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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1. For a fixed cost of rejection d, the risk under
double sigmoid loss is minimized by the generalized Bayes
classifier f∗d (.)

Proof. The generalized bayes discriminant for reject option
classifier (0-d-1 loss) is defined as

f∗d (x) = 1 · Iη(x)>1−d + 0 · Id≤η(x)≤1−d− 1 · Iη(x)<d (1)

and the risk for double sigmoid loss is defined as,

Rds(f, ρ) = E [Lds(yf(x), ρ)]

If rη(z) = Ey|x [Ldr(yf(x), ρ)] and z = f(x). Then

rη(z) = ηLds(z, ρ) + (1− η)Lds(−z, ρ)

or

rη(z) = 2(1−η)+(2η−2d)σ(z+ρ)+2(η+d−1)σ(z−ρ)

This can also be written as,

rη(z) = 2(1− η) + (η − d)

(
1− tanh

(
z + ρ

2

))
+(η + d− 1)

(
1− tanh

(
z − ρ

2

))
(2)

where ρ is the rejection parameter, d is the cost of rejec-
tion and η = P (Y = 1|X). We observe that the function
rη(z) can take different values corresponding to the value
of parameter η. The parameter η can be majorly broken
into 3 intervals for the reject option classifier, η ∈ [0, d],
η ∈ [d, 1 − d] and η ∈ [1 − d, 1]. Thus we study, rη(z) in
these 3 intervals. To find the minima of equation 2, we take
it’s derivative w.r.t. z. First we expand 2 using,

tanh(A±B) =
tanh(A)± tanh(B)

1± tanh(A)tanh(B)

with A = z
2 and B = ρ

2 . Further on differentiating w.r.t z
we get,

(K2 − 1)(1− ζ2)
(2η − 1)K2ζ2 + (4d− 2)Kζ + 2η − 1

(1−K2ζ2)
2

(3)
where K = tanh( z2 ), ζ = tanh(ρ2 ). We equate the deriva-
tive in equation 3 to 0 and find solutions for K as ±1 from

K2 − 1 = 0 and (1−2d)±
√

(1−2d)2−(2η−1)2
(2η−1)ζ from

(2η − 1)K2ζ2 + (4d− 2)Kζ + 2η − 1

The numerator of eqn 3 contains two quadratic equations.
We check if minima exists at K = ±1 by taking the second
derivative of eqn 3 and evaluating the sign at K = ±1. We
observe that the second derivative is positive hence minima
exists for both the values.

However, for the roots K =
(1−2d)±

√
(1−2d)2−(2η−1)2
(2η−1)ζ we

look at the curve of the quadratic which yields the two
solutions. We observe that the curve is opening upwards
curve when 2η − 1 < 0 and opening downwards when
2η − 1 > 0 because K2 − 1 ≤ 0.

These curves suggest K1 =
(1−2d)+

√
(1−2d)2−(2η−1)2
(2η−1)ζ is

the minima when 2η − 1 < 0 since the slope for rη(z)
changes from negative to positive at K1. Similarly, K2 =
(1−2d)−

√
(1−2d)2−(2η−1)2
(2η−1)ζ is the minima when 2η − 1 > 0.

Thus r∗η(z) would be,

r∗η(z) = min



2η

1− (η − d)
(
T1+ζ

2(2η−1)
(2η−1)ζ+T1ζ

)
−(η + d− 1)

(
T1−ζ2(2η−1)
(2η−1)ζ−T1ζ

)
1− (η − d)

(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
−(η + d− 1)

(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
2(1− η)
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where T1 = (1−2d)+
√

(1− 2d)2 − (2η − 1)2 and T2 =

(1− 2d)−
√

(1− 2d)2 − (2η − 1)2.

Moreover the complex roots K1 and K2 are real only when

(1− 2d)2 − (2η − 1)2 ≥ 0

Therefore, the solutions K1 and K2 are real only when
d ≤ η ≤ 1− d.

Thus, when η < d, we have two candidates for minimum
value. And we realise 2η is the minimum value since 2η ≤
2(1− η) and η < d ≤ 0.5. Similarly when η > 1− d, we
have two candidates for minimum value. And we observe,
2(1− η) would be the minimum value since 2(1− η) ≤ 2η.

However, when η ∈ [d, 0.5] we have 3 candidates for min-
ima 2η, 2(1− η) and
1− (η − d)

(
T1+ζ

2(2η−1)
(2η−1)ζ+T1ζ

)
− (η + d− 1)

(
T1−ζ2(2η−1)
(2η−1)ζ−T1ζ

)
.

Note: Even though 1− (η− d)
(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
− (η+ d−

1)
(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
is a minima, it’s only a minima when

2η − 1 > 0.

