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Abstract

Variational Inference (VI) is a popular alternative
to asymptotically exact sampling in Bayesian in-
ference. Its main workhorse is optimization over a
reverse Kullback-Leibler divergence (RKL), which
typically underestimates the tail of the posterior
leading to miscalibration and potential degeneracy.
Importance sampling (IS), on the other hand, is
often used to fine-tune and de-bias the estimates of
approximate Bayesian inference procedures. The
quality of IS crucially depends on the choice of the
proposal distribution. Ideally, the proposal distri-
bution has heavier tails than the target, which is
rarely achievable by minimizing the RKL. We thus
propose a novel combination of optimization and
sampling techniques for approximate Bayesian in-
ference by constructing an IS proposal distribution
through the minimization of a forward KL (FKL)
divergence. This approach guarantees asymptotic
consistency and a fast convergence towards both
the optimal IS estimator and the optimal varia-
tional approximation. We empirically demonstrate
on real data that our method is competitive with
variational boosting and MCMC.

1 INTRODUCTION

Bayesian analysis provides a principled framework to en-
code complex hierarchical structures and prior beliefs in
order to capture posterior uncertainty about latent variables
θ given observed data x via the posterior p(θ|x). The in-
ferential goal often involves computing expectations over
this posterior distribution, Eθ∼p(θ|x)[f(θ)], which is typi-
cally accomplished by sampling. Unfortunately, sampling
directly from the posterior is usually intractable. Computing
posterior functionals thus requires approximate inference

methods such as variational inference (VI) [Jordan et al.,
1999, Wainwright and Jordan, 2008], Markov Chain Monte
Carlo (MCMC) [Brooks et al., 2011, Andrieu et al., 2003],
and importance sampling (IS) [Gelman and Meng, 1998],
among others.

Recently, variational inference has grown in popularity be-
cause it recasts the inference problem as an optimization
problem that can leverage recent advances in stochastic
optimization [Bottou, 2010, Hoffman et al., 2013] and auto-
matic differentiation [Maclaurin et al., 2015]. Specifically,
VI poses a tractable family of distributionsQ and minimizes
the reverse Kullback-Leibler divergence (RKL) between q
and p, i.e. KL(q||p). However, Q is often misspecified lead-
ing to unknown bias in VI solutions [Blei et al., 2016]. It
is also generally difficult to assess the quality of a VI ap-
proximation on downstream tasks based on the value of the
RKL divergence [Yao et al., 2018, Campbell and Li, 2019,
Rainforth et al., 2018, Huggins et al., 2020]. This motivates
the use of importance sampling (IS) to de-bias posterior
summaries regardless of the misspecification of Q [Gelman
and Meng, 1998, Owen, 2013]. Unlike the RKL, the perfor-
mance of q as an IS proposal is indicative of its quality as an
approximation of p on downstream tasks [Yao et al., 2018].

This workflow capitalizes on complementary strengths: the
computational efficiency of VI can sidestep the challenge
of selecting a proposal distribution for IS which, in turn,
ensures the consistency of the refined posterior expectation.
However, RKL minimization typically results in light tails
which can cause instability for importance sampling [Dieng
et al., 2017, Yao et al., 2018]. On the other hand, the forward
KL divergence (FKL or KL(p||q)) is known to control the
estimation error of importance sampling [Chatterjee and
Diaconis, 2018] but is rarely used due to its intractability.

In this paper, we propose to replace reverse KL with forward
KL as the variational objective whose minimization yields
an optimal IS proposal distribution. We make four distinct
contributions in this vein:
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1. We derive a self-normalized importance sampling esti-
mate for the intractable FKL divergence.

2. We demonstrate how FKL-based boosting can combine
IS and VI for multimodal target distributions.

3. We show that FKL boosting is guaranteed to converge
at a rate of O( 1

K ), where K is the number of boosting
iterations, to the best approximation from a family
of mixture distributions. This immediately guarantees
convergence to the optimal proposal distribution as per
the results of [Chatterjee and Diaconis, 2018].

4. We demonstrate empirically that our approach is
competitive with state-of-the-art VI and Hamiltonian
Monte Carlo on regression tasks over real datasets us-
ing Bayesian neural networks (BNNs) and Bayesian
linear regression (BLR).

Our proposed algorithm is thus a principled inference tech-
nique, with a well-defined computation-quality trade-off,
that can be used independently or as a refining step to cor-
rect for the error in a given approximation.

Minimize Reverse KL: KL(q‖p) = Eq[log q
p ]
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Figure 1: Results of minimizing RKL vs. FKL for a Gaus-
sian variational approximation on a bimodal target.

