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Abstract

Recurrent Neural Networks (RNNs) are powerful
models with the ability to model sequential data.
However, they are often viewed as black-boxes and
lack in interpretability. Deep unfolding methods
take a step towards interpretability by designing
deep neural networks as learned variations of itera-
tive optimization algorithms to solve various signal
processing tasks. In this paper, we explore theo-
retical aspects of deep unfolding RNNs in terms
of their generalization ability. Specifically, we de-
rive generalization error bounds for a class of deep
unfolding RNNs via Rademacher complexity anal-
ysis. To our knowledge, these are the first general-
ization bounds proposed for deep unfolding RNNs.
We show theoretically that our bounds are tighter
than similar ones for other recent RNNs, in terms
of the number of timesteps. By training models in
a classification setting, we demonstrate that deep
unfolding RNNs can outperform traditional RNNs
in standard sequence classification tasks. These
experiments allow us to relate the empirical gen-
eralization error to the theoretical bounds. In par-
ticular, we show that over-parametrized deep un-
folding models like reweighted-RNN achieve tight
theoretical error bounds with minimal decrease in
accuracy, when trained with explicit regularization.

1 INTRODUCTION

The past few years has seen an undeniable success of Recur-
rent Neural Networks (RNNs) in applications ranging from
machine translation [Bahdanau et al., 2015] and image cap-
tioning [Karpathy and Fei-Fei, 2017] to speech processing
[Oord et al., 2016]. Despite their impressive performance,
existing approaches are typically designed based on heuris-
tics of the task and rely on engineering experience. As a

result, such models lack in theoretical understanding and
interpretability. A step towards post-hoc interpretability of
RNNs was made by Karpathy et al. [2015], where they
observed the advantages of internal states of the long short-
term memory (LSTM) [Hochreiter and Schmidhuber, 1997]
over traditional RNNs to model interpretable patterns in the
input data; this study was further complemented by Gold-
berg [2015]. Subsequent works in explainable deep learning
have also proposed methods to explain the decision-making
process of a trained LSTM for a given prediction, in terms
of the most influential inputs [Li et al., 2016, Arras et al.,
2019].

Efforts toward a theoretical understanding of RNNs also
involve the derivation of bounds on the generalization er-
ror, i.e., the difference between the empirical loss and the
expected loss. Such bounds rely on measures—such as the
Rademacher complexity [Bartlett and Mendelson, 2002],
the PAC-Bayes theory [McAllester, 2003], the algorithm
stability [Bousquet and Elisseeff, 2002] and robustness [Xu
and Mannor, 2012]—and aim at understanding how accu-
rately a model is able to generalise to unseen data in relation
to the optimization algorithm used for training, the network
architecture, or the underlying data structure.

Generalization error bounds (GEBs) for RNN models
were studied by Arora et al. [2018], Wei and Ma [2019]
and Akpinar et al. [2019]. The theoretical result by Arora
et al. [2018] for low-dimensional embeddings using LSTMs
models was derived for classification tasks. That work
showed an interesting property of embeddings such as
GloVe and word2vec, that is, forming a good sensing matrix
for text leads to better representations than those obtained
with random matrices. The data-dependent sample complex-
ity of deep neural networks was studied by Wei and Ma
[2019]. Unlike the existing Rademacher complexity bounds
that depend on norms of the weight matrices and depend
exponentially on the model depth [Bartlett and Mendelson,
2002, Dziugaite and Roy, 2017, Neyshabur et al., 2018], the
study by Wei and Ma [2019] derived tighter Radermacher
bounds with the consideration of additional data-dependant
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properties controlling the norms of hidden layers and the
norms of the Jacobians of each layer with respect to all
previous layers. The derivation methods by Wei and Ma
[2019] were extended to provide GEBs for RNNs scaling
polynomial with respect to the depth of the model. Specifi-
cally, generalization abilities were explored by Akpinar et al.
[2019], where explicit sample complexity bounds for single
and multi-layer RNNs were derived.