So we first show that,

2η ≥ 1−(η − d)

(
T1 + ζ2(2η − 1)

(2η − 1)ζ + T1ζ

)
− (η + d− 1)

(
T1 − ζ2(2η − 1)

(2η − 1)ζ − T1ζ

)
Which can be rewritten and compared as,

2(1− η)+(η − d)(2) + (η + d− 1)(2) ≥

2(1− η) + (η − d)

(
1− T1 + ζ2(2η − 1)

(2η − 1)ζ + T1ζ

)
+(η + d− 1)

(
1− T1 − ζ2(2η − 1)

(2η − 1)ζ − T1ζ

)

0 ≥ (η − d)

(
−1− T1 + ζ2(2η − 1)

(2η − 1)ζ + T1ζ

)
+ (η + d− 1)

(
−1− T1 − ζ2(2η − 1)

(2η − 1)ζ − T1ζ

)
= (η − d)

(
−T1(1 + ζ)− (2η − 1)ζ(ζ + 1)

(2η − 1)ζ + T1ζ

)
+

(η + d− 1)

(
T1(ζ − 1) + (2η − 1)ζ(ζ − 1)

(2η − 1)ζ − T1ζ

)
=

(
T1
(
(1− 2d)T1 − (2η − 1)2

)
(2η − 1)2ζ − T 2

1 ζ

)

+

(
(2η − 1)2(ζ)2(T1 + (2d− 1))

(2η − 1)2ζ − T 2
1 ζ

)
+(

(2η − 1)ζ((2η − 1)2 − T 2
1 )

(2η − 1)2ζ − T 2
1 ζ

)
(4)

We also find further relationship between 2η− 1, T1 and T2
based on the value of η. We observe that (2η − 1)2 ≤ T 2

1

when d < η ≤ 0.5 and (2η − 1)2 ≥ T 2
2 when 0.5 < η ≤

1 − d. Using these facts we can see that equation 4 holds
true, even at maximum value of ζ = 1, for η < 0.5.

Since η < 0.5, 2η < 2(1 − η) and hence 1 − (η −
d)
(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
− (η+d− 1)

(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
is the min-

imum value of rη(z) when d ≤ η < 0.5.

Due to the symmetry of rη(z) we can similarly show that

1− (η − d)
(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
− (η + d− 1)

(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
is the minimum when 0.5 < η ≤ 1 − d by comparing it
with 2(1 − η). Since 2η > 2(1 − η) for 0.5 < η ≤ 1 − d,
1− (η − d)

(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
− (η + d− 1)

(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
is the minimum value of rη(z) when 0.5 < η ≤ 1 − d.
Following from above established minimum values for each
region of η, the r∗η(z) becomes,

r∗η(z) =



2η η < d

1− (η − d)
(
T1+ζ

2(2η−1)
(2η−1)ζ+T1ζ

)
−

(η + d− 1)
(
T1−ζ2(2η−1)
(2η−1)ζ−T1ζ

)
d ≤ η < 0.5

1− (η − d)
(
T2+ζ

2(2η−1)
(2η−1)ζ+T2ζ

)
−

(η + d− 1)
(
T2−ζ2(2η−1)
(2η−1)ζ−T2ζ

)
0.5 < η ≤ 1− d

2(1− η) η > 1− d

The reject option in reject option classifiers is exercised
when z ∈ (−ρ, ρ) thus we need to show that z∗ for double
sigmoid loss for region d < η < 1 − d lies in −ρ, ρ. Let
θ = 2η − 1 and we show that −ρ2 ≤ K1 ≤ 0 for 2d− 1 ≤
θ < 0 and 0 ≤ K2 ≤ ρ for 0 < θ ≤ 1− 2d.

−ρ ≤ 2 tanh−1(K1)

−ζ ≤
1− 2d+

√
(1− 2d)2 − θ2
θζ

−θζ2 ≤ 1− 2d+
√

(1− 2d)2 − θ2

0 ≥ θ2 + θ2ζ4 + 2(1− 2d)ζ2

which says that for K1 ≥ −ρ, θ ∈
[
−2(1−2d)ζ2

1+ζ4 , 0
]
. Simi-

larly, for K2 ≤ ρ we get θ ∈
[
2(1−2d)ζ2

1+ζ4 , 0
]
. We also verify

that our current solutions of θ lie between [2d − 1, 0) and
(0, 1− 2d].

−2(1− 2d)ζ2

1 + ζ4)
≥ 2d− 1

ζ2(2− ζ2) ≤ 1

which is true for all ζ. Similarly we can show that θ with
respect to K2 also lies in (0, 1 − 2d]. Thus our z∗ would



become,

z∗ =


−∞ η < d

[−ρ, 0) d ≤ η < 0.5

(0, ρ] 0.5 < η ≤ 1− d
∞ η > 1− d

Thus, our f∗ds or the discriminant function for double sig-
moid loss would be

f∗ds =


−1 η < d

0 d ≤ η ≤ 1− d
1 η > 1− d

which is similar to the bayes discriminant function for 0-d-1
loss. Therefore, bayes discriminant function minimizes the
double sigmoid risk.

A.2 PROOF OF THEOREM 2

Theorem 2. Let 0 ≤ d ≤ 1/2 and a measurable function z.
Then we have the excess risk relation as

ψ (Rd(f, ρ)−Rd(f∗d )) ≤ (Rds(f, ρ)−Rds(f∗d ))

where

ψ(θ) =


0 θ = 0

(2d− 1)ζ +
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
+
(
θ+2d−1

2

) (
T−ζ2θ
ζθ−Tζ

)
θ ∈ (0, 1− 2d]

θ + (2d− 1)ζ θ ∈ [1− 2d, 1]

and θ = Rd(f, ρ)−Rd(f∗d ). Also, ζ = tanh(ρ2 ) and T =

(1− 2d)−
√

(1− 2d)2 − θ2.

Proof. We follow the approach described in Bartlett et al.
[2006] and define the ψ : [0, 1] −→ [0,∞) transform of a
loss function as ψ(θ) =coψ̃(θ), where

ψ̃(θ) = H−
(

1 + θ

2

)
−H

(
1 + θ

2

)
and co represents convex hull of the function. This implies
that ψ = ψ̃ if and only if ψ̃ is convex. Also, θ ∈ [0, 1] with

H−(η) = inf
z(2η−1)≤0

rη(z) and H(η) = inf
z∈R

rη(z)

From the definition H− is the optimal conditional risk such

that sign of z disagrees with sign of 2η − 1.