2 BACKGROUND

Let θ denote the variable of interest with probability density
p, and let f denote a function of θ. Our goal is to estimate
an expectation

Eθ∼p(θ|x) [f(θ)] . (1)

In Bayesian inference, θ generally represents a latent vari-
able to be integrated over in the posterior distribution,
p(θ|x), conditioned on the observed data x.

If one can draw S samples {θs}Ss=1 from the target distribu-
tion p(θ|x) then Eq. (1) can be estimated by simple Monte
Carlo integration. However, p(θ|x) is typically only known
up to a normalization constant and thus cannot be readily

sampled from. Instead, given samples from an approxima-
tion q of the posterior, we can estimate the expectation as:

Ep(θ|x)[f(θ)] ≈
∑S
i=1 f(θs)ws∑S

i=1 ws
. (2)

If the samples are weighted equally (i.e., ws = 1), Eq. (2)
is equivalent to the VI estimate, which has low variance but
can be biased and inconsistent [Owen, 2013].

If instead we weigh by the importance ratios, ws = p(θs|x)
q(θs) ,

we recover the IS estimate:

Eθ∼p(θ|x) [f(θ)] = Eθ∼q(θ)
[
p(θ|x)

q(θ)
f(θ)

]
, (3)

which is consistent (bias=O(1/S)) but with potentially large
or infinite variance [Owen, 2013].

2.1 VI WITH REVERSE KL MINIMIZATION

Variational inference posits a family Q of distributions that
are easy to evaluate or sample from, and defines the varia-
tional approximation q∗ ∈ Q as the distribution that mini-
mizes the reverse Kullback-Leibler (RKL) divergence to the
posterior p: q∗ = argmin

q∈Q
KL(q‖p).

Unless the choice of Q specifically includes the target dis-
tribution, minimizing the reverse KL divergences leads to a
q∗ that underestimates the target covariance. The decompo-
sition of this divergence sheds light on the cause:

KL(q‖p) = Eq[log q]− Eq[log p] (4)

The first term in Eq. (4) is the entropy of q whose penaliza-
tion is known to cause light tails. Furthermore, the second
term is minimized when q = 0 for p > 0, leading to zero
forcing or over-pruning [Higgins et al., 2016]. The RKL di-
vergence thus favors a single mode (mode seeking), is biased
towards avoiding false positives, and poses difficulties when
approximating heavy-tailed [Guo et al., 2016, Li and Turner,
2016, Dieng et al., 2017] or multimodal targets [Miller et al.,
2017]. This effect is illustrated in Figure 1.

2.2 IMPORTANCE SAMPLING AND FKL

Due to the unknown bias of an RKL-minimizing q∗, refining
through importance weighting is recommended to de-bias
the estimate of Eq. (1) [Yao et al., 2018, Vehtari et al., 2015].
However, the light tails of this q∗ can lead to high or even in-
finite variance for an IS estimator which limits the efficiency
of q∗ as an IS proposal distribution.

As an alternative to RKL, minimizing the forward KL diver-
gence can mitigate the issue of covariance underestimation
and tail undersampling. Consider the decomposition of the
forward KL divergence:

KL(p‖q) = Ep[log p]− Ep[log q]. (5)
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In Eq. (5), the cross-entropy is minimized by setting q > 0
whenever p > 0, which leads to mass covering as illustrated
in Figure 1. With better tail coverage, an FKL-minimizing
q∗ can yield an IS estimate (Eq. (3)) with lower variance
than an approximation generated by RKL. Indeed, Chat-
terjee and Diaconis [2018] demonstrate that the variance of
an importance sampling estimate scales as O

(
eKL(p‖q)
√
S

)
,

where the number of samples S required for IS to provide
accurate mean estimates scales exponentially with FKL.

3 RELATED WORK

We present related work on improving estimates of the ex-
pectation over intractable target distributions (e.g. high di-
mensional, heavy tailed, or multimodal).

3.1 VARIATIONAL INFERENCE DIVERGENCES

Prior work has addressed the covariance underestimation
and light tails pathologies of reverse KL minimization while
seeking to improve the quality of the approximation as an
IS proposal through the minimization of alternative diver-
gences such as (reversed) Renyi-α [Li and Turner, 2016,
Hernández-González and Cerquides, 2020], Chi-square
(α = 2) [Dieng et al., 2017], or Hellinger (α = 1/2) [Camp-
bell and Li, 2019] divergences. FKL can be seen as a special
case of α divergences when α→ 1 which is not considered
in any of these prior VI works.