The focus of this work is in studying how model
interpretability—by means of designing networks based
on deep unfolding—interacts with model generalization
capacity. Deep unfolding methods design deep models as
unrolled iterations of optimization algorithms; a key result
in this direction is the learned iterative shrinkage thresh-
olding algorithm (LISTA) [Gregor and LeCun, 2010] that
solves the sparse coding problem. Iterative optimization al-
gorithms are usually highly interpretable because they are
developed via modeling the physical processes underlying
the problem and/or capturing prior domain knowledge [Lu-
cas et al., 2018]. Hence, deep networks designed by deep
unfolding capture domain knowledge and promote model-
based structure in the data; in other words, such networks
can be naturally interpreted as a parameter optimized al-
gorithm [Monga et al., 2019]. Deep unfolding has been
used to develop interpretable RNNs: SISTA-RNN [Wis-
dom et al., 2017] is an extension of LISTA that solves a
sequential signal reconstruction task based on sparse mod-
elling with the aid of side-information. Alternatively, Le
et al. [2019] designed `1-`1-RNN by unfolding a proximal
method that solves an `1-`1 minimization problem [Mota
et al., 2017]. In our recent work [Luong et al., 2021], we
proposed reweighted-RNN, which unfolds a reweighted ver-
sion of the `1-`1 minimization problem and incoporates
additional weights so as to increase the model expressivity.
Deep unfolding RNNs excel in solving the underlying signal
reconstruction tasks, outperforming traditional RNN base-
lines while having a substantially lower parameter count
than the LSTM or gated recurrent unit (GRU) [Cho et al.,
2014] models; however, their ability to leverage the sparse
structure of data as a means to solve traditional RNN tasks
(e.g., sequence classification) is relatively unexplored. Fur-
thermore, despite the progress in deep unfolding models,
their generalization ability has received no such attention;
particularly, no work exists studying the GEBs of deep un-
folding RNN models. In this paper, we study theoretical
aspects of deep unfolding RNNs by means of the GEBs.
We also benchmark deep unfolding RNNs in classification
problems and relate the empirical generalization error to the
theoretical one.

The contributions of this work are as follows:

• We derive generalization error bounds (GEB) for deep
unfolding RNNs by means of Rademacher complexity
analysis, by taking the reweighted-RNN model [Lu-
ong et al., 2021] as a prototype, which also subsumes

the `1-`1-RNN [Le et al., 2019]. We also present an
extension of the GEBs when the RNN are used in a clas-
sification setting. We show theoretically that the pro-
posed bounds are tighter than other recent lightweight
RNNs with generalization guarantees, namely, Spec-
tralRNN [Zhang et al., 2018] and FastGRNN [Kusupati
et al., 2018], in terms of number of time steps T .

• We assess the performance of deep unfolding RNNs
in classification settings, namely in speech command
detection and language modelling tasks. For the first
task, our results show that reweighted-RNN outper-
forms other lightweight RNNs, and that deep unfold-
ing RNNs are competitive with traditional RNN base-
lines (i.e., vanilla RNN, LSTM and GRU) while being
smaller in size. For the second task, we observe a signif-
icant improvement of reweighted-RNN over all other
models.

• By taking speech command detection as an example,
we show that the proposed GEB for reweighted-RNN is
tight and agrees with the empirical generalization gap.
This can be achieved when the model is sufficiently
regularized, while maintaining high classification ac-
curacy.

The remainder of this paper is as follows: Section 2 reviews
traditional stacked RNN models, followed by an introduc-
tion to deep unfolding RNNs. Section 3 presents the pro-
posed GEBs for deep unfolding RNNs, which is obtained by
studying the complexity of their latent representation stage.
The bound is then extended to the classification problem. In
Section 4, we experimentally compare reweighted-RNN to
other deep unfolding and traditional RNN models on clas-
sification tasks. We also evaluate the GEB experimentally
and relate the theoretical aspects to empirical observations.

2 BACKGROUND TO RNN MODELS

2.1 STACKED RNNS

For each time step t = 1, . . . , T , the vanilla RNN recur-
sively updates the latent representations ht through linear
transformation of the input sample xt and the previous state
ht−1, followed by a non linear activation σ(·). To achieve
higher expressivity, one may use a stacked vanilla RNN [Pas-
canu et al., 2014] by juxtaposing multiple RNN layers. In
this setting, the representation h

(l)
t at layer l and time step t

is computed by

h
(l)
t =

 σ
(
V1h

(l)
t−1 + U1xt

)
, if l = 1,

σ
(
Wlh

(l−1)
t + Vlh

(l)
t−1

)
, if l > 1,

(1)

where U1, Wl, Vl are the weight matrices learned per layer
l and σ(·) is the activation function. For sequence classifi-
cation tasks, RNN models can be trained end-to-end with a
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softmax-activated linear layer to obtain output class prob-
abilities. It is recognized that the vanilla RNN is prone to
gradient vanishing, resulting in training instabilities in the
case of long data sequences and deep architectures. Popular
RNN variants including LSTM [Hochreiter and Schmidhu-
ber, 1997] and GRU [Cho et al., 2014] alleviate this issue by
leveraging gating mechanisms to better capture long-term
dependencies in the data. More recent lightweight models
include FastGRNN by Kusupati et al. [2018] and Spectral-
RNN [Zhang et al., 2018] make use of weight factorization
to achieve low parameter count; such models improve the
stability of deeper RNNs and are highly competitive with
standard RNNs on various prediction tasks.