H−
(

1 + θ

2

)
= inf
zθ≤0

rη(z)

= inf
z∈(−∞,0)

2(1− η) + (2η − 2d)σ(z + ρ)

+ 2(η + d− 1)σ(z − ρ)

= inf
z∈(−∞,0)

1− θ + (1 + θ − 2d)σ(z + ρ)

+ (θ + 2d− 1)σ(z − ρ)

= inf
z∈(−∞,0)

1− θ +

(
1 + θ − 2d

2

)(
1− tanh

(
z + ρ

2

))
+

(
θ + 2d− 1

2

)(
1− tanh

(
z − ρ

2

))
= 1− θ +

(
1 + θ − 2d

2

)(
1− tanh

(
ρ

2

))
+

(
θ + 2d− 1

2

)(
1− tanh

(
−ρ
2

))
Let tanh(ρ2 ) = ζ and thus tanh(−ρ2 ) = −ζ

H−
(

1 + θ

2

)
= 1− θ +

(
1 + θ − 2d

2

)
(1− ζ)

+

(
θ + 2d− 1

2

)
(1 + ζ)

= 1− ζ + 2dζ

Similarly, from the definition H is the optimal conditional
risk,

H

(
1 + θ

2

)
= inf
z∈R

rη(z)

= inf
z∈R

2(1− η) + (2η − 2d)σ(z + ρ) + 2(η + d− 1)σ(z − ρ)

= inf
z∈R

1− θ +

(
1 + θ − 2d

2

)(
1− tanh

(
z + ρ

2

))
+

(
θ + 2d− 1

2

)(
1− tanh

(
z − ρ

2

))

H

(
1 + θ

2

)
= inf
z∈R

1− θ+(
1 + θ − 2d

2

)(
1 + tanh( z2 )tanh(ρ2 )− tanh( z2 )− tanh(ρ2 )

1 + tanh( z2 )tanh(ρ2 )

)
+

(
θ + 2d− 1

2

)(
1− tanh( z2 )tanh(ρ2 )− tanh( z2 ) + tanh(ρ2 )

1− tanh( z2 )tanh(ρ2 )

)
Since r∗η(z) = H(η), we follow the definition of r∗η(z),
hence

H(η) = r∗η(z) =


2η η < d

1− (η − d)
(
T+ζ2(2η−1)
(2η−1)ζ+Tζ

)
−(η + d− 1)

(
T−ζ2(2η−1)
(2η−1)ζ−Tζ

)
d ≤ η ≤ 1− d

2(1− η) η > 1− d



Also, since θ ≥ 0 and η = 1+θ
2 , we use definition of r∗η(z)

for η ≥ 0.5. Thus, H
(

1+θ
2

)
is defined over different inter-

vals as,

H

(
1 + θ

2

)
=


1 + (2d− 1)ζ θ = 0

1−
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
−
(
θ+2d−1

2

) (
T−ζ2θ
ζθ−Tζ

)
θ ∈ (0, 1− 2d]

1− θ θ ∈ [1− 2d, 1]

where T = (1−2d)−
√

(1− 2d)2 − θ2 and ζ = tanh(ρ2 ).

Thus, our ψ̃(θ) would be

ψ̃(θ) =


0 θ = 0

(2d− 1)ζ +
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
+
(
θ+2d−1

2

) (
T−ζ2θ
ζθ−Tζ

)
θ ∈ (0, 1− 2d]

θ + (2d− 1)ζ θ ∈ [1− 2d, 1]

The function ψ̃(θ) is continuous in θ. Moreover, the corre-
sponding term of ψ̃(θ) to θ ∈ (0, 1− 2d], achieves indeter-
minate values at θ = 0 and θ = 1− 2d, which is resolved
by finding the limit value, which shows the continuity of
ψ̃(θ).

lim
θ→0

(
θ + 1− 2d

2

)(
T + ζ2θ

ζθ + Tζ

)
+

(
θ + 2d− 1

2

)(
T − ζ2θ
ζθ − Tζ

)
=

1

2

(
θT ′ + 2ζ2θ

ζ + ζT ′

)
+

1− 2d

2

(
T ′ + ζ2

ζ + ζT ′

)
+

1

2

(
θT ′ − 2ζ2θ

ζ − ζT ′

)
+

1− 2d

2

(
T ′ − ζ2

ζ − ζT ′

)
=

1

2

(
θ2 + 2ζ2θ

√
(1− 2d)2 − θ2

ζ
√

(1− 2d)2 − θ2 + ζθ

)

+
1− 2d

2

(
θ + ζ2

√
(1− 2d)2 − θ2

ζ
√

(1− 2d)2 − θ2 + ζθ

)

+
1

2

(
θ2 − 2ζ2θ

√
(1− 2d)2 − θ2

ζ
√

(1− 2d)2 − θ2 − ζθ

)

+
2d− 1

2

(
θ − ζ2

√
(1− 2d)2 − θ2

ζ
√

(1− 2d)2 − θ2 − ζθ

)