3.2 FKL FOR APPROXIMATE INFERENCE

While the forward KL’s computational inconvenience has
limited its use for variational inference, inference techniques
such as Belief Propagation (BP) and Expectation Propaga-
tion (EP) can be regarded as performing FKL minimization
locally [Minka et al., 2005]: KL is minimized one data par-
tition at a time instead of globally as in VI. Minka [2001]
demonstrates that this local minimization procedure is not
guaranteed to converge and may not result in representative
posteriors. Another set of techniques that utilize variants of
the FKL divergence includes reweighted wake-sleep [Born-
schein and Bengio, 2014] which alternates minimizing an
approximation of FKL during the sleep phase while mini-
mizing an approximation of RKL during the wake phase.
However, this is known to lead to a biased estimator [Born-
schein and Bengio, 2014].

3.3 VARIATIONAL BOOSTING

Variational boosting (VB) [Miller et al., 2017, Guo et al.,
2016, Locatello et al., 2018a, Jerfel, 2017] has been sug-
gested in various forms to address the multimodality chal-
lenge for variational inference. Variational boosting posits a

family of mixture distributions Qk:

Qk =

{
q : q(θ) =

k∑
i=1

λifi(θ), λ ∈ ∆k

}
, (6)

and sequentially constructs a variational mixture approxi-
mation by adding and re-weighting one (typically Gaussian)
mixture component at a time to minimize the KL objective:

{µi}ki=1, {Σi}ki=1, {λi}ki=1

← argmin
µ,Σ,λ

KL

(
k∑
i=1

λifi(θ;µi,Σi)

∥∥∥∥p(θ|x)

)
. (7)

This form of reverse KL-based boosting is known to strug-
gle with degeneracy where the optimization at certain boost-
ing iterations can lead to point-mass mixture components
[Campbell and Li, 2019]. Ad-hoc regularization techniques
are often needed in practice [Locatello et al., 2018a], but
are not necessarily sufficient [Campbell and Li, 2019]. To
address this pathology, Campbell and Li [2019] proposed
a boosting algorithm, based on the Hellinger divergence,
which does not not guarantee scalability with dimensions.

3.4 ADAPTIVE IMPORTANCE SAMPLING

Adaptive IS (AIS) methods such as Adaptive multiple IS
[Cornuet et al., 2012] and incremental mixture IS [Raftery
and Bao, 2010] are designed for multimodal targets. How-
ever, none of the existing works directly optimize for the
FKL divergence which controls the worst case IS estima-
tion error. For example, Cappé et al. [2008] minimize an
entropy criterion whereas Douc et al. [2007] minimize the
empirical variance of the importance weights, which does
not necessarily correlate with the quality of IS estimation
[Vehtari et al., 2015].

3.5 COMBINING IS AND VI

As outlined in Table 1, VI and VB suffer from covariance
underestimation, and can struggle to approximate heavy-
tailed distributions [Blei et al., 2016]. AIS, on the other
hand, can approximate heavy-tailed targets but cannot scale
efficiently in dimensionality [Owen, 2013]. A combina-
tion of these two lines of research may benefit from their
complementary strengths while sidestepping shared weak-
nesses (e.g., multimodality). However, it is often difficult
to combine optimization-based and sampling-based infer-
ence techniques. This is because sampling methods such
as MCMC define the approximate distribution implicitly
such that its density cannot be evaluated. This has driven
the development of alternatives to the KL divergence such
as the variational contrastive divergence [Ruiz and Titsias,
2019]. However, we are not aware of similar work for IS
that leverages the computational efficiency of VI through a
unifying loss such as the FKL divergence.
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Other prior proposals combining IS and VI [Domke and
Sheldon, 2018] have focused on minimizing the RKL, and
thus do not inherently capture heavier tails of the target dis-
tribution. Prangle [2019] recently presented concurrent work
on combining IS and VI. However, their method relies on
normalizing flows for constructing the proposal distribution
such that it does not guarantee a multimodal approximation.
Ramos-López et al. [2018] uses a stream of IS weights to fit
parameters for Gaussian mixture posteriors to minimize the
FKL divergence. However, unlike our work, they assume
access to normalized importance weights instead of samples.

Failure Mode VI IS VB AIS Ours
Multimodality 7 7 3 3 3

Heavy tails 7 3 7 3 3

Cov estimation 7 3 7 3 3

High dimensions 3 7 3 7 3*

Table 1: Comparing approximate inference techniques.

4 METHODOLOGY

We develop our novel approach to integrate variational in-
ference and importance sampling using the forward KL
divergence with a focus on multimodal targets.

Note that we assume the target density p and the approxima-
tion q share the same support which can be Rd or a subset
thereof. This guarantees that p is absolutely-continuous with
respect to q (noted as p� q) and vice-versa which is neces-
sary for the definition of the KL divergence.

4.1 FORWARD KL VARIATIONAL
APPROXIMATION FOR IS

A theoretically reasonable desire is for the proposal distribu-
tion to minimize the forward KL divergence. However, we
cannot compute FKL exactly for unnormalized target distri-
butions. This stems from the expectation under the target p
in Eq. (5).