2.2 DEEP UNFOLDING RNNS

Unlike traditional RNNs, the considered deep unfolding
RNNs follow a signal reconstruction model with low-
complexity data priors. How these models generalize to
classification tasks, e.g. by training a linear classifier on
the latent representation h

(d)
T , remains an open problem. In

what follows, we review our recent reweighted-RNN [Lu-
ong et al., 2021] that unfolds a proximal algorithm to solve
a generic sequential signal reconstruction problem.

2.2.1 Reweighted-RNN

Problem Formulation: Consider the problem of recon-
structing a sequence of signals st ∈ Rn0 , t = 1, 2, . . . , T ,
from a sequence of noisy measurement vectors xt =
Ast + ηt where xt ∈ Rn,A ∈ Rn×n0 (n� n0). Accord-
ing to domain knowledge in sparse signal reconstruction
with side information and video-frame reconstruction [Deli-
giannis et al., 2013, Mota et al., 2017], it is assumed that:
(i) st has a sparse representation ht ∈ Rh in a dictionary
D ∈ Rn0×h, that is, st = Dht; and (ii) the difference of
two successive sparse representations is also sparse up to an
affine transform P ∈ Rh×h promoting the temporal correla-
tion, i.e, ht−Pht−1 is small in the `1-norm sense. Assump-
tions (i) and (ii) define a sequential `1-`1 reconstruction
problem; it is however recognized that `1-`1 minimization
can be improved by reweighted minimization [Candès et al.,
2008, Van Luong et al., 2018], which leads to sparser repre-
sentations. The reweighting scheme introduces the positive
weights g ∈ Rh to individually penalize the magnitude of
each element of ht and ht − Pht−1. To further general-
ize, a reweighing matrix Z ∈ Rh×h is introduced as an
extra transformation of ht. The considered reweighted `1-`1
minimization problem is:

min
ht

{1

2
‖xt −ADZht‖22 + λ1‖g ◦ Zht‖1

+ λ2‖g ◦ (Zht −Pht−1)‖1
}
, t = 1, . . . , T.

(2)

Algorithm 1: Reweighted `1-`1 algorithm for sequential
signal reconstruction.

1 Input: Measurements x1, . . . ,xT , measurement
matrix A, dictionary D, affine transform P,
initial h

(d)
0 ≡ h0, reweighting matrices Z1, . . . ,Zd

and vectors g1, . . . , gd, c, λ1, λ2.
2 Output: Sequence of sparse codes h1, . . . ,hT .
3 for t = 1,. . . ,T do
4 h

(0)
t = Ph

(d)
t−1

5 for l = 1 to d do
6 u =

[Zl − 1
cZlD

TATAD]h
(l−1)
t + 1

cZlD
TATxt

7 h
(l)
t = Φλ1

c gl,
λ2
c gl,Ph

(d)
t−1

(u)

8 end
9 end

10 return h
(d)
1 , . . . ,h

(d)
T

The first term in Problem (2) corresponds to the data fi-
delity term and λ1, λ2 > 0 are regularization parameters
controlling the weighted-`1 penalization terms. Note that
the presence of Z in Problem (2) is a deviation from the
reweighted minimization scheme of Candès et al. [2008].
Nevertheless, the study in [Luong et al., 2021] shows that Z
enables the unfolded RNN to achieve higher expressivity by
following more closely the vanilla RNN architecture.

Proximal Algorithm: We use a proximal gradient
method [Beck and Teboulle, 2009] to solve Problem (2),
which is given in Algorithm 1. At iteration l, the algo-
rithm performs a proximal gradient update in two steps:
first, by updating h