=
1− 2d

2
(ζ) +

2d− 1

2
(−ζ) = (1− 2d)ζ

where T ′ = dT
dθ = θ√

(1−2d)2−θ2
. However, at θ = 1 − 2d

we can first need to look at value of H( 1+θ
2 ) at θ = 1− 2d,

The value of K1 at θ = 1− 2d,

K1 =
(1− 2d)−

√
(1− 2d)2 − (1− 2d)2

(1− 2d)ζ
=

1

ζ

which means K1 will be valid only when ζ = 1 since
K1 ≤ 1. Thus,

lim
θ→1−2d

ζ = 1

Using this information when finding the value at the limit

lim
θ→1−2d

(
θ + 1− 2d

2

)(
T + ζ2θ

ζθ + Tζ

)
+

(
θ + 2d− 1

2

)(
T − ζ2θ
ζθ − Tζ

)
=
θ + 1− 2d

2
(1) +

θ + 2d− 1

2
(−1) = 1− 2d = θ

We can easily see that for the intervals θ = 0 and θ ∈ [1−
2d, 1], ψ̃(θ) is convex. However, we show the convexity for
the interval θ ∈ (0, 1− 2d) by taking the second derivative
of the corresponding ψ̃(θ).

We first show the convexity of C1 =
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
.

Since our functions both the numerator f(θ) = (θ + 1 −
2d)(T + ζ2θ) and denominator g(θ) = (2)(ζθ + Tζ) are
convex and g(θ) > 0. We can say that C1 is convex if(

f(θ)

g(θ)

)′′
=
f ′′g2 − 2f ′gg′ − fgg′′ + 2f(g′)2

g3
≥ 0 (5)

i.e. the numerator of eqn 5 is greater than 0. Let M =
θ + 1− 2d, then

(2T ′ +MT ′′ + 2ζ2)(2ζ)2(θ + T )2

− 2(T +MT ′ + ζ2M + ζ2θ)(2ζ)2(θ + T )(1 + T ′)

− (MT +Mζ2θ)(2ζ)2(θ + T )T ′′

+ 2(MT + ζ2Mθ)(2ζ)2(1 + T ′)2 ≥ 0

On further solving we get,

4ζ2(θ + T )(MT ′′θ)(1− ζ2) + 2(4ζ2)(θ + T )(1− ζ2)(T ′θ − T )

+ 2(4ζ2)(1 + T ′)(1− ζ2)M(T − T ′θ) ≥ 0

4ζ2(θ + T )(MT ′′θ)(1− ζ2)

+ 2(4ζ2)(1− ζ2)(M)(T − T ′θ)(1 + T ′ − θ − T ) ≥ 0

(4ζ2)(1− ζ2)M [(θ + T )(T ′′θ) + 2(T − T ′θ)(1 + T ′)

+ 2(θ + T )(T ′θ − T )] ≥ 0

This can be rearranged to get,

(4ζ2)(1− ζ2)M [(θ + T )(2T (1− T )

+ 2T (T ′ − θ) + 2θ(T ′θ − T ′)
+ (T ′′Tθ + T ′′θ2 + 2TT ′θ − 2(T ′)2θ))] ≥ 0

which is true for θ ∈ (0, 1− 2d]. Where

T ′ =
θ ((1− 2d)− T )

(1− 2d)2 − θ2
and T ′′ =

(1− 2d)2 ((1− 2d)− T )

((1− 2d)2 − θ2)2



with T ′′ ≥ T ′ ≥ T and T ′ ≥ θ ≥ T . These definitions can
be used to verify

T ′′θ2 + 2T − 2T 2 − 2T ′θ ≥ 0 (6)

T ′′Tθ + 2T ′θ2 − 2θ(T ′)2 ≥ 0 (7)
2TT ′ + 2TT ′θ − 2Tθ ≥ 0 (8)

The inequality in eq. (8) is straightforward using the condi-
tions on T, T ′, T ′′ and θ. The quadratic inequality in eq. (6)
is a upward opening curve and the solutions are at θ = 0.
Hence, eq. (6) holds true. The same goes for eq. (7), which
is a quadratic in θ, an upward opening curve with solutions
at θ = 0.

Similarly, we can show the convexity of C2 =(
θ−1+2d

2

) (
T−ζ2θ
ζθ−Tζ

)
. Also, since sum of convex functions

is a convex function, we establish that ψ̃(θ) is convex when
θ ∈ (0, 1− 2d).

Now, ψ̃(θ) is individually convex in all the 3 intervals of θ,
ψ(θ) = ψ̃(θ) and continuous in θ. The convexity of ψ̃(θ)
also depends on the slope of ψ̃(θ) for these intervals. While
ψ̃(θ) has a slope of 0 when θ = 0 and 1 when θ ∈ [1−2d, 1].
The slope of ψ̃(θ) for θ ∈ (0, 1 − 2d] should be between
(0, 1] since it’s an increasing convex function which will
achieve it’s maximum at θ = 1− 2d. So,

lim
θ→1−2d

(2d− 1)ζ +

(
θ + 1− 2d

2

)(
T + ζ2θ

ζθ + Tζ

)
+

(
θ + 2d− 1

2

)(
T − ζ2θ
ζθ − Tζ

)
= (1− 2d) + (2d− 1)ζ

which is equal to θ + (2d− 1)ζ when θ = 1− 2d, slope at
θ = 1− 2d is 1 for ψ̃(θ) corresponding to θ = 1− 2d. We
can say that ψ̃(θ) is convex in it’s domain θ ∈ [0, 1]. Thus,
ψ̃(θ) = ψ(θ) and this suggests our excess risk relationship
is