By contrast, the reverse KL takes the expectation in Eq. (4))
under a normalized approximation q. This can be seen as
a tractable approximation to FKL with unknown bias [Yao
et al., 2018]. In fact, for misspecified choices ofQ (i.e. when
KL(q∗||p) 6= 0), Campbell and Li [2019] demonstrate that
minimizing the RKL is not guaranteed to minimize the
FKL divergence. Furthermore, the light tails of the RKL
minimization solution renders it inadequate for IS.

Alternatively, towards deriving a consistent approximation
of the forward KL divergence, we rearrange densities inside

the expectation as follows:

KL(p‖q) = Ep
[
log

(
p

q

)]
= Eq

[
p

q
log

(
p

q

)]
. (8)

FKL can then be approximated through self-normalized im-
portance sampling (SNIS) [Murphy, 2012] which is known
to be consistent:

θs ∼ q(θ) rs =
p(θs|x)

q(θs)
ws =

rs∑S
s=1 rs

KL(p‖q) =

S∑
s=1

ws · log

(
p(θs|x)

q(θs)

)
. (9)

The SNIS estimation can have arbitrarily high variance
depending on q. Gradients of Eq. (8) with respect to the
parameters of qi can also have high variance since we op-
timize over the same distribution from which samples are
drawn. For certain distributions, the reparametrization trick
can reduce this variance [Kingma and Welling, 2013]. Fur-
thermore, the sequential setting described in section 4.3
contributes to reducing the gradient variance.

4.2 FORWARD KL BOOSTING

We sequentially construct a proposal mixture distribution
q that is both easy to sample from (lower SNIS bias) and
minimizes the FKL objective for efficient IS estimation.

Given the computational convenience of Gaussian distribu-
tions, we set Q to be the family of Gaussian mixtures in
Section 7 such that the proposal at the Kth boosting itera-
tion is qK(θ) :=

∑K
i=1 λifi(θ;φi) where fi = N (µi,Σi).

Our framework also supports mixtures of heavy-tailed distri-
butions which are desirable for adaptive IS [Geweke, 1989].

At each boosting iteration, we minimize the FKL between
the mixture qi and the target p by fitting a new component fi
and a mixture weight λi = γ while holding the parameters
of previously-learned mixture components fixed:

argmin
qi∈Q

KL(p‖qi) = argmin
fi,γ

KL (p‖γfi + (1− γ)qi−1)

This is known to be more efficient and stable than the joint
optimization of all mixture components at each iteration [Lo-
catello et al., 2018a]. The mixture weights for the fixed mix-
ture components {λj}i−1

j=1 are re-scaled by (1− γ) and can
be further adjusted with a fully-corrective weight search [Lo-
catello et al., 2018b] using the gradient derived in Eq. (5).
Fitting the mixture weights is a convex problem that can
benefit from higher-order optimizers such as Newton’s. We
provide an alternative approach to building qK using the
remainder distribution in Appendix C.
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4.3 LOWER VARIANCE SNIS WITH BOOSTING

The main computational concern in estimating the FKL di-
vergence with SNIS is the variance of importance sampling
in Eq. (8). However, the sequential construction described
above enables further reformulations of the SNIS approx-
imation which can lead to a lower variance than the naive
approximation of Eq. (8). In fact, the global objective can
be re-written as:

argmin
qi∈Q

KL(p‖qi) = argmin
qi∈Q

Ep
[
log

p

qi

]
(10)

= argmin
fi,γ

Eqi
[
p

qi
log

p

γfi + (1− γ)qi−1

]
(11)

= argmin
fi,γ

Eqi−1

[
p

qi−1
log

p

γfi + (1− γ)qi−1

]
(12)

Eq. (12), which is only possible in a sequential setting such
as ours, reduces the gradient variance since the component
being estimated, fi, is independent of the distribution qi−1

from which samples are drawn to approximate the FKL.
Furthermore, we can draw a large number of samples from
qi−1 a single time at the start of each boosting iteration.

The SNIS approximation of Eq. (12) given samples θs from
qi−1 can then be computed as:

S∑
s=1

ws[log p(θs)− log (λfi(θs) + (1− λ)qi−1(θs))],

where ws are computed as in Eq. (9).

Trade-off of sampling qi or qi−1: While qi is expected
to handle well-separated modes better, in our experiments (7
we found that using qi−1 is sufficient for capturing distant
modes (e.g. Fig. 4) while reducing the SNIS variance. Vari-
ance reduction was especially crucial on higher dimensional
applications such as Bayesian NNs in Table. 3.

