
Gradient-based Optimization for Multi-resource Spatial Coverage Problems

Nitin Kamra1 Yan Liu1

1Department of Computer Science, University of Southern California, Los Angeles, California, USA

Abstract

Resource allocation for coverage of geographical
spaces is a challenging problem in robotics, sen-
sor networks and security domains. Conventional
solution approaches either: (a) rely on exploiting
spatio-temporal structure of specific coverage prob-
lems, or (b) use genetic algorithms when targeting
general coverage problems where no special ex-
ploitable structure exists. In this work, we propose
the coverage gradient theorem, which provides a
gradient estimator for a broad class of spatial cov-
erage objectives using a combination of Newton-
Leibniz theorem and implicit boundary differen-
tiation. We also propose a tractable framework
to approximate the coverage objectives and their
gradients using spatial discretization and empiri-
cally demonstrate the efficacy of our framework
on multi-resource spatial coverage problems.

1 INTRODUCTION

Allocation of multiple resources for efficient spatial cover-
age is an important component in many practical systems,
e.g., robotic surveillance, mobile sensor networks and green
security domains. Surveillance tasks and sensor node place-
ments generally involve assigning resources e.g. drones or
sensors, each of which can monitor physical areas, to var-
ious points in a target domain such that a loss function
associated with coverage of the domain is minimized [Ren-
zaglia et al., 2012]. Alternatively, green security domains
follow a leader-follower game setup between two agents,
where a defender defends a continuous target density in a
geographical area (e.g. trees in a protected forest) with lim-
ited resources to be placed, while an attacker plans an attack
after observing the defender’s placement strategy using its
own resources [Tambe, 2011].

Related Work: Traditional methods used to solve multi-

resource surveillance problems often make simplifying as-
sumptions to devise tractable solution techniques. While we
will survey these methods briefly, we will primarily focus on
addressing a broad class of spatial coverage problems, where
special spatial-temporal structure or symmetries cannot be
exploited to efficiently allocate resources for coverage.

One of the earliest methods in this field deploys resources
for coverage via construction of potential fields [Howard
et al., 2002]. The fields are constructed such that each re-
source is repelled by both obstacles and by other resources,
thereby forcing the network of resources to spread itself
throughout the target domain to be covered. Poduri and
Sukhatme [2004] extend this potential field method to maxi-
mize the area coverage of a domain via mobile sensors with
the constraint that each sensor node has at least K neighbors
in order to ensure good network coverage. If the target do-
main has uniform target density and the covering resources
are assumed to have infinite coverage fields, then one can
employ voronoi tessellation based methods [Dirafzoon et al.,
2011]. Notably, these approaches and others [Johnson et al.,
2012, Huang et al., 2020] make simplifying assumptions on
the target domain to be covered or on the covering resources
and focus on exploiting the resulting symmetry structures.

Other approaches to coverage and allocation often discretize
the domain to be covered and employ specialized decompo-
sitions, for instance, Kong et al. [2006] employ the Bous-
trophedon decomposition in case of a robot coverage prob-
lem. Similarly, many exact and approximate approaches
proposed in green security game domains to compute strate-
gies against a best responding attacker rely on discretiz-
ing the target area into grid cells and restrict the players’
actions to discrete sets to find optimal allocations using
linear programming (LP) or mixed-integer programming
(MIP) [Kiekintveld et al., 2009, Yang et al., 2014, Fang
et al., 2013, Haskell et al., 2014, Yin et al., 2014]. However,
approaches which directly discretize the action spaces suffer
from intractability of computation since the size of the dis-
cretized action space grows exponentially with the number
of resources to be placed.

