
TreeBERT: A Tree-Based Pre-Trained Model for Programming Language
Supplementary Material

Xue Jiang1 Zhuoran Zheng2 Chen Lyu*1 Liang Li1 Lei Lv1

1School of Information Science and Engineering, Shandong Normal University, China
2School of Computer Science and Engineering, Nanjing University of Science and Technology, China

In this supplemental material, we first introduce the code
tokenization in Section 1. Second, we provide detailed sta-
tistical information of datasets used for the experiment in
Section 2. Then, we describe the metrics used to evaluate
TreeBERT in Section 3. Finally, we show the detailed results
of some experiments in Section 4.

1 CODE TOKENIZATION

Due to the strong structure of code, indentation is meaning-
ful in Python, which cannot be removed simply by splitting
code. Follow [Rozière et al., 2020], we use "INDENT" and
"DEDENT" instead of indentation to indicate the beginning
and end of a block of code. "NEWLINE" is used to repre-
sent line breaks. Spaces are replaced with "_" in strings, and
code comments are removed. An example of a processed
Python code snippet is shown in Figure 1.

Figure 1: Example of code tokenization.

*Corresponding author (lvchen@sdnu.edu.cn)

2 DATA STATISTICS

Table 1 shows detailed statistics of the four datasets used
for code summarization, namely, ETH Py1501, Java-small2,
Java-med3, and Java-large4. Table 2 shows detailed statis-
tics for two datasets, a Java dataset5 from DeepCom [Hu
et al., 2018] for code documentation and a C# dataset6 from
CodeNN [Iyer et al., 2016] for evaluating the performance
of the model on pre-training unseen language.

Table 1: Statistics of datasets used for code summarization.

ETH
Py150

Java-
small

Java-
med

Java-
large

Example Number(train) 143,310 665,115 3,004,536 15,344,512
Example Number(valid) 33,878 23,505 410,699 320,866
Example Number(test) 35,714 56,165 411,751 417,003
Avg.number of Paths(train) 130 171 187 220
Avg.path length(train) 19 21 23 22
Avg.comments length(train) 3 3 3 3

3 EVALUATION METRICS

In this section, we provide details of the calculation of pre-
cision, recall, and F1 score used in the code summarization
and BLEU used in code documentation.

Precision, Recall, F1-Score In code summarization, we
do not use accuracy and BLEU since the generated func-

1https://www.sri.inf.ethz.ch/py150
2https://s3.amazonaws.com/code2seq/

datasets/java-small.tar.gz
3https://s3.amazonaws.com/code2seq/

datasets/java-med.tar.gz
4https://s3.amazonaws.com/code2seq/

datasets/java-large.tar.gz
5https://github.com/xing-hu/DeepCom/blob/

master/data.7z
6https://github.com/sriniiyer/codenn/

tree/master/data/stackoverflow/csharp

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

https://www.sri.inf.ethz.ch/py150
https://s3.amazonaws.com/code2seq/datasets/java-small.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-small.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-med.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-med.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz
https://github.com/xing-hu/DeepCom/blob/master/data.7z
https://github.com/xing-hu/DeepCom/blob/master/data.7z
https://github.com/sriniiyer/codenn/tree/master/data/stackoverflow/csharp
https://github.com/sriniiyer/codenn/tree/master/data/stackoverflow/csharp


Table 2: Statistics for DeepCom’s Java dataset and Co-
deNN’s C# dataset.

Java C#

Example Number(train) 450,124 52,812
Example Number(valid) 55,310 6,601
Example Number(test) 54,871 6,602
Avg.number of Paths(train) 212 207
Avg.path length(train) 19 16
Avg.comments length(train) 12 10

tion names are composed of subtokens and are relatively
short (average length of 3 subtokens). Following Alon et al.
[2019b,a]., we use precision, recall, and F1 as metrics. The
calculation is as follows.

Precision =
TP

TP + FP

Recall =
TP

FN

F1 =
2 · Precision ·Recall

Precision + Recall

When the predicted subtoken is in the function name, we
treat it as a true positive (TP ). When the predicted subtoken
is not in the function name, we treat it as a false positive
(FP ). When the subtoken is in the function name but is not
predicted, we treat it as a false negative (FN ). The label
"UNK" is counted as FN ; thus, the prediction of this word
will reduce the recall value.

BLEU The BLEU score can be used to measure the sim-
ilarity between the generated comments and the reference
code comments at the token level, and it is calculated as
follows.

BLEU = BP · exp

(
N∑

n=1

wn · logpn
)

BP =

{
1, c > r,

e1−r/c, c ≤ r.

where the upper limit of N is taken as 4, i.e., at most 4-
grams are computed, wn = 1

N , and pn is ratio of the clauses
of length n in the candidate to those also in the reference.

In brevity penalty (BP), r denotes the length of the refer-
ence annotation and c denotes the length of the annotation
generated by the model.

4 MORE EXPERIMENTAL RESULTS

Figure 2 shows the visualization results of the F1 score of
code summarization. Table 3 gives the detailed results of
the ablation study.

Figure 2: code summarization visualization results for F1
scores on different datasets.

Table 3: Results of the ablation study.

Model BLEU ∆BLEU

TreeBERT 20.49 -
No PMLM 14.12 -6.37
No NOP 16.71 -3.78
No Node Position Embedding 20.25 -0.24
Randomly Masking Nodes 14.81 -5.68
Only Masking Value Nodes 18.25 -2.24

References

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
code2seq: Generating sequences from structured repre-
sentations of code. In 7th International Conference on
Learning Representations, ICLR, 2019a.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
code2vec: learning distributed representations of code.
Proc. ACM Program. Lang., 3:40:1–40:29, 2019b.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep
code comment generation. In Proceedings of the 26th
Conference on Program Comprehension, ICPC, 2018.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke
Zettlemoyer. Summarizing source code using a neural at-
tention model. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL,
2016.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot,
and Guillaume Lample. Unsupervised translation of pro-
gramming languages. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2020.


	Code Tokenization
	Data Statistics
	Evaluation Metrics
	MORE EXPERIMENTAL RESULTS