4.4 INITIALIZE WITH RKL, REFINE WITH FKL

For the first boosting iteration, we do not have an existing
approximation to sample from. Instead, Eq. (12) can be
re-written as follows:

argmin
fi,γ

Efi
[
p

fi
log

p

γfi + (1− γ)qi−1

]
.

This exacerbates the sensitivity to the initialization of fi.
In fact, a sharply peaked initialization centered could limit
the SNIS estimate from properly capturing the tail behavior.
Therefore, a diffuse initialization is likely to be beneficial.

An even more practical initialization would use RKL-based
VI to identify the mode of the target and provide a com-
putationally efficient approximation that can be refined by

FKL boosting in later iterations. As such, this FKL-boosting
workflow can be considered as general framework for the
iterative refinement of any given posterior approximation to
be used for the estimation of expectations of interest. This
best combines the strengths of VI and IS as the first iteration
of RKL minimization can reduce the variance of the SNIS
approximation of FKL for the following iterations.

5 ANALYSIS

We provide theoretical analysis of the proposed method of
performing importance sampling with a proposal distribu-
tion constructed from FKL-based boosting.

5.1 FKL CONTROLS MOMENT ESTIMATION
ERROR

Minimizing the FKL implicitly minimizes the error in pos-
terior probabilities and moments via its control on total
variational (through Pinsker’s inequality[Tsybakov, 2008])
and l-Wasserstein as follows [Bolley and Villani, 2005]:
Assume that the probability density q is n-exponentially
integrable. Then for target distribution p such that p� q:

Wn(q, p) ≤ CEIn (q)

[
KL(p‖q) 1

n +
KL(p‖q)

2

1
2n

]
, (13)

where

CEIn (q) = inf
x0∈Rd,α>0

(
3

α
+

2

α
log

∫
eα‖x−x0‖nq(x)dx

)
.

This implies the convergence of the first n moments.

Note that because of the symmetry of Wasserstein distances,
we can switch probability densities p and q in the above
inequalities and obtain bounds in terms of RKL. However,
that would incur the n-exponential integrability condition
on the target probability p, which boils down to generalized
sub-gaussianity of its tail.

The n-exponential integrability assumption is not required
of the target density p in the case of Eq. (13). Instead, it is
only required of the family of variational approximations q
which is easier to enforce and verify (and is automatically
satisfied by the mixture of Gaussians). A smaller constant
CEIn can also be achieved by the same reasoning.

5.2 FKL BOOSTING CONVERGES AT O(1/K)

Assuming p � q, which can be verified by the design of
Q, the functional gradient of the forward KL divergence is
derived in Appendix B.5 as δKL(p||q)

δq = −pq . The convexity
of KL(p‖q) in q is well established in the literature (proven
with the log-sum inequality). Furthermore, we show in Ap-
pendix 5.2 that the FKL functional is also β-smooth in q
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where β depends on the range of the values that the density
q can take. This requires bounding q away from zero and
from above which is typical in prior theoretical work [Guo
et al., 2016] and aligns with practice as it can translate to a
bounded parameter space for a given family of distributions.

For a convex and strongly smooth functional, the greedy
sequential approximation framework of Zhang [2003] pro-
vides an asymptotic guarantee for the convergence to a
target distribution in the convex hull of a given base fam-
ily such that the approximation error at the Kth iteration

is KL(p‖qK) = KL

(
p

∥∥∥∥∑K
i=1 λifi

)
= O(1/K). This

framework does not require each iteration to exactly solve
for the optimal mixture component which can be difficult
for the non-convex optimization sub-problems.

5.3 COMPUTATION-QUALITY TRADE-OFF

While our iterative algorithm is guaranteed to converge
asymptotically to the optimal proposal distribution, we can
identify three sources of approximation error: the varia-
tional inference error, the SNIS approximation bias, and
the greedy sequential approximation error which depend
on the number of VI iterations, IS samples, and boosting
iterations, respectively. These three errors thus finely con-
trol the compute-quality trade-off of our framework. We
analyze these tradeoffs in more depth through simulation
experiments below.

5.4 THE DEPENDENCE OF THE IS PROPOSAL
ON THE INTEGRAND

Similarly to prior empirical [Owen, 2013] and theoretical
[Chatterjee and Diaconis, 2018] works, we do not address
any assumptions about the function f being integrated. How-
ever, the optimal proposal q∗ ∝ |f | · p when p is normal-
izable and q∗ ∝ |f − I| · p otherwise [Kahn and Marshall,
1953]. Nonetheless, we only require that the integrand f
does not contain any singularities and shares the same sup-
port as p and q. In this case, a simple rearrangement of the
terms inside the expectation (1) would imply that q should
approximate f · p instead of p where f is the integrand.
Therefore, characteristics of f have no effect on our asymp-
totic guarantees or general methodology.