ψ (Rd(f, ρ)−Rd(f∗d )) ≤ (Rds(f, ρ)−Rds(f∗d ))

where

ψ(θ) =


0 θ = 0

(2d− 1)ζ +
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
+
(
θ+2d−1

2

) (
T−ζ2θ
ζθ−Tζ

)
θ ∈ (0, 1− 2d]

θ + (2d− 1)ζ θ ∈ [1− 2d, 1]

A.3 PROOF OF THEOREM 3

Theorem 3. Let D be any distribution on X × {−1,+1}.
Let 0 < δ ≤ 1. Then for any n, q ≥ 1, 1 ≤ p <∞ and any
set S = {x1, . . . ,xm}; with probability at least 1− δ (over
S ∼ Dm), all functions f ∈ F satisfy

Rds(f, ρ) ≤ R̂ds(f, ρ) +
ρ̄√
m

+

√
8 ln

(
4
δ

)
m

+

√
2 ln

(
2
δ

)
m

+

(
2β√
m

max
i
‖xi‖p′

)(
2H

[
1
p′−

1
q

]
+

)n−1

where n is the number of layers in the network, H is the
number of neurons in the hidden layers, rejection region
parameter is bounded as ρ ≤ ρ̄. Also 1

p′ + 1
p = 1 and

[a]+ = max(0, a). R̂ds(f, ρ) is the empirical error and
βp,q(W ) =

∏n
k=1 ‖Wk‖p,q ≤ β.

Proof. We follow lemma 4,

Rds(f, ρ) ≤ R̂ds(f, ρ) + 2LR̂m(F)

+ 2B

√
ln
(
4
δ

)
2m

+ (b− a)

√
ln
(
2
δ

)
m

where R(F) is the rademachar complexity and fs is a func-
tion belonging to function class F . Since the bounds are
described for loss ` : Y × [a, b] → [0, B]. For double sig-
moid loss, we get B = 2,a = −1 and b = 1. So, we bound
the generalization error with probability atleast 1− δ by

Rds(f, ρ) ≤ R̂ds(f, ρ)+2LR̂m(F)+

√
8 ln

(
4
δ

)
m

+

√
2 ln

(
2
δ

)
m

We now find an upper bound for the rademachar complexity
R̂m(F), following theorem 1 in Neyshabur et al. [2015].

Hence, let R̂m(F) = R(Fn,Hβp,q≤β) where F(x) =∣∣wT (φ (Wn−1φ (Wn−2 (. . . φ (W1x))))
∣∣ − ρ, βp,q(W ) =∏n

k=1 ‖Wk‖p,q ≤ β and φ is ReLU activation function.
Also, w is an H dimensional vector. We prove the bound by



induction

R(Fn,Hβp,q≤β) = Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi(|f(xi)| − ρ)

∣∣∣∣∣


R(Fn,Hβp,q≤β) ≤ Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣


+ Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λiρ

∣∣∣∣∣


R(Fn,Hβp,q≤β) = Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣


+
1

m
ρ̄Eλ

[∣∣∣∣∣
m∑
i=1

λi

∣∣∣∣∣
]

≤ Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣


+
1

m
ρ̄
√
m(1)

= Eλ

 1

m
sup

f∈Fn,H
βp,q≤β

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣
+

ρ̄√
m

Let,Rrec be defined as,

Rrec = Eλ

[
1

m
sup

f∈Nn,H

β

βp,q(f)

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣
]

Also, Rrec = R(Nn,H
βp,q≤β) where N (x) =∣∣wT (φ (Wn−1φ (Wn−2 (. . . φ (W1x))))

∣∣ and φ is ReLU
activation function.

Rrec = Eλ

[
1

m
sup

f∈Nn,H

β

βp,q(f)

∣∣∣∣∣
m∑
i=1

λi|f(xi)|

∣∣∣∣∣
]

= Eλ

[
1

m
sup

g∈Nn−1,H,H

sup
w

β

βp,q(g)‖w‖p

∣∣∣∣∣
m∑
i=1

λi|wT [g(xi)]+|

∣∣∣∣∣
]

= Eλ

[
1

m
sup

g∈Nn−1,H,H

sup
w

β

βp,q(g)‖w‖p

∣∣∣∣∣
m∑
i=1

λi‖w‖p‖[g(xi)]+‖p′
∣∣∣∣∣
]

= Eλ

[
1

m
sup

g∈Nn−1,H,H

β

βp,q(g)

∣∣∣∣∣
m∑
i=1

λi‖ [g(xi)]+ ‖p′
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]

= Eλ

[
1

m
sup

h∈Nn−2,H,H

β

βp,q(h)

sup
W

1

‖W‖p,q

∣∣∣∣∣
m∑
i=1

λi
∥∥[W [h(xi)]+

]
+
‖p′
∣∣∣∣∣
]

= Eλ

[
1

m
sup

h∈Nn−2,H,H

β

βp,q(h)

sup
W

1

‖W‖p,q
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m∑
i=1

λi
∥∥[W [h(xi)]+]+

∥∥
p′

∥∥∥∥∥
p′

]

We use Lemma 6 to obtain the following result,

R(Nn,H
βp,q≤β) = H

[
1
p′−

1
q

]
+Eλ

[
1

m
sup

h∈Nn−2,H,H

β

βp,q(h)
sup
w

1

‖w‖p

∣∣∣∣∣
m∑
i=1

λi

∥∥∥[w> [h (xi)]+
]
+

∥∥∥
p′

∣∣∣∣∣
]

