
Gradient-based Optimization for Multi-resource Spatial Coverage Problems
(Supplementary material)

Nitin Kamra1 Yan Liu1

1Department of Computer Science, University of Southern California, Los Angeles, California, USA

A APPENDIX

A.1 EXTENDED NOTATION FOR MULTI-AGENT
SPATIAL COVERAGE GAMES

Here we discuss the notation for multi-agent spatial cover-
age games more extensively for the interested reader.

Multi-agent multi-resource spatial coverage: Spatial cov-
erage problems comprise of a target space Q ⊂ Rd (gener-
ally d ∈ {2, 3}) and a set of agents (or players) P with each
agent p ∈ P having mp resources. We will use the notation
−p to denote all agents except p i.e. P \{p}. Actions: An
action up ∈ Rmp×dp for agent p is the placement of all
its resources in an appropriate coordinate system of dimen-
sion dp. Let Up denote the compact, continuous and convex
action set of agent p. Mixed strategies: We represent a
mixed strategy i.e. the probability density of agent p over
its action set Up as σp(up) ≥ 0 s.t.

∫
Up
σp(up)dup = 1. We

denote agent p sampling an action up ∈ Up from his mixed
strategy density as up ∼ σp. Joints: Joint actions, action
sets and densities for all agents together are represented
as u = {up}p∈P , U = ×p∈P {Up} and σ = {σp}p∈P re-
spectively. Coverage: When placed, each resource covers
(often probabilistically) some part of the target space Q. Let
cvgp : q×u→ R be a function denoting the utility for agent
p coming from a target point q ∈ Q due to a joint action
u for all agents. We do not assume a specific form for the
coverage utility cvgp and leave it to be defined flexibly, to
allow many different coverage applications to be amenable
to our framework. Rewards: Due to the joint action u, each
player achieves a coverage reward rp : u→ R of the form
rp(u) =

∫
Q

cvgp(q, u) impp(q) dq, where impp(q) denotes
the importance of the target point q for agent p. With a
joint mixed strategy σ, player p achieves expected utility:
Eu∼σ[rp] =

∫
U
rp(u)σ(u)du. Objectives: In single-agent

settings, the agent would directly optimize his expected util-
ity w.r.t. action up. But in multi-agent settings, the expected
utilities of agents depend on other agents’ actions and hence
cannot be maximized with a deterministic resource alloca-

tion due to potential exploitation by other agents. Instead
agents aim to achieve Nash equilibrium mixed strategies
σ = {σp}p∈P over their action spaces. Nash equilibria: A
joint mixed strategy σ∗ = {σ∗p}p∈P is said to be a Nash
equilibrium if no agent can increase its expected utility by
changing its strategy while the other agents stick to their
current strategy.

Two-player settings: While our proposed framework is not
restricted to the number of agents or utility structure of the
game, we focus on single-player settings and zero-sum two-
player games in this work. An additional concept required
by fictitious play in two-player settings is that of a best
response. A best response of agent p against strategy σ−p is
an action which maximizes his expected utility against σ−p:

brp(σ−p) ∈ argmax
up

{
Eu−p∼σ−p [rp(up, u−p)]

}
.

The expected utility of any best response of agent p is called
the exploitability of agent −p:

ε−p(σ−p) := max
up

{
Eu−p∼σ−p [rp(up, u−p)]

}
.

Notably, a Nash equilibrium mixed strategy for each player
is also their least exploitable strategy.

A.2 IMPLICIT BOUNDARY DIFFERENTIATION
FOR GRADIENT SIMPLIFICATION

As mentioned in the main text, the term ∂qQ∩δSi
∂ui

T
nqQ∩δSi

from the Coverage Gradient Theorem can be simplified
further using implicit differentiation of the boundary of Si.
In our example domains, the coverage boundaries induced
by all resources (drones or lumberjacks) are circular. With
the location of i-th drone as ui = {pi, hi} and for the j-th
lumberjack as uj = pj , the boundaries are given as:

δSi = {q | ||q − pi||2 = hi tan θ} for drones, and
δSj = {q | ‖q − pj‖2 = RL} for lumberjacks

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Nitin Kamra <nkamra@usc.edu>?Subject=Your UAI 2021 paper

We illustrate the calculation of the ∂qQ∩δSi
∂ui

T
nqQ∩δSi term

for a drone below and the calculation follows similarly for
lumberjacks. Any point q ∈ Q ∩ δSi satisfies:

||q − pi||2 = hi tan θ

Differentiating this boundary implicitly w.r.t. pi and w.r.t.
hi gives: (

∂q

∂pi

T

− I2

)
q − pi
||q − pi||2

= 0, and

∂q

∂hi

T q − pi
||q − pi||2

= tan θ.