6 SIMULATION EXPERIMENTS

Using two illustrative simulation experiments, we provide
further intuition for the behavior and performance of the
proposed methodology using the FKL.

6.1 SIMULATION 1: CAUCHY

First, we demonstrate the aforementioned computation-
quality trade-offs using a standard Cauchy target distribu-
tion. For intuition on the behavior of boosting using the
FKL, Figure 3 illustrates the density plots of the target p
and the boosting approximation q after various iterations.

From previous sections, we observe a trade-off between sam-
ple complexity of SNIS and the optimization complexity of
variational boosting. Inclusion of more mixture components
K and more accurate optimization in the variational boost-
ing steps can save exponentially many samples in SNIS.
However, there is a diminishing gain in increasing K. We
demonstrate in Fig. 2 this effect: both FKL boosting and
RKL boosting decreases forward KL divergence as more
variational components are added. The decrease slows down
significantly after inclusion of 3 mixture components. We
therefore introduce in the experiments up to 3 mixture com-
ponents and select the best performance on validation data
set. From Fig. 2 and the experimental results, we observe
uniform improvements of FKL over RKL methods.

Figure 2: A comparison in terms of the FKL divergence to
a Cauchy target distribution over the course of variational
boosting using the FKL and RKL divergences.

6.2 SIMULATION 2: WELL-SEPARATED MODES

We next demonstrate the performance of boosting with the
FKL on a distribution with a large number of well-separated
modes. We set as the target distribution a 2-dimensional
Gaussian mixture model (GMM) with 20 components, pre-
viously used by Ma et al. [2019].

The log-residual in Fig. 4 demonstrates the sequential im-
provement of our approximation. Moment estimation results
for this experiment can be found in Fig. 1 in the Appendix.
Overall, boosting with the FKL effectively improves both
moment estimation and the actual FKL, and outperforms
the RKL as the number of boosting iterations increases.

7 REAL DATA EXPERIMENTS

We evaluate the performance of the proposed method when
applied to Bayesian linear regression (BLR) and Bayesian
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Figure 3: Log density plots of the result log qk (blue, solid) of FKL boosting on the Cauchy target (log p) (red, solid) . The
log-residual (log p/q)(green, dashed) is indicative of the IS variance (from left to right: boosting iterations 1, 5, and 10).

Figure 4: Log residual (log p/qk) plots of for FKL boosting on a 2-dimensional GMM of 20 components [Ma et al., 2019].

neural networks (BNNs) using a Gaussian prior and a heavy
tailed prior. We use four datasets from UCI [Dua and Graff,
2017] (Table 1 in Appendix E). We split each dataset into
twenty randomly drawn 90%/10% train/test splits, which
we denote Dtrain = {xi, yi}Ntrain

i=1 and Dtest = {xi, yi}Ntest
i=1 ,

with input xi and output yi. We report the mean and std. dev.
of results over all splits.

We demonstrate our proposed method with K = 1, 2, and 3.
We refer to fitting a single Gaussian, or K = 1, as FKL VI.
For runs with more than one boosting iteration, we initialize
the first component using the RKL, and optimize subsequent
iterations using the FKL (as described in Section 4.4).

Optimization details: We use the ADAM optimizer
[Kingma and Ba, 2014] for each boosting iteration with
a fixed learning rate and compute gradients based on a fixed
number of samples using Autograd [Maclaurin et al., 2015].
At the end of each boosting iteration, mixture weights are
fully re-optimized using simplex-projected gradient descent
[Bubeck, 2014] based on the analytical gradient in Eq. (5).
Details about practical considerations and hyperparameters
can be found in Appendix E, and we include our code with
the submission.

Parameter initialization: We follow standard practice with
similar experiments (see e.g. [Miller et al., 2017]) where
the means of each component are initialized at zero and
the diagonal elements of the initial covariance matrix are
drawn from N (0, σ2) (σ is tuned as a hyperparameter, see

Appendix E.2). At the start of each boosting iteration, we
further apply an initialization heuristic which approximates
the mode of the residual by gradient descent on the remain-
der density. This requires a single sample per gradient step
and is run for 400 steps. Note that this initialization is sig-
nificantly simpler and less compute-intensive than prior
approaches which include a weighted EM algorithm [Miller
et al., 2017] and a random search over 10, 000 samples or
more [Campbell and Li, 2019].

Comparisons: We compare our approach to variational
inference (RKL VI) and variational boosting with 2 and
3 boosting iterations (RKL VB) [Miller et al., 2017]. For
the comparison to RKL VI and RKL VB, we use the same
parametrization, initialization, and optimization techniques
as for FKL VI and FKL VB. This might lead to discrepan-
cies compared to the published results [Miller et al., 2017];
however, keeping these details consistent better disentangles
the effect of the RKL vs. FKL optimization.