(l−1)
t using the gradient of the fidelity

term of Problem (2). Second, it applies the proximal op-
erator Φλ1

c gl,
λ2
c gl,~~~

(u) element-wise to the result, with
~~~ ≡ Pht−1 denoting the side-information from the pre-
vious time-step.

The closed-form solution of the proximal operator is given
in the supplementary material and we refer to Luong et al.
[2021] for extended proofs. Fig. 1 depicts the proximal
operators for ~ ≥ 0, which is essentially a 2-plateaus soft-
thresholding function. Notice that each entry of gl controls
the width of the two thresholds, independently for each
element. The plateau at height ~ in Fig. 1 promotes the
correlation of the signal with the side information.

Deep Unfolded RNN: The reweighted-RNN model [Lu-
ong et al., 2021] is build by unrolling Algorithm 1 across the
iterations l = 1, . . . , d (yielding the hidden layers) and time
steps t = 1, . . . , T . The proximal operator Φλ1

c gl,
λ2
c gl,~~~

(u)

also serves as the non-linear activation function. The form
of this function depends on the learnable parameters λ1, λ2,
c, and gl, ∀l = 1, . . . , d, allowing reweighted-RNN to learn
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Figure 1: The generic form of the proximal operator
Φλ1

c gl,
λ2
c gl,~

(u) for Algorithm 1 (particular case of ~ ≥ 0)
- but also the activation function in the reweighted-RNN.
Note that per unit per layer gl leads to a different activation
function.

per-neuron adjustable activations. In summary, the layers of
reweighted-RNN realise the following updates:

h
(l)
t =

 Φλ1
c g1,

λ2
c g1,Ph

(d)
t−1

(
W1h

(d)
t−1 + U1xt

)
, if l = 1,

Φλ1
c gl,

λ2
c gl,Ph

(d)
t−1

(
Wlh

(l−1)
t + Ulxt

)
, if l > 1,

(3)
where Ul, W1, Wl are defined as

Ul =
1

c
ZlD

TAT,∀l, (4)

W1 = Z1P−
1

c
Z1D

TATADP, (5)

Wl = Zl −
1

c
ZlD

TATAD, l > 1. (6)

and the trainable parameters of the model are Θ =
{A,D,P,h0,Z1, . . . ,Zd, g1, . . . , gd, c, λ1, λ2} with the
parameters A,D and P corresponding to the sensing ma-
trix, the sparsifying dictionary and the correlation matrix,
respectively. An illustration of reweighted-RNN is given in
Fig. 2(a), in contrast to the stacked vanilla RNN in Fig. 2(b):
it can be observed that reweighted-RNN is characterized
by skip-connections since the input xt is incorporated into
each layer, while the side information Ph

(l)
t−1 modulates the

activation function Φλ1
c gl,

λ2
c gl,~~~

.

2.2.2 `1-`1-RNN

`1-`1-RNN was proposed by Le et al. [2019] as a deep
unfolding RNN that learns the iterations of a proximal algo-
rithm to solve an `1-`1 minimization problem, that is, Prob-
lem (2) with Z = I and g = 1. Thus, `1-`1-RNN can be
seen as instance of reweighted-RNN with update equations
obtained by setting Z1, . . . ,Zd = I and g1, . . . , gd = 1
in (3), (4), (5), (6). As a result, one layer of `1-`1-RNN
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Figure 2: The architecture of (a) reweighted-RNN vis-à-vis
(b) the vanilla stacked RNN [Pascanu et al., 2014].

updates h
(l)
t according to:

h
(l)
t =

 φλ1
c ,

λ2
c ,Ph

(d)
t−1

(
W1h

(d)
t−1 + U1xt

)
, if l = 1,

φλ1
c ,

λ2
c ,Ph

(d)
t−1

(
W2h

(l−1)
t + U1xt

)
, if l > 1,

(7)

with U1 =
1

c
DTAT , (8)

W1 = P− 1

c
DTATADP, (9)

W2 = I− 1

c
DTATAD. (10)

`1-`1-RNN and reweighted-RNN have similar update equa-
tions and activation functions, to the difference that the
absence of a trainable weight Zl in `1-`1-RNN leads to
shared weights Wl and Ul, starting from l = 2, reducing
the overall expressivity of the model. Also, the shape of its
activation function cannot be controlled per element, since
gl is fixed to the all-ones.
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3 GENERALIZATION ERROR BOUNDS
FOR THE DEEP UNFOLDING RNNS

We briefly present the theoretical background regarding
Rademacher complexity and the related generalization error
bound (GEB). We then propose an upper bound of the em-
pirical Rademacher complexity of reweighted-RNN, along
with a similar bound for `1-`1-RNN which is subsumed by
the former. This bound is derived for the latent representa-
tion stage. We then formulate a GEB for the same models
when used in a classification setting, i.e., by appending a
single-layer linear classification layer to the models.

Notation: Let f (d)W : Rn 7→ Rh be the function computed
by a d-layer network with weight parametersW . The net-
work f (d)W maps an input sample xi ∈ Rn (from an input