= H

[
1
p′−

1
q

]
+Eλ

[
1

m
sup

h∈Nn−1,H,H

β

βp,q(g)

∣∣∣∣∣
m∑
i=1

λi
∥∥[g(xi)]+

∥∥
p′

∣∣∣∣∣
]

≤ H
[

1
p′−

1
q

]
+Eλ

[
1

m
sup

h∈Nn−1,H,H

β

βp,q(g)

∣∣∣∣∣
m∑
i=1

λi
∣∣[g(xi)]+

∣∣∣∣∣∣∣
]

≤ H
[

1
p′−

1
q

]
+Eλ

[
1

m
sup

h∈Nn−1,H,H

β

βp,q(g)

∣∣∣∣∣
m∑
i=1

λi [|g(xi)|]+

∣∣∣∣∣
]

We use Lemma 16 (Contraction Lemma) Neyshabur et al.
[2015] result directly to obtain the following result,

R(Nn,H
βp,q≤β) ≤ 2(1)H

[
1
p′−

1
q

]
+Eλ

[
1

m

sup
h∈Nn−1,H,H

β

βp,q(g)

∣∣∣∣∣
m∑
i=1

λi |g(xi)|

∣∣∣∣∣
]

R(Nn,H
βp,q≤β) ≤ 2H

[
1
p′−

1
q

]
+R
(
Nn−1,H
βp,q≤β

)
We now use the recurrence relationship and Rademachar
complexity obtained from Theorem 5 to get,

R(Fn,Hβp,q≤β) ≤
(

β√
m

max
i
‖xi‖p′

)(
2H

[
1
p′−

1
q

]
+

)n−1
+

ρ̄√
m

The Lipschitz constant for double sigmoid loss with cost of
rejection dr can be computed as

L = sup|2drσ(z − ρ) (1− σ(z − ρ))

+ 2(1− dr)σ(z + ρ) (1− σ(z + ρ)) | (9)

The maximum value of the product σ(z−ρ) (1− σ(z − ρ))
and σ(z + ρ) (1− σ(z + ρ)) is at z = ρ and z = −ρ



respectively. However, the maximum value of the equation
9 is achieved at z = 0 and ρ = 0. Thus,

L = 2drσ(−ρ)(1− σ(−ρ)) + 2(1− dr)σ(ρ)(1− σ(ρ))

L = 2drσ(−ρ)σ(ρ) + 2(1− dr)σ(ρ)σ(−ρ)

L = 2σ(ρ)σ(−ρ)

L = 2σ(ρ)σ(−ρ)

when ρ = 0, we get L = 0.5. We now use the above result
to get the generalization bound where the lipschitz constant
L for double sigmoid loss would be L = 0.5.

Rds(f, ρ) ≤ R̂ds(f, ρ)

+

(
2β√
m

max
i
‖xi‖p′

)(
2H

[
1
p′−

1
q

]
+

)n−1

+
ρ̄√
m

+

√
8 ln

(
4
δ

)
m

+

√
2 ln

(
2
δ

)
m

Lemma 4. Let Y ⊆ R, and letF ⊆ [a, b]X for some
a ≤ b. Let ` : Y × [a, b]→ [0, B] be such that `(y, ŷ) is L
-Lipschitz in its second argument for some L > 0. Let D be
any probability distribution on X × Y, with marginal µ on
X . If fS is selected from F , then for any 0 < δ ≤ 1, with
probability at least 1− δ (over S ∼ Dm)

Rds(f, ρ) ≤R̂ds(f, ρ) + 2LR(F)+

2(b− a)

√
ln
(
4
δ

)
2m

+ (b− a)

√
ln
(
2
δ

)
m

Proof. First we define

R̂m(F) = E{λ∈±1}

[
sup
f∈F

1

m

m∑
i=1

λif(xi)

]

where λ is the Rademachar variable and Rm(F) is defined
as expectation over data samples of size m obtained in an
i.i.d fashion from probability distribution µ i.e.

Rm(F) = Exm∼µm
[
R̂m(F)

]
We directly use the result from the Bartlett and Mendelson
[2002] and using the results directly with probability atleast
1− δ, we bound the generalization error as,

Rds(f, ρ) ≤ R̂ds(f, ρ) + 2LRm(F) + 2(b− a)

√
ln
(
2
δ

)
2m

(10)
Now for any set S = {x1,x2....,xm}, and a function φ :
Xm → R such that φ(x1,x2, ...xm) = R̂m(F). Hence,
Rm(F) = Exm∼µm [φ (x1, . . . ,xm)]

Then, for any j ∈ [m], and any x1, . . . ,xm,x
′
j ∈ X

∣∣φ (x1, . . . ,xj , . . . ,xm)− φ
(
x1, . . . ,x

′
j , . . . ,xm

)∣∣
= R̂m(F)−R(x1,...,x′j ,...,xm)(F)

= Eλ∈{±1}m

[
sup
f∈F

1

m

m∑
i=1

λif (xi)

− sup
f∈F

 1

m

∑
i 6=j

λif (xi) +
1

m
λjf

(
x′j
)]

≤ b− a
m

Thus by McDarmid’s inequality we get,

P
[
R̂m(F)−Rm(F) ≥ ε

]
≤ e−2mε

2/(b−a)2 (11)

Now with probability atleast 1− δ
2 we get,

R̂m(F)−Rm(F) ≤ 2(b− a)

√
ln 2

δ

2m
(12)

We also know that, a relationship exits between Using the
combination of eqn. (12) and eqn. (10) each holding with a
probability of atleast 1− δ

2 , we get with a probability atleast
1− δ,

Rds(f, ρ) ≤ R̂ds(f, ρ) + 2LR̂m(F)

+ 2(b− a)

√
ln
(
4
δ

)
2m

+ (b− a)

√
ln
(
2
δ

)
m

Theorem 5. The rademachar complexity for RISAN with a
single layer (n = 1), is bounded as

R(F1
‖w‖p≤β) ≤ β√

m
max
i
‖xi‖p′

Proof. For a network with a single layer, it is important to



notice that βp,q(w) = ‖w‖p.

