘Deep’ -Easy
Method Seed Time(s) Timeout(%) Time(s) Timeout(%) Time(s Timeout(%)
PGD Attack 2222 4.698 15.445 2.509 7.261 4.166 11.2
PGD Attack 3333 4.714 14.353 2.109 5.611 3.655 8.0
PGD Attack 4444 4.719 15.133 2.830 9.571 4.073 11.2
MI-FGSM+ 2222 1.123 2.340 0.810 1.320 1.703 4.0
MI-FGSM+ 3333 1.398 3.432 0.712 0.660 1.570 2.0
MI-FGSM+ 4444 1.343 3.120 0.813 0.990 1.461 2.8
C&W 0 17.030 69.111 15.978 60.396 17.487 76.0
AdvGNN 2222 0.509 0.156 0.550 0.330 1.443 0.8
AdvGNN 3333 0.505 0.000 0.569 0.330 1.351 0.8
AdvGNN 4444 0.538 0.000 0.665 0.330 1.603 1.2

Table 6: We compare average (mean) solving time and the percentage of properties that the methods time out on when using a cut-off
time of 20s and the random Pytorch seeds specified. The best performing method for each subcategory is highlighted in bold.

‘Base’ -Easy ‘Wide’ -Easy ‘Deep’ -Easy
Method Time(s) Timeout(%) Time(s) Timeout(%) Time(s) Timeout(%)
PGD Attack 4.710 14.977 2.483 7.481 3.965 10.133
MI-FGSM+ 1.288 2.964 0.778 0.990 1.578 2.933
C&W 17.030 69.111 15.978 60.396 17.487 76.000
AdvGNN 0.518 0.052 0.595 0.330 1.465 0.933

Table 7: We compare average (mean) solving time and the percentage of properties that the methods time out on when using a cut-off
time of 20s. The best performing method for each subcategory is highlighted in bold.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Base' Model - Easy Properties

PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Wide' Model - Easy Properties
PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation time [s]

0

20

40

60

80

100

Pr
op

er
tie

s s
uc

ce
ss

fu
lly

 a
tta

ck
ed

 [%
]

`Deep' Model - Easy Properties

PGD Attack
PGD Attack
PGD Attack
MI-FGSM+
MI-FGSM+
MI-FGSM+
C&W
AdvGNN
AdvGNN
AdvGNN

Figure 2: Cactus plots for the easy datasets on the ‘Base’ , ‘Wide’ and ‘Deep’ models. For each, we compare the attack
methods by plotting the percentage of successfully attacked images as a function of runtime.

F.3 EXPERIMENTS ON AN ADVERSARIALLY TRAINED MODEL

We can confirm that our approach also works for adversarially trained models. We train a neural network that has the same
artchitecture as the ‘Wide’ model used above using the method by Madry et al. [2018]. After finetuning our GNN on an this
adversarially trained CIFAR10 model, advGNN outperforms both PGD and MI-FGSM+. We run all three methods on 101
properties with a timeout of 20 seconds and repeat the experiment three times with three different random seeds. AdvGNN
clearly outperforms both baselines timing out on 14% of all properties compared to 21% for MI-FGSM+ and 78% for PGD,
reducing average solving time by over 30% (see Table 8.

F.4 ABLATION STUDY - SIMPLED FEATURE VECTORS

Computing the features vectors (Equations (32) and (33)) requires solving a linear program (Equation (31)). However, if we
use a simpler approach as proposed by Kolter and Wong (2018) instead of super-gradient ascent our method still outperforms
all baselines, successfully attacking 86% of all properties on the base model compared to 5%, 17%, and 73% for the three
baselines, respectively (Table 9). The reduced performance compared to the original AdvGNN performance shows that the
feature vector plays a significant role in generating better directions. At the same time the modified AdvGNN method still
outperforms all baselines indicating that the KW can be used when we run our method on larger networks.



Method Seed Time(s) Timeout(%)

PGD Attack 2222 16.922 79.2
PGD Attack 3333 16.222 78.2
PGD Attack 4444 16.382 77.2
MI-FGSM+ 2222 5.771 27.8
MI-FGSM+ 3333 5.773 18.8
MI-FGSM+ 4444 5.847 20.8

AdvGNN 2222 4.079 12.9
AdvGNN 3333 3.739 12.9
AdvGNN 4444 3.851 14.9

Table 8: We run experiments on the adversarially trained ‘Wide’ model. We compare average (mean) solving time and the percentage of
properties that the methods time out on when using a cut-off time of 20s and the random Pytorch seeds specified.

Method Time(s) Timeout(%)

PGD Attack 87.412 82.995
MI-FGSM+ 40.438 27.145

C&W 97.385 95.164
AdvGNN-s 19.788 13.885

AdvGNN 13.527 9.412

Table 9: ‘Base’ Model. We compare average (mean) solving time and the percentage of properties that the methods time out
on when using a cut-off time of 100s. AdvGNN is the main method described; AdvGNN-s uses the simple KW method
rather than the iterative supergradient ascent method to compute the feature vector (23)

References

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli, Philip Torr, and M Pawan
Kumar. Lagrangian decomposition for neural network verification. In Conference on Uncertainty in Artificial Intelligence,
pages 370–379. PMLR, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 39–57. IEEE, 2017.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks
with momentum. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9185–9193,
2018.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on
Automated Technology for Verification and Analysis, pages 269–286. Springer, 2017.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Timothy Mann, and
Pushmeet Kohli. On the effectiveness of interval bound propagation for training verifiably robust models. arXiv preprint
arXiv:1810.12715, 2018.

Monique Guignard and Siwhan Kim. Lagrangean decomposition: A model yielding stronger lagrangean bounds. Mathemat-
ical programming, 39(2):215–228, 1987.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Jingyue Lu and M Pawan Kumar. Neural network branching for neural network verification. In International Conference on
Learning Representations, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In International Conference on Learning Representations, 2018.



Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial polytope.
International Conference on Machine Learning, 2018.


	Network Architectures
	Generating the Dataset
	GNN Architecture
	Intermediate Bounds
	Solving a Standard Relaxation with Supergradient Ascent
	Node Features
	Embeddings.

	Running Standard Algorithms Using AdvGNN
	Hyper-parameter Analysis for Baselines
	PGD Attack
	MI-FGSM+ Attack
	Carlini and Wagner Attack

	Further Experimental Results
	Main Experiments
	Easy Experiments
	Experiments on an adversarially trained model
	Ablation study - simpled feature vectors