space X) to an output yi ∈ Rh (from an output space Y), i.e.,
yi = f

(d)
W (xi). Let S denote a training set of size m, i.e.,

S = {(xi,yi)}mi=1 and E(xi,yi)∼S [·] denote an expectation
over (xi,yi) from S. The set S is drawn i.i.d. from a distri-
bution D, denoted as S ∼ Dm, over a space Z = X×Y. Let
F be a (class) set of functions. Let ` : F×Z 7→ R denote the
loss function and `◦F = {z 7→ `(f, z) : f ∈ F}. We define
the true loss and the empirical (training) loss by LD(f) and
LS(f), respectively, as follows:

LD(f) = E(xi,yi)∼D
[
`
(
f(xi),yi

)]
, (11)

and
LS(f) = E(xi,yi)∼S

[
`
(
f(xi),yi

)]
. (12)

The generalization error, calculated by LD(f) − LS(f),
measures how accurately a learned algorithm is able to
predict outcome values for unseen data.

Definition 3.1 (Empirical Rademacher Complexity). Let
F be a hypothesis set of functions (e.g., neural networks).
The empirical Rademacher complexity of F [Shalev-Shwartz
and Ben-David, 2014] for a training sample set S is defined
as follows:

RS(F) =
1

m
E

ε∈{±1}m

[
sup
f∈F

m∑
i=1

εif(xi)

]
, (13)

where ε = (ε1, ..., εm), here εi is independent uniformly
distributed random (Rademacher) variables from {±1}, ac-
cording to P[εi = 1] = P[εi = −1] = 1/2.

The GEB for the functional family F is derived based on the
Rademacher complexity in the following theorem:

Theorem 3.2. [Shalev-Shwartz and Ben-David, 2014, The-
orem 26.5] Assume that |`(f, z)| ≤ η for all f ∈ F and z.
Then, for any δ > 0, with probability at least 1− δ,

LD(f)− LS(f) ≤ 2RS(` ◦ F) + 4η

√
2 log(4/δ)

m
. (14)

It can be remarked that the bound in (14) depends on the
training set S, which is able to be applied to a number of
learning problems, e.g., regression and classification, given
a loss function `.

3.1 DERIVED GENERALIZATION ERROR
BOUNDS

The following theorem presents an upper bound on the em-
pirical Rademacher complexity of the family of functions
given by reweighted-RNN:

Theorem 3.3 (Empirical Rademacher Complexity of
reweighted-RNN). Let Fd,T : Rh × Rn 7→ Rh denote
the functional class of reweighted-RNN with T time steps,
where ‖Wl‖1,∞ ≤ αl, ‖Ul‖1,∞ ≤ βl, and 1 ≤ l ≤ d. As-
sume that the input data ‖Xt‖2,∞ ≤

√
mBx, and an initial

hidden state h0. Then,

RS(Fd,T ) ≤
√

2(4dT log 2 + log n+ log h)

m

·

√√√√( d∑
l=1

βlΛl

)2(ΛT0 − 1

Λ0 − 1

)2
B2

x + Λ2T
0 ‖h0‖2∞,

(15)

with Λl defined as follows: Λl =
d∏

k=l+1

αk with 0 ≤ l ≤

d− 1 and Λd = 1.

The proof of Theorem 3.3 is given in the supplementary
material. The Rademacher complexity in Theorem 3.3 can
be used in combination with the GEB of Theorem 3.2 for any
choice of Lipschitz-continuous and bounded loss function. If
the complexity measure is small, the network can be learned
with a small generalization error. The bound in (15) is in the
order of the square root of the network depth dmultiplied by
the number of time steps T . It also depends on the logarithm
of the number of measurements n and the number of hidden
units h. It is worth mentioning that the second square root
in (15) only depends on the norm constraints and the input
training data, and it is independent of the network depth d
and the number of time steps T under the appropriate norm
constraints.

We also derive a similar bound for `1-`1-RNN considering
that it is an instance of reweighted-RNN (cf. Section 2.2.2)

Corollary 3.3.1 (The empirical Rademacher complexity
of `1-`1-RNN). Let Fd,T : Rh × Rn 7→ Rh denote the
functional class of `1-`1-RNN with T time steps, where
‖W1‖1,∞ ≤ α1, ‖W2‖1,∞ ≤ α2, ‖U1‖1,∞ ≤ β1, and
1 ≤ l ≤ d. Assume that the input data ‖Xt‖2,∞ ≤

√
mBx,
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initial hidden state h0. Then,

RS(Fd,T ) ≤
√

2(4dT log 2 + log n+ log h)

m

.

√√√√√√√β2
1

(αd2 − 1

α2 − 1

)2(αT1 αT (d−1)
2 − 1

α1α
(d−1)
2 − 1

)2
B2

x

+ α2T
1 α

2T (d−1)
2 ‖h0‖2∞.

(16)

By contrasting (15) with (16) under the assumption of
constrained weights, we see that the complexity of `1-
`1-RNN has a polynomial dependence on α1, β1 and
α2 (the norms of first two layers), whereas the complex-
ity of reweighted-RNN has a polynomial dependence on
α1, . . . , αd and β1, . . . , βd (the norms of all layers). This
over-parameterization offers a flexible way to control the
generalization error of reweighted-RNN.

A comparison can be made between our bounds and the ones
proposed by Zhang et al. [2018] for SpectralRNN and Kusu-
pati et al. [2018] for FastRNN (the non-gated version of
FastGRNN). Overall, all bounds, including ours, exhibit