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1885–1894.

mailto:Nitin Kamra <nkamra@usc.edu>?Subject=Your UAI 2021 paper

In such cases, one has to rely on undirected exploration
methods such as particle swarm optimization and genetic
algorithms. Nazif et al. [2010] propose a mechanism for cov-
ering an area by means of a group of homogeneous agents
through a single-query roadmap. Saska et al. [2014] propose
an algorithm for autonomous deployment of micro-aerial
vehicles for cooperative surveillance satisfying motion con-
straints, environment constraints and localization constraints
via particle swarm optimization. Tong et al. [2009] propose
a regional service coverage maximization algorithm which
solves the problem heuristically using a genetic algorithm.
Krishnamurthy and Khorrami [2016] present a solution to
the problem of optimal placement of sensors for monitoring
a spatial road network based on an iterative genetic algo-
rithm for the optimization of a scalar metric computed from
the spatial integration of the sensor influence wave. Simi-
larly, Yakoubi and Laskri [2016] propose an evolutionary
approach for vacuum cleaner coverage of a cleaning area.
However, since the coverage problem is generally combina-
torially hard, such undirected search methods also do not
scale well with growing number of resources to be placed.

To address this, recent works in spatial coverage domains
have focused on incorporating advances from deep learn-
ing and reinforcement learning. For instance, Pham et al.
[2018] focus on multi-UAV coverage of a field of interest
using a model-free reinforcement learning method. Kamra
et al. [2019] have proposed DeepFP, a fictitious play based
method to solve green security games in continuous action
spaces, which relies on neural networks to provide a differ-
entiable approximation to the coverage objectives. However,
these require approximating discontinuous and complex
multi-resource coverage objectives using continuous and
smooth neural network approximators, which can lead to
subsequent inaccuracies in resource placements.

Contributions: To address the above challenges, we pro-
pose the coverage gradient theorem, which provides a gra-
dient estimator for a broad class of spatial coverage objec-
tives using a combination of Newton-Leibniz theorem and
implicit boundary differentiation. This alleviates the need
to use function approximators like neural networks to ap-
proximate gradients of the coverage objectives. We further
present a tractable framework to approximate the coverage
objectives and their gradients using spatial discretization
of only the target domain, but not the allocated positions
of the resources. Hence, we keep the resource allocations
amenable to gradient-based optimization thereby leading
to scalable and more directed ways of search and optimiza-
tion for multi-resource coverage problems. Our generalized
formulation supports multiple agents, multiple resources,
arbitrary (even non-convex) shapes for target domains and
arbitrary continuous distributions for targets. By combin-
ing our framework with existing optimization methods, we
demonstrate successful applications on both surveillance
and green security spatial coverage domains.

2 MULTI-RESOURCE SPATIAL
COVERAGE PROBLEMS

In this section, we formally introduce notation and defini-
tions for multi-resource spatial coverage problems along
with example applications, which will be used for evalua-
tion.

Multi-resource spatial coverage: Spatial coverage prob-
lems comprise of a target space Q ⊂ Rd (generally
d ∈ {2, 3}) and a set of m resources. Action: An action
u ∈ Rm×d̂ is the placement of all m resources in an appro-
priate coordinate system of dimension d̂. Coverage: When
placed, each resource covers (often probabilistically) some
part of the target spaceQ. Let cvg : q×u→ R be a function
denoting the coverage of a target point q ∈ Q due to action
u. We do not assume a specific form for the coverage cvg
and leave it to be defined flexibly, to allow many different
coverage applications to be amenable to our framework. Re-
ward: The scalar coverage reward due to action u is defined
as: r(u) =

∫
Q

cvg(q, u) imp(q) dq, where imp(q) denotes
the importance of the target point q. The objective is to
optimize the placement reward r w.r.t. action u.

Example 1 (Single-agent Areal Surveillance). A single
agent, namely the defender (D), allocates m areal drones
with the ith drone Di having three-dimensional coordi-
nates uD,i = (pD,i, hD,i) ∈ [−1, 1]2 × [0, 1] to surveil
a two-dimensional forest Q ⊂ [−1, 1]2 of arbitrary shape
and with a known but arbitrary tree density ρ(q). Conse-
quently, uD ∈ Rm×3. Each drone has a downward looking
camera with a circular lens and with a half-angle θ such
that at position (pD,i, hD,i), the drone Di sees the set of
points SD,i = {q | ||q − pD,i||2 ≤ hD,i tan θ}. A visual-
ization of this problem with m = 2 drones is shown for
a sample forest in Figure 1a. We assume a probabilistic
model of coverage with a point q being covered by drone Di

with probability PH(hD,i) = eK(hopt−hD,i)
(
hD,i
hopt

)Khopt
if q ∈ SD,i and 0 otherwise. With multiple drones, the prob-
ability of a point q being covered can then be written as:
cvg(q, uD) = 1 −

∏
i|q∈SD,i P̄H(hD,i) where P̄H stands

for 1− PH . Hence, the reward function to be maximized is:
rD,1p(uD) =

∫
Q

(
1−

∏
i|q∈SD,i P̄H(hD,i)

)
ρ(q)dq with

the tree density ρ(q) being the importance of target point q
(subscript 1p denotes one agent).

While the above description suffices for single player games,
it can be easily extended to multi-agent games with a set of
agents (or players). In such a case, the solution concept is to
compute the mixed strategy Nash equilibria for all players.
For brevity, we provide the extended notation and the Nash
equilibria concepts associated with it in appendix A.1 for
the interested reader. These can be helpful for understanding
our second example domain described below:

Example 2 (Two-agent Adversarial Coverage). Two agents,

1886

namely the defender D and the attacker A, compete in
a zero-sum game. The defender allocates m areal drones
with the same coverage model as in example 1. The at-
tacker controls n lumberjacks each with ground coordinates
uA,j ∈ [−1, 1]2 to chop trees in the forest Q. Consequently,
uA ∈ Rn×2. Each lumberjack chops a constant fraction
κ of trees in a radius RL around its coordinates uA,j . We
denote the area covered by the j-th lumberjack as SA,j =
{q | ‖q − pA,j‖2 ≤ RL}. A visualization of this problem
with m = n = 2 is shown for a sample forest in Figure 1b.
A drone can potentially catch a lumberjack if its field of view
overlaps with the chopping area. For a given resource allo-
cation u = (uD, uA), we define Ij = {i | ‖pA,j −pD,i‖2 ≤
RL+hD,i tan θ} as the set of all drones which overlap with
the j-th lumberjack. The areal overlap αij =

∫
SD,i∩SA,j dq

controls the probability of the j-th lumberjack being caught
by the i-th drone: PC(hD,i, αij) = PH(hD,i)PA(αij)
where PH is the same as that in example 1 and cap-
tures the effect of drone’s height on quality of coverage,
while PA(αij) = 1 − exp

(
−Kaαij

πR2
L

)
captures the effect

of areal overlap on probability of being caught. Hence,
the reward achieved by the j-th lumberjack can be com-
puted as: rA,j(uD, uA,j) = κ

∫
SA,j∩Q ρ(q)dq with prob-

ability
∏
i∈Ij P̄ (hD,i, αij), and −κ

∫
SA,j∩Q ρ(q)dq other-

wise i.e. the number of trees chopped if the j-th lumber-
jack is not caught by any drone or an equivalent negative
penalty if it is caught. Hence, the total agent rewards are:
rA,2p(uD, uA) = −rD,2p(uD, uA) =

∑
j rA,j(uD, uA,j)

(subscript 2p denotes two-agent). Both agents are expected
to compute the mixed-strategy Nash equilibria over their
respective action spaces.

Note that in the above examples drones provide best proba-
bilistic coverage at a height hopt. By increasing their height,
a larger area can be covered at the cost of deterioration
in coverage probability. Further, the defender can increase
coverage probability for regions with high tree density by
placing multiple drones to oversee them; in which case, the
drones can potentially stay at higher altitudes too. Exam-
ple 2 adds additional interactions due to overlaps between
defender and attacker’s resources1. Hence, these examples
form a challenging set of evaluation domains with multiple
trade-offs and complex possibilities of coverage involving
combinatorial interactions between the players’ resources.
For both examples, we use the following constants: θ = π