We also compare to directly sampling from the target dis-
tribution using Hamiltonian Monte Carlo (HMC) [Neal,
2011], implemented using the TensorFlow Probability li-
brary [Dillon et al., 2017]. We additionally ran 3 HMC
chains in parallel and averaged the results, similar to [Hoff-
man and Ma, 2020]. Results were comparable between 1
and 3 HMC chains, and we include the results for 3 chains
in Appendix E.
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Method Wine (d = 14) Boston (d = 16) Concrete (d = 11) Power (d = 7)
HMC -1.002 (± 0.012) -2.923 (± 0.035) -3.780 (± 0.013) -2.923 (± 0.006)

RKL VI -1.013 (± 0.013) -2.947 (± 0.035) -3.798 (± 0.013) -2.921 (± 0.006)
RKL VB 2 -1.014 (± 0.011) -2.924 (± 0.033) -3.787 (± 0.014) -3.067 (± 0.003)
RKL VB 3 -1.007 (± 0.012) -2.945 (± 0.039) -3.800 (± 0.015) -3.073 (± 0.003)

FKL VI -0.998 (± 0.012) -2.905 (± 0.036) -3.775 (± 0.014) -2.920 (± 0.005)
FKL VB 2 -0.998 (± 0.012) -2.906 (± 0.036) -3.762 (± 0.013) -2.921 (± 0.006)
FKL VB 3 -0.998 (± 0.013) -2.904 (± 0.036) -3.762 (± 0.013) -2.921 (± 0.006)

Table 2: Predictive log probabilities on test for BLR with Gaussian prior (mean ± standard error over 20 train/test splits).

7.1 BLR AND BNNS WITH GAUSSIAN PRIORS

We follow the experimental setup of [Miller et al., 2017]
for both BNNs and BLR. We place a Gaussian prior over
each weight in the model, and an inverse Gamma prior on
the variances:

α ∼ Gamma(1, 0.1); τ ∼ Gamma(1, 0.1);

wi ∼ N (0, 1/α); y|x,w, τ ∼ N (φ(x,w), 1/τ),

where w is the set of weights, and φ(x,w) is either a lin-
ear function of x (BLR) or a multi-layer perception (BNN).
For our BNNs, we set φ to be a one-hidden layer neural
network with 50 hidden units and ReLU activation func-
tion, as done by [Miller et al., 2017, Hernández-Lobato and
Adams, 2015]. The full set of parameters that we sample is
θ = (w,α, τ). We use the posterior predictive distribution
to compute the distribution for a given new input x:

p(y|x,Dtrain) =

∫
p(y|x, θ)p(θ|Dtrain)dθ. (14)

We use importance sampling to estimate this posterior pre-
dictive distribution given S samples θs ∼ q(θ):

p(y|x,Dtrain) ≈ 1

S

S∑
i=1

p(θs|Dtrain)

q(θs)
p(y|x, θs), (15)

where q(θ) is the proposal distribution fit to p(θ|Dtrain) using
either forward KL refinement (our method, FKL VB) or
reverse KL refinement (RKL VB, [Miller et al., 2017]).

Note that Miller et al. [2017] does not use importance sam-
pling to estimate the posterior predictive distribution. We
add importance weights here as an ablation to limit our anal-
ysis to the difference between FKL and RKL optimization.
For completness, we report the estimates without IS using
RKL VB in Appendix E. For comparing to HMC, we do
not use importance sampling due to lack of an explicit den-
sity function, and instead compute (Eq. 14) by averaging
over direct HMC samples from the posterior distribution
p(θ|Dtrain) (Eq. (13) in Appendix E).

As our final evaluation metric, we report the average predic-
tive log probabilities on held-out test data:

1

|Dtest|
∑

x,y∈Dtest

log p(y|x,Dtrain). (16)

7.2 BLR WITH HEAVY TAILED PRIORS

In addition to the Gaussian prior, we also perform Bayesian
linear regression with a heavy tailed prior. Following [Camp-
bell and Li, 2019] we place a T2 prior on the weights. We
use the same inverse Gamma prior on the variance:

τ ∼ Gamma(1, 0.1); w ∼ T2(0, ATA);

y|x,w, τ ∼ N (φ(x,w), 1/τ),

where A is fixed, and each entry is drawn i.i.d. before the
optimization process: Aij ∼ N (0, 1). For these BLR ex-
periments, φ(x,w) is a linear function of x with weight
parameters w. The full set of parameters that we sample
is θ = (w, τ). We estimate the same posterior predictive
distribution in Eq. (14) using IS in Eq. (15), and report the
average predictive log probabilities from Eq. (16).