a T -exponential dependency on the weight norms, which
suggests that regularization mechanisms must be used to to
achieve low model capacity and tight generalization guaran-
tees. If we assume that weights are bounded so as to neglect
the T -exponential dependency, the GEB of SpectralRNN
is still dependent on T 2. Likewise, Kusupati et al. [2018]
shows that the GEB of FastRNN can be made linear in T
by restricting the range of some of the model’s parameters.
With constrained weights, our GEBs depends on

√
T , mean-

ing that our bounds are tighter in terms of the number of
time steps.

3.2 EXTENSION TO CLASSIFICATION

We present an extension of our bounds for the linear classifi-
cation task with c classes using the final latent vector h

(d)
T as

input. We particularize the GEB for the ramp loss rγ , which
is paramaterized by γ > 0 and defined as

rγ(x) =


0, x < −γ,
1 + x

γ , −γ ≤ x ≤ 0,

1, 0 < x.

(17)

In practice, we evaluate rγ on a data sample y with ground-
truth label c using the classification margin M(y, c) =
y[c]−maxc′ 6=c y[c′] by computing rγ(−M(y, c)). For con-
venience, we define `cγ(y) ≡ rγ(−M(y, c)). Intuitively,
`cγ(y) penalizes samples that are classified incorrectly or
correctly with low margin. It can be noted that `cγ(y) is
uniformly bounded by η = 1 and is 1

γ -Lipschitz, which is
required by the assumptions of Theorem 3.2.

We also assume that the classifier output y is given
by Yh

(d)
T ≡ y(h

(d)
t ) with Y ∈ Rc×h; it follows

that y(h
(d)
T ) is ρ-Lipschitz on its input with ρ =

min(maxi ‖Yi‖2 ,maxi ‖Yi‖1) where Yi denotes the ith

row of Y. Following these properties and by using the con-
traction lemma [Shalev-Shwartz and Ben-David, 2014], The-
orem 3.3 can be reformulated into the following proposition:

Proposition 3.4 (Generalization Error Bound Extended to
the RNN with Linear Classifier). Consider the functional
family of classifiers F = {`cγ ◦ y ◦ f : X 7→ R | f ∈ Fd,T }
obtained by composing reweighted-RNN (or `1-`1-RNN)
with the linear classifier y = Yh

(d)
T and with the `cγ loss.

Consider ρ = min(maxi ‖Yi‖2 ,maxi ‖Yi‖1) where Yi

denotes the ith row of Y. Then,

LD,γ(f)− LS,γ(f) ≤ 2ρ

γ
RS(Fd,T ) + 4

√
2 log(4/δ)

m
.

(18)

4 EXPERIMENTAL RESULTS

In this section, we benchmark deep unfolding RNNs, specif-
ically reweighted-RNN, `1-`1-RNN and SISTA-RNN, on
a speech command classification task using the Google-12
and Google-30 datasets [Warden, 2018] and on a language
modelling task using the Wikitext2 dataset [Merity et al.,
2016]. A comparison is made with various RNN models in-
cluding the vanilla RNN, LSTM and GRU baselines, and the
lightweight SpectralRNN and FastGRNN models. Although
deep unfolding RNNs have been traditionally used for sig-
nal reconstruction tasks, our experiments show promising
results in solving traditional RNN tasks, with reweighted-
RNN achieving superior performance. Finally, we relate the
experimental generalization gap observed on the Google-30
dataset with the derived GEB using the `cγ loss defined in
Section 3.2 and an appropriate weight regularization scheme.
Our theoretical bound is shown to follow the empirical gen-
eralization performance of reweighted-RNN.

4.1 EXPERIMENTAL SETUP

Concerning reweighted-RNN, the overcomplete dictio-
nary D is initialized according to a random uniform distribu-
tion, the weights Zl, ...,Zd and P are initialized to the iden-
tity I and the reweighing vectors g1, ..., gd to the all-ones
vectors. We initialize {c, λ1, λ2} to {1.0, 0.003, 0.02}. The
measurement operator A is fixed to I. We add a trainable
weight matrix Y ∈ Rnc×h to obtain classification scores
based on the last hidden state according to y = Yh

(d)
T with

nc corresponding to the number of classes (or the number
of tokens in the case of language modeling). For all models
in general, we use h = 100 hidden units and varying hidden
layers d = {1, 2, 3, 4, 5, 6}. Models are trained in PyTorch
by optimizing the cross-entropy loss using the Adam opti-
mizer. The initial learning rate is set to 3×10−4 and follows
a step decay policy with a factor 0.3 every 50 epochs, except
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Table 1: Test accuracy on the Google-12 dataset for differ-
ent network depths d. (a): RNN baselines, (b): lightweight
RNNs, (c): deep unfolding RNNs

Model d=1 d=2 d=3 d=4 d=5 d=6

(a)
RNN 88.60 89.40 88.78 89.46 90.48 90.86

LSTM 90.42 91.30 92.24 91.30 92.02 91.46
GRU 91.07 92.05 92.28 92.24 92.15 90.94