R(F1
‖w‖p≤β) ≤ Eλ

[
1

m
sup
‖w‖p≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi|wTxi|

∣∣∣∣∣
]

R(F1
‖w‖p≤β) ≤ Eλ

[
1

m
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‖w‖p≤β
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ρ

∣∣∣∣∣
m∑
i=1

λi|wTxi|

∣∣∣∣∣
]

R(F1
‖w‖p≤β) ≤ Eλ

[
1

m
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‖w‖p≤β

sup
ρ

∣∣∣∣∣
m∑
i=1

λi|wTxi|

∣∣∣∣∣
]

R(F1
‖w‖p≤β) ≤ Eλ

[
1

m
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sup
ρ

∣∣∣∣∣
m∑
i=1

λi‖w‖p‖xi‖p′
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]
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‖w‖p≤β) ≤ βEλ

[
1

m

∣∣∣∣∣
m∑
i=1

λi‖xi‖p′
∣∣∣∣∣
]

R(F1
‖w‖p≤β) ≤ β

m

(
m∑
i=1

‖xi‖2p′

) 1
2

R(F1
‖w‖p≤β) ≤ β

m

(
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i
‖xi‖2p′

) 1
2

=
β√
m

max
i
‖xi‖p′

Lemma 6. For any p, q ≥ 1, n ≥ 2, λ ∈ {±1}m and
f ∈ Nn,H,H

sup
W

1

‖W‖p,q

∥∥∥∥∥
m∑
i=1

λi

∥∥∥[W [f (xi)]+
]
+

∥∥∥
p′

∥∥∥∥∥
p′

=

H

[
1
p′−

1
q

]
+

sup
w

1

‖w‖p

∣∣∣∣∣
m∑
i=1

λi

∥∥∥[w> [f (xi)]+
]
+

∥∥∥
p′

∣∣∣∣∣
where n is the depth of the network, H is the height of the
layer and H is the no. of outputs.

Proof.

g(w) =

∣∣∣∣∣
m∑
i=1

λi‖w> [f(xi)]+‖p′
∣∣∣∣∣

We define w∗ as

w∗ = arg max
w

g(w)

‖w‖p

Thus,

g(Vi) =

∣∣∣∣∣
m∑
i=1

λi‖V >i [f(xi)]+‖p′
∣∣∣∣∣

where Vi is row of any matrix V. Now we know that,

g(w∗)

‖w∗‖p
≥ g(Vi)

‖Vi‖p(
g(w∗)

‖w∗‖p

)p′
≥
(
g(Vi)

‖Vi‖p

)p′
(
g(w∗)‖Vi‖p
‖w∗‖p

)p′
≥
(
g(Vi)

)p′
H∑
i=1

(
g(w∗)‖Vi‖p
‖w∗‖p

)p′
≥

H∑
i=1

(
g(Vi)

)p′
(
g(w∗)

‖w∗‖p

)p′ H∑
i=1

‖Vi‖p
′

p ≥
H∑
i=1

(
g(Vi)

)p′
g(w∗)

‖w∗‖p

( H∑
i=1

‖Vi‖p
′

p

) 1
p′

≥
( H∑
i=1

(
g(Vi)

)p′) 1
p′

g(w∗)

‖w∗‖p
≥ ‖g(V )‖p′
‖V ‖p,p′

(13)

We have 2 cases now, q > p′ and q < p′. If q < p′

‖V ‖p,p′ ≤ ‖V ‖p,q and H [ 1
p′−

1
q ]+ = 1. Thus,

g(w∗)

‖w∗‖p
≥ ‖g(V )‖p′
‖V ‖p,q

We also know that ‖V ‖p,p′ ≤ H [ 1
p′−

1
q ]‖V ‖p,q and thus,

‖g(V )‖p′
‖V ‖p,q

≤ H [ 1
p′−

1
q ]
‖g(V )‖p′
‖V ‖p,p′

And from eqn.(13) we get,

g(w∗)

‖w∗‖p
≥ ‖g(V )‖p′
‖V ‖p,p′

≥ ‖g(V )‖p′

H
[ 1
p′−

1
q ]‖V ‖p,q

H
[ 1
p′−

1
q ]
g(w∗)

‖w∗‖p
≥ ‖g(V )‖p′
‖V ‖p,q

The LHS of the lemma is greater than RHS is true for any
given vector w, not w∗ in the RHS. Also, the equality exists
when W matrix contains w∗ as all of its rows.