Noting that the outward normal nq at any point q ∈ Q∩ δSi
is given by q−pi

||q−pi||2 , we now have:

∂q

∂ui

T

nq =


(
∂q

∂pi

T

nq

)T
,
∂q

∂hi

T

nq


=

{(
q − pi
||q − pi||2

)T
, tan θ

}

A.3 MODIFICATIONS TO DEEPFP

Dealing with zero gradients: In the two-agent game (ex-
ample 2), the attacker’s reward depends on the locations
of its resources, but the defender’s reward solely depends
on overlaps with the attacker’s resources. In absence of
such overlap, the gradient of rD,2p w.r.t. uD,i becomes 0.
Hence, we use the reward from the one-agent game (ex-
ample 1) as an intrinsic reward for the defender similar to
how RL algorithms employ intrinsic rewards when extrin-
sic rewards are sparse [Pathak et al., 2017]. Then the re-
ward function for the defender becomes: r̃D,2p(uD, uA) =
rD,2p(uD, uA)+µrD,1p(uD). We use a small µ = 0.001 to
not cause significant deviation from the zero-sum structure
of the game and yet provide a non-zero gradient to guide
the defender’s resources in the absence of gradients from
rD,2p.

Mitigating sub-optimal local optima in best responses:
During our preliminary experiments, we observed that learn-
ing to optimize resource locations or mixed strategies using
purely gradient-based optimization can easily get stuck in
local minima. While multiple re-runs in single-agent games
can generate a reasonably good local minimum, in multi-
agent games where the loss functions of agents are non-
stationary due to changes in the other agents’ mixed strate-
gies, this leads to agents getting stuck in very sub-optimal
local best responses. DeepFP maintains stochastic best re-
sponses to partially alleviate this issue, but doesn’t com-
pletely mitigate it (for an example, see Figure 1). While com-
puting a global best response at every iteration of DeepFP
can be costly (often infeasible), in practice it suffices to

have a discontinuous exploration technique available in the
best response update step. Hence, we propose a simple
population-based approach wherein, motivated by [Long
et al., 2020], we maintain a set of K deterministic best re-
sponses brkp(σ−p), for p ∈ {D,A} and ∀k ∈ [K]. During
the best response optimization step for agent p [lines 6-8
in algorithm 2], we optimize the K best responses indepen-
dently and play the one which exploits agent −p the most.
After the optimization step, the top K

2 best responses are
retained while the bottom half are discarded and freshly
initialized with random placements for the next iteration.
This allows retention and further refinement of the current
best responses over subsequent iterations, while discarding
and replacing the ones stuck due to the opponent exploiting
them. Since best responses get re-ranked every iteration,
neither agent can excessively exploit a best response and
cause the opponent to get stuck, because the opponent just
switches to a different best response from its population in
subsequent iterations.

A.4 CHOOSING POPULATION SIZE K

Since the number of population members K is an important
hyperparameter for our proposed approach, we show the
effect on defender’s exploitability by increasing K in Ta-
ble 1. As expected, the exploitability decreases when using
larger population sizes due to better exploration and finding
more optimal (local) best responses while running DeepFP.
Increasing K also reduces the variance of our metrics con-
siderably. However using large population sizes also directly
increases the computational burden and hence we have used
K = 4 in all our experiments as a reasonable trade-off
between achieving better metrics and having manageable
run-times.

Table 1: Exploitability of defender for m = n = 2 averaged
across forest instances with increasing population size K.

Variant εD(σD)
brnet 399.9488± 57.7006
pop1 348.9498± 98.4338
pop2 189.8122± 73.6444
pop4 141.0912± 13.8966
pop6 127.9152 ± 12.8323

A.5 HYPERPARAMETERS AND MODEL
ARCHITECTURES

A.5.1 Learning differentiable reward models

While learning differentiable reward models with neural
networks, we trained all networks for 100, 000 iterations
with the Adam optimizer having learning rate 0.01 and a
batch size of 64. The network architectures used are shown

(a) Iter 0 (b) Iter 200 (c) Iter 400 (d) Iter 800 (e) Iter 1300 (f) Iter 1900

Figure 1: A sample sequence of iterations for DeepFP with m = n = 1 to demonstrate the attacker’s best responses getting
stuck in non-stationary local minima generated due to eventual adaptation by the defender; The drone (blue dots sampled
from the defender’s stochastic best response) eventually drives the lumberjack (red dots) into a corner from where it cannot
cross over to other parts of the forest, because gradient-based optimization cannot jump over walls of high loss values.

in Table 2.

A.5.2 DeepFP

For DeepFP, we run a total of 1000 outer fictitious play
iterations and 100 inner optimization iterations to update
best responses using the Adam optimizer with learning rate
0.001 and batch size 16. The network architecture for best
response nets in brnet variant are shown in Table 3.

A.6 DIVIDE AND CONQUER BASED SHAPE
DISCRETIZER

The python pseudo-code for the discretizer is shown below
and makes use of a recursive geometric map-filling method
which uses divide and conquer to efficiently compute the in-
terior, exterior and boundary of any geometric shape stored
in the Shapely geometric library format. Note that a minimal
functional pseudo-code using Numpy has been presented
here to facilitate understanding. Our actual code is more
complex and allows working with PyTorch tensors on both
CPU and GPU while also supporting batches of geometric
objects. We also have other specialized versions (not shown
here) which work faster for circular geometries.

Table 2: Network architectures for reward models

Game Net type Structure

Areal Surveillance nn Rm×3 R128 R512 R128 R1fc,relu fc,relu fc,relu fc,relu

Areal Surveillance gnn

Rm×3, _, _ R32, _, _ R32,R16, _

R32,R16, _ R32,R16,R16

R32,R16,R16 R32,R16,R16

R1

node_enc
3→32

edge_net

64→16

node_net
48→32

glob_net

48→16

edge_net

96→16

node_net
64→32

glob_net

64→1

Adversarial Coverage nn

Rm×3 R128 R128 R1

R256 R512

Rn×2 R128 R128 R1

fc,relu

cat

fc,relu fc

fc,relu

fc,relu

cat

fc,relu fc

Adversarial Coverage gnn

R(m+n)×3, _, _ R64, _, _ R64,R32, _

R64,R32, _ R64,R32,R32

R64,R32,R32 R64,R32,R32

R2

node_enc
3→64

edge_net

128→32

node_net
96→64

glob_net

96→32

edge_net

192→32

node_net
128→64

glob_net

128→2

Table 3: Network architectures for DeepFP brnet best responses

Net type Structure

Defender’s brnet

Rm×2

R32 R256

Rm×1

fc,tanh

fc,relu

fc,relu

Attacker’s brnet R32 R256 Rn×2fc,relu fc,tanh

import numpy as np
from s h a p e l y . geomet ry import Polygon , P o i n t

def get_g_map (geom , l ims , d e l t a s) :
’ ’ ’ Computes t h e g e o m e t r i c maps from geomet ry .
Args :

geom : S h a p e l y geome t ry o b j e c t
l i m s : Tup le (x_min , x_max , y_min , y_max) f o r g e n e r a t e d

g e o m e t r i c map
d e l t a s : D i s c r e t i z a t i o n b i n s i z e ; t u p l e (delX , de lY)

R e t u r n s :
g_map : numpy . ndarray o f shape (nbinsX , nbinsY , 3)
c o n t a i n i n g (i n t e r i o r , boundary , e x t e r i o r) i n d i c a t o r o f
geome t ry i n t h e t h i r d d i m e n s i o n .

’ ’ ’
x_min , x_max , y_min , y_max = l i m s
delX , delY = d e l t a s
nbinsX = round ((x_max − x_min) / delX)
nbinsY = round ((y_max − y_min) / delY)

g_map = np . z e r o s ((nbinsX , nbinsY , 3)) # (i n t , bound , e x t)
f i l l (geom , g_map , 0 , nbinsX , 0 , nbinsY , l ims , d e l t a s)
re turn g_map

def f i l l (geom , g_map , i1 , i2 , j1 , j2 , l ims , d e l t a s) :
’ ’ ’ F i l l s g_map o f shape (nbinsX , nbinsY , 3) w i t h 1 s a t

a p p r o p r i a t e l o c a t i o n s t o i n d i c a t e i n t e r i o r , e x t e r i o r and
boundary o f t h e shape geom . T h i s method makes r e c u r s i v e
c a l l s t o i t s e l f and f i l l s up t h e g_map t e n s o r in −p l a c e .

Args :
geom : A s h a p e l y . geome t ry o b j e c t , e . g . Polygon
g_map : A numpy . ndarray o f shape (nbinsX , nbinsY , 3)
i 1 : l e f t x−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
i 2 : r i g h t x−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
j 1 : bo t tom y−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
j 2 : t o p y−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
l i m s : Tup le (x_min , x_max , y_min , y_max) f o r g e n e r a t e d

g e o m e t r i c map
d e l t a s : D i s c r e t i z a t i o n b i n s i z e ; t u p l e (delX , de lY)

’ ’ ’
x_min , x_max , y_min , y_max = l i m s
delX , delY = d e l t a s

box = Polygon ([(x_min + i 1 * delX , y_min + j 1 * delY) , \
(x_min + i 2 * delX , y_min + j 1 * delY) , \
(x_min + i 2 * delX , y_min + j 2 * delY) , \
(x_min + i 1 * delX , y_min + j 2 * delY)])

i f box . d i s j o i n t (geom) :
g_map [i 1 : i2 , j 1 : j2 , 2] = 1 . 0

e l i f box . w i t h i n (geom) :

g_map [i 1 : i2 , j 1 : j2 , 0] = 1 . 0
e l s e : # box . i n t e r s e c t s (geom)

i f (i 2 − i 1 <= 1) and (j 2 − j 1 <= 1) :
g_map [i 1 : i2 , j 1 : j2 , 1] = 1

e l i f (i 2 − i 1 <= 1) and (j 2 − j 1 > 1) :
j_mid = (j 1 + j 2) / / 2
f i l l (geom , g_map , i1 , i2 , j1 , j_mid , l ims , d e l t a s)
f i l l (geom , g_map , i1 , i2 , j_mid , j2 , l ims , d e l t a s)

e l i f (i 2 − i 1 > 1) and (j 2 − j 1 <= 1) :
i_mid = (i 1 + i 2) / / 2
f i l l (geom , g_map , i1 , i_mid , j1 , j2 , l ims , d e l t a s)
f i l l (geom , g_map , i_mid , i2 , j1 , j2 , l ims , d e l t a s)

e l s e : # (i 2 − i 1 > 1) and (j 2 − j 1 > 1) :
i_mid = (i 1 + i 2) / / 2
j_mid = (j 1 + j 2) / / 2
f i l l (geom , g_map , i1 , i_mid , j1 , j_mid , l ims , d e l t a s)
f i l l (geom , g_map , i_mid , i2 , j1 , j_mid , l ims , d e l t a s)
f i l l (geom , g_map , i1 , i_mid , j_mid , j2 , l ims , d e l t a s)
f i l l (geom , g_map , i_mid , i2 , j_mid , j2 , l ims , d e l t a s)

References

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu,
and Xiaolong Wang. Evolutionary population curriculum
for scaling multi-agent reinforcement learning. arXiv
preprint arXiv:2003.10423, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor
Darrell. Curiosity-driven exploration by self-supervised
prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
pages 16–17, 2017.

	Appendix
	Extended notation for multi-agent spatial coverage games
	Implicit boundary differentiation for gradient simplification
	Modifications to DeepFP
	Choosing population size K
	Hyperparameters and model architectures
	Learning differentiable reward models
	DeepFP

	Divide and conquer based shape discretizer