6 ,
hopt = 0.2, K = 4.0, RL = 0.1, Ka = 3.0, κ = 0.1.
However, note that these values only serve as practical rep-
resentative values. The techniques that we introduce in this
paper are not specific to the above probabilistic capture mod-
els or specific values of game constants, but rather apply

1In reality, lumberjacks might act independent of each other
and lack knowledge of each others’ plans. By allowing them to
be placed via a single attacker and letting them collude, we tackle
a more challenging problem and ensure that not all of them get
caught by independently going to strongly covered forest regions.

to a broad class of coverage problems where the agents act
by placing resources with finite coverage fields and agents’
rewards are of the form: rp(u) =

∫
Q
fp(u, q)dq.

(a) (b)

Figure 1: (a) Areal surveillance example with an arbitrary
forest and m = 2 drones, (b) Adversarial coverage example
with m = 2 drones and n = 2 lumberjacks (red circles).

3 METHODS

The key idea behind our solution approach is to obtain the
gradient of the expected coverage reward of the agent/(s)
w.r.t. the agents’ actions. This can then be used to perform
direct gradient ascent to arrive at a (locally) optimal action
or as a part of other global search algorithms.

3.1 DIFFERENTIABLE APPROXIMATION FOR
COVERAGE OBJECTIVES

First, we propose a method to approximate coverage objec-
tives and their gradients w.r.t. agents’ actions. Consider an
objective of the form:

r(u) =

∫
Q

f(u, q) dq (1)

where u denotes actions of one or more agents having mul-
tiple resources to place at their disposal and q is any point
in the target domain Q. We assume that the action u has
m components with ui representing the location of i-th re-
source (i ∈ [m]) and u\i representing the locations of all
resources other than i. Note that the imp(q) function has
been subsumed into f(u, q) in this formulation.

We are interested in computing the gradient: ∂r
∂ui

. However,
this is a hard problem since: (a) r(u) involves integration
over arbitrary (non-convex shaped) target domains which
does not admit a closed-form expression in terms of ele-
mentary functions and hence cannot be differentiated with
autograd libraries like PyTorch and TensorFlow, and (b)
most resources have a finite coverage area, outside of which
the coverage drops to zero. This often makes the function
f(u, q) discontinuous w.r.t. q given a fixed u especially at

1887

the coverage boundaries induced by the resources’ coordi-
nates, for e.g., drones have a circular probabilistic coverage
area governed by their height and camera half-angle θ, out-
side which the coverage probability suddenly drops to zero.

At this point, one might wonder why the issue of f(u, q)
being discontinuous cannot be solved by just using an ap-
proximation to the probabilistic coverage functions, e.g. PH
and PA in examples 1 and 2, which smooths their bound-
aries. It turns out that smoothing the coverage function cre-
ates “blind spots”, such that the solution technique believes
that a certain target area is well-covered, e.g., by two or
more drones’ overlapping (smoothed) boundaries, but in
fact the area is completely uncovered since the actual cover-
age boundaries terminate abruptly. The effects of smoothing
are most apparent in two-player adversarial problems where
the attacker wants to exploit any loopholes in the defender’s
allocation. Such blind spots are easily exploited by the at-
tacker to achieve high rewards. In such cases, changing the
coverage function to a discontinuous one significantly al-
ters the computed Nash equilibrium allocation distributions
for the players. Hence, we propose a method to compute
the gradient ∂r

∂ui
without approximating any discontinuous

boundaries.

Theorem 1 (Coverage Gradient Theorem). Let the objec-
tive function be as shown in eq 1: r(u) =

∫
Q
f(u, q) dq.

Denoting the set of points covered by the i-th resource as Si,
the interior of a set with in(·) and the boundary with δ(·),
the gradient of r(u) w.r.t. the i-th resource’s location ui is
given by:

∂r(u)

∂ui
=

∫
in(Q∩Si)

∂f(u, q)

∂ui
dq+∫

Q∩δSi

(
f(u, q)− f(u\i, q)

)∂qQ∩δSi
∂ui

T

nqQ