8 DISCUSSION

Tables 2, 3, and 4 present the results on the UCI datasets for
BLR with a Gaussian prior, BNNs with a Gaussian prior,
and BLR with a heavy tailed prior, respectively. The lowest
mean predictive log probability is highlighted in bold.

Minimizing the FKL divergence outperforms RKL across all
four datasets and three experimental settings. This demon-
strates the inadequacy of RKL-based VI for the construction
of IS proposals. This should incentivize wider adoption of
the FKL divergence, especially when the downstream task
extends beyond simple prediction and requires a calibrated
estimation of the posterior predictive distribution. FKL out-
performing HMC, the gold standard of Bayesian inference,
on three of the four datasets across all settings is another
promising result.

However, we observe a decay in the held-out log-likelihood
as more components are added for certain datasets (e.g. FKL
VB with BNN on Boston). This is consistent with prior
variational boosting results on the same datasets [Miller
et al., 2017] and typically signals an over-fitting problem.
Therefore, it is worth emphasizing that the convergence
analysis of Section 5 is limited to optimization guarantees
and does not extend to learning or generalization guarantees.
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Method Wine (d = 653) Boston (d = 753) Concrete (d = 503) Power (d = 303)
HMC -0.990 (± 0.014) -2.709 (± 0.101) -3.281 (± 0.017) -2.817 (± 0.007)

RKL VI -0.993 (± 0.014) -2.858 (± 0.020) -3.230 (± 0.015) -2.851 (± 0.008)
RKL VB 2 -0.990 (± 0.015) -2.832 (± 0.018) -3.253 (± 0.015) -2.945 (± 0.009)
RKL VB 3 -0.981 (± 0.012) -2.744 (± 0.011) -3.255 (± 0.017) -3.002 (± 0.012)

FKL VI -0.991 (± 0.015) -2.677 (± 0.011) -3.328 (± 0.019) -2.872 (± 0.012)
FKL VB 2 -0.979 (± 0.017) -2.779 (± 0.012) -3.193 (± 0.016) -2.870 (± 0.008)
FKL VB 3 -0.967 (± 0.014) -2.801 (± 0.012) -3.192 (± 0.016) -2.851 (± 0.009)

Table 3: Predictive log probabilities on test for BNNs with Gaussian prior (mean ± standard error over 20 train/test splits).

Method Wine (d = 13) Boston (d = 15) Concrete (d = 10) Power (d = 6)
HMC -1.004 (± 0.012) -2.962 (± 0.033 ) -3.808 (± 0.026) -2.916 (± 0.005)

RKL VI -1.011 (± 0.013) -2.924 (± 0.037) -3.789 (± 0.013) -2.924 (± 0.006)
RKL VB 2 -1.007 (± 0.014) -2.944 (± 0.031) -3.788 (± 0.012) -3.028 (± 0.003)
RKL VB 3 -1.008 (± 0.012) -2.940 (± 0.035) -3.796 (± 0.014) -3.005 (± 0.004)

FKL VI -0.993 (± 0.013) -2.904 (± 0.036) -3.775 (± 0.014) -2.940 (± 0.005)
FKL VB 2 -0.973 (± 0.009) -2.907 (± 0.035) -3.773 (± 0.015) -2.921 (± 0.006)
FKL VB 3 -0.975 (± 0.009) -2.906 (± 0.036) -3.774 (± 0.015) -2.922 (± 0.006)

Table 4: Predictive log probabilities on test for BLR with heavy tailed prior (mean ± standard error over 20 train/test splits).

Computational considerations One main advantage of
RKL methods is the low computational overhead, especially
as compared to MCMC methods. In our experiments we
observed that, even in high dimensions, there do not seem to
be significant computational differences between optimizing
the FKL objective and optimizing the RKL objective. In fact,
our reported results compare RKL and FKL methods for the
same number of IS samples and optimization iterations. See
Appendix E for exact hyperparameter values and wall clock
times.

9 CONCLUSION

Overall, we propose a principled algorithm that combines
the strengths of importance sampling and variational infer-
ence to efficiently approximate multimodal and possibly
heavy-tailed targets. Unlike prior work that relies on RKL,
our minimization of FKL aligns with the analysis of the
variance of IS [Chatterjee and Diaconis, 2018] which guar-
antees an optimal proposal distribution asymptotically. One
challenge for this approach is the variance of the SNIS esti-
mate of the forward KL divergence. Developing variance-
reduction schemes for these types of objectives is an open
research problem. Nonetheless, existing techniques for re-
sampling or smoothing the importance weights can immedi-
ately apply to our proposed method.
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