A.4 ARCHITECTURE DETAILS AND
HYPERPARAMETER SELECTION

Small Datasets Experiments: The experiments with reg-
ular small dimensional data are conducted with the network
architecture shown in Figure 1. We use 3 fully connected
layers in the main body block of the network architecture
with batch normalization [Ioffe and Szegedy, 2015] and
dropout [Srivastava et al., 2014] at each layer. Each layer
uses ReLU (Rectified Linear Units) as the activation func-
tion with 64 neurons in each layer. We further use Adagrad
(adaptive gradient) optimizer with a learning rate of 1e−3



RISAN RISAN-NA SNN SNN-NA DAC

Double Sigmoid Double Sigmoid Selective Loss Selective Loss DAC Loss
+ Cross Entropy + Cross Entropy

Architecture

FC Layers
Prediction head 512,256,128 512,256,128 512,256,128 512,256,128 512,256,128
Rejection head/ 512,256,64 512,256,64 512,256,64 512,256,64Selective head
Weight Decay

CNN 1e-4 1e-4 1e-4 1e-4 1e-4
FC 1e-7 1e-7 1e-7 1e-7 1e-7

Datasets

Figure 2b Figure 2a Figure 2b Figure 2a Figure 2a

Cats vs Dogs α = 0.9
γ = 1e− 3

γ = 1e− 3 α=0.5 (no rejection
head)

250 epochs 250 epochs 250 epochs 250 epochs 250 epochs
Figure 2b Figure 2a Figure 2b Figure 2a Figure 2a

CIFAR α = 0.7
γ = 1e− 3

γ = 1e− 3 α=0.5 (no rejection
head)

250 epochs 250 epochs 250 epochs 250 epochs 250 epochs
Figure 2b Figure 2a Figure 2b Figure 2a Figure 2a

MNIST α = 0.7
γ = 1e− 3

γ = 1e− 3 α=0.5 (no rejection
head)

150 epochs 150 epochs 150 epochs 150 epochs 150 epochs
Figure 2b Figure 2a Figure 2b Figure 2a Figure 2a

CBIS-DDSM α = 0.7 γ = 1.0 γ = 1e− 3 α=0.5 (no rejection
head)

250 epochs 250 epochs 250 epochs 250 epochs 250 epochs

Table 1: Architecture and Hyperparameters for Large datasets

and run it for 100 epochs. We fix the batch size as 32. We
use a γ value of 2 in the double sigmoid loss function for
Ionosphere dataset whereas a value of 1 for ILPD dataset.
For both SDR-SVM and DH-SVM we use a Gaussian ker-
nel. We select the best values of regularization parameter λ
and kernel parameter γ using 10-fold cross validation. We
also use µ = 1 for SDR-SVM.

Large Datasets Experiments: For phishing dataset, we
use RISAN with input dependent rejection. However, the
rejection head is dependant on the input, hence it gets input
not from a constant valued neuron but the fully connected
(FC) layers. We used 4 FC layers with 64 neurons each, and
followed each layer with dropout and batch normalization
layers. The same architecture is used for experiments with
SNN-NA and DAC with phishing dataset. The phishing
dataset being a small dimensional dataset, the auxiliary loss
becomes redundant and hence we remove the auxiliary loss
for this experiment for SNN.

In the CNN based experiments, we used and followed the

architecture and hyperparameters similar to the ones used
in Geifman and El-Yaniv [2019]. The VGG-16 architecture
from Simonyan and Zisserman [2014] was optimized for
the small datasets and image sizes as suggested in Liu and
Deng [2015] with following alterations: (i) used only one
fully connected layer with 512 neurons (the original VGG-
16 has two fully connected layers of 4096 neurons). (ii)
added batch normalization Ioffe and Szegedy [2015] (iii)
added dropout Srivastava et al. [2014]. Also, the standard
data augmentation consisting of horizontal flips, vertical and
horizontal shifts, and rotations were included. The network
was optimized using stochastic gradient descent (SGD) with
a momentum of 0.9, an initial learning rate of 0.1, and a
weight decay of 5e-4. The learning rate was reduced by 0.5
every 25 epochs.

We made further amendments to it by incorporating a sep-
arate stack of fully connected layers for each head. While
the main body block of across all algorithms is the VGG-
16 architecture. We added individual hidden layers to both
prediction head and rejection head. We used three fully con-



Prediction Network
(Main body Block)

Rejection Network
(Main body Block)

FC
Layers

Auxiliary
head

Prediction
head

FC
Layers
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Figure 9: GradCAM Implementation

nected layers of sizes 512, 256 and 128, followed by a single
neuron (prediction head). We also used additional three fully
connected layers of size 512, 256 and 64 neurons followed
by a single neuron for the rejection head. Moreover, for the
rejection head, ReLU activation was used to ensure a posi-
tive rejection region parameter. A separate weight decay of
1e−4 for CNN layers and 1e−7 for FC layers. The data for
individual CNN based datasets and algorithm is provided in
Table 1. The learning rate scheduler was used which reduces
learning rate by 0.5 once the validation loss stagnates. We
utilize the same learning rate scheduler across all algorithms
and datasets.

A.5 GRADCAM IMPLEMENTATION

One exciting prospect of deep learning models is their abil-
ity to help us understand why a classification decision was
made or the important generic features learned during the
training process. We followed the GradCAM technique of
Selvaraju et al. [2017] that produces a localization map high-
lighting important regions in the image corresponding to
particular predictions(class) to evaluate our model. We used
the architecture described in Fig. 9, with VGG-16 in both
the networks, and executed the GradCAM technique on the
sigmoid outputs of the auxiliary head associated with the
prediction network. We explored the possibility of having
two separate networks, prediction network and rejection
network, for each head separately. The use of separate net-
works was adopted to minimize the sharing of features, and
subsequently, important features learned by each network
could be examined independently. This helps in visualiz-
ing features learned by the prediction network to produce
highlighted regions corresponding to the image’s different
classes.
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