(b) SpectralRNN 89.80 91.20 91.20 91.20 91.50 91.80
FastGRNN 91.21 91.34 91.42 91.53 91.66 91.72

(c)
SISTA-RNN 90.14 90.88 91.12 91.50 92.02 92.12
`1-`1-RNN 90.27 91.02 91.34 91.78 92.14 92.20

reweighted-RNN 90.49 91.30 91.23 91.66 92.37 92.41

Table 2: Test accuracy on the Google-30 dataset for differ-
ent network depths d. (a): RNN baselines, (b): lightweight
RNNs, (c): deep unfolding RNNs

Model d=1 d=2 d=3 d=4 d=5 d=6

(a)
RNN 35.26 38.27 45.28 47.80 48.90 54.27

LSTM 92.14 93.83 93.69 93.80 92.68 92.48
GRU 91.60 92.77 92.85 92.51 92.86 91.82

(b) SpectralRNN 91.30 91.81 92.00 92.17 93.50 93.72
FastGRNN 89.34 88.65 90.68 91.51 92.56 93.51

(c)
SISTA-RNN 92.18 92.50 93.17 93.22 93.64 93.78
`1-`1-RNN 92.32 92.78 93.05 93.70 93.80 93.92

reweighted-RNN 92.51 92.95 93.97 93.81 94.10 94.00

for GRU and LSTM which use an initial learning rate of
3×10−3. The batch size is set to 100 and models are trained
for 200 epochs. While deep unfolding RNNs have their own
layer-stacking schemes derived from unfolding minimiza-
tion algorithms, we use the stacking rule in [Pascanu et al.,
2014] to build deep networks for other RNN architectures.

4.2 SPEECH COMMAND DETECTION

The Google-12 and Google-30 datasets [Warden, 2018] con-
tain utterances of short speech commands with background
noise belonging to 12 and 30 classes, respectively. We adopt
the same featurization technique of Kusupati et al. [2018],
consisting of the standard log Mel-filter-bank featurization
with 32 filters on T = 99 time steps.

We report our test classification accuracies in Tables 1 and 2.
For Google-12, reweighted-RNN outperforms both the tradi-
tional RNN baselines and the lightweight models with 5 and
6 layers, whereas GRU achieves superior accuracy for lower
number of layers. For Google-30, reweighted-RNN achieves
higher performance almost systematically. The improved
accuracy of reweighted-RNN is due to the additional learn-
able weights Zl and the per-neuron adaptive activations,
which increase the expressivity of the model. The results are
also in line with the ablation study in [Luong et al., 2021],
which demonstrated that reweighted-RNN improves video-
frame reconstruction over other deep unfolding RNNs and
traditional ones. Although standard RNNs outperform deep
unfolding RNNs in some configurations, deep unfolding
architectures are still interesting in terms of model size, es-
pecially compared to the well-performing GRU and LSTM

Table 3: Test perplexity on the Wikitext dataset for differ-
ent network depths d. (a): RNN baselines, (b): lightweight
RNNs, (c): deep unfolding RNNs

Model d=1 d=2 d=3 d=4 d=5 d=6

(a)
RNN 145.6 140.3 137.3 134.2 122.3 121.2

LSTM 127.3 119.8 118.3 121.4 112.3 110.4
GRU 143.4 112.2 117.0 108.0 112.6 109.4

(b) SpectralRNN 69.1 68.5 67.4 65.8 63.1 59.8
FastGRNN 69.3 69.2 67.8 66.2 66.1 64.7

(c)
SISTA-RNN 128.2 121.6 116.3 109.3 94.3 88.7
`1-`1-RNN 67.7 67.3 65.6 63.7 59.5 56.6

reweighted-RNN 67.1 65.4 67.5 59.5 56.4 52.1

models. For d = 3 layers, we observe that reweighted-RNN,
`1-`1-RNN and SISTA-RNN have 48K, 17K and 8K param-
eters respectively, while FastGRNN and SpectralRNN have
43K and 50K parameters respectively. Finally, the vanilla
RNN, LSTM and GRU models have respectively 61K, 223K
and 169K parameters.

4.3 LANGUAGE MODELLING TASK

Language modeling (LMs) serves as a foundation for natural
language processing. The task involves predicting the n+1
token given a history of n such tokens. Trained LMs have
been applied to speech recognition [Yu and Deng, 2014],
machine translation [Cho et al., 2014], natural language
generation and as a feature extractor for general downstream
tasks [Peters et al., 2018]. LMs act at multiple levels of gran-
ularities, i.e., at word, sub-word or character level. While
the objective remains the same, each of them adds a layer of
complexity and challenges. We test the different RNNs on
the Wikitext2 dataset [Merity et al., 2016], a commonly used
dataset consisting of 2 million tokens. As the Wikipedia ar-
ticles are relatively long, capturing long range dependencies
is key to achieve reasonable performance. Table 3 shows
the test perplexity obtained for number of hidden layers
d. Similar to the previous experiments, we observe that
reweighted-RNN outperforms the other considered RNN
models.

4.4 ERROR BOUND EVALUATION

We perform an empirical evaluation of the generalization
error bound (GEB) for the classification task on the Google-
30 dataset. It can be observed that the GEB based on the
Rademacher complexity of reweighted-RNN in (15) de-
pends on the T -exponential of the norms of Wl. However,
in Section 4.2, models are trained without explicit regulariza-
tion of the weight’s norm, leading to potentially high GEBs
that do not provide useful guarantees on the performance of
the model on unseen data. Consequently, we introduce an
explicit regularization term in the training loss function by
multiplying the maximum `1-norm of the rows of Wl with a
regularization parameter λ to ensure that the T -exponential
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Figure 3: Evaluation of the error bound on the ramp loss
for various values of γ, for three regularization levels λ, for
reweighted-RNN trained on the Google-30 dataset.

dependency on the weights becomes negligible. In practice,
we train a single layer reweighted-RNN model using three
different regularization levels λ = {0.52, 1.40, 3.73} and
using the categorical cross-entropy as the base loss, accord-
ing to the experimental protocol described in Section 4.1.
The classification GEB (18) is then calculated for the `cγ loss
for different margins γ and for δ = 0.05 (i.e., a probability
of 95% that the bound is met).

Empirical evaluations of the GEB are reported in Fig. 3
along with the respective losses observed in practice on the
training and test sets. For small values of γ, the theoretical
GEB is close to the unity (note that `cγ cannot exceed 1 in
practice). By increasing γ, the empirical generalization gap
decreases and the theoretical bound becomes tighter. Around
γ = 4.0, the theoretical bound on the test error is minimal.
For very large values of γ, the empirical training and testing
errors become much larger as a result of the large margin γ;
even if the bound is tighter, this setting is less indicative
of the true performance of the model. Nevertheless, for
reasonable choices of γ, our GEB is tight and proves that
our model has good generalization properties with small test
loss.

As shown in Table 4, the accuracy of reweighted-RNN
slightly decreases with higher regularization levels, with
a decrease of 2.4% in test accuracy from λ = 0.52 to
λ = 3.73; it is however necessary to perform weight regu-
larization to ensure that the theoretical GEB is tight and in-
formative. Moreover, it was found that `1-`1-RNN is hardly
able to maintain a sufficiently high test accuracy while keep-
ing the theoretical GEB in an acceptable range. In Table 4,
the test accuracy of `1-`1-RNN drops to 73.5% for the upper
bound on RS to lead to a sufficiently tight GEB. This further
confirms that reweighted-RNN offers more flexibility than
`1-`1-RNN as a result of the additional learnable weights Zl
and per-neuron learnable activations, while ensuring good
generalization abilities according to the GEB (18).

5 CONCLUSIONS

In this paper, we have explored theoretical aspects of deep
unfolding RNNs by establishing generalization error bounds

Table 4: Evaluation of the Rademacher complexity and test
accuracy of the single-layer reweighted-RNN and `1-`1-
RNN models trained on the Google-30 dataset for various
regularization levels

Model
Test acc.

(%)
RS(Fd,T )

(upper bound)
λ = 0.52 90.9 2.92× 10−1

reweighted-RNN λ = 1.40 89.9 1.83× 10−1

λ = 3.73 88.5 1.61× 10−1

λ = 0.52 84.8 5.45× 1014

`1-`1-RNN λ = 1.40 82.4 3.59× 106

λ = 3.73 73.5 3.94× 100

obtained via Rademacher complexity analysis of a class of
deep unfolding RNNs, namely, the reweighted-RNN [Lu-
ong et al., 2021] and `1-`1-RNN [Le et al., 2019] models.
For sufficiently constrained weights, the GEB is polynomi-
ally dependent on the norm of the weights and the over-
parametrization scheme of reweighted-RNN, allowing for a
finer control of the bound. Moreover, our proposed bounds
are tighter than similar ones obtained for state-of-the-art
lightweight RNN models, in terms of time steps T . Fur-
thermore, our experiments have demonstrated that deep
unfolding RNNs can outperform state-of-the-art traditional
RNNs in classification problems, leading to interesting per-
spectives for deep unfolding RNNs outside of their original
application fields. These experiments also show that it is
possible to tighten the gap between the theoretical bound of
reweighted-RNN and the empirical generalization error, if
the model is sufficiently regularized while not affecting its
accuracy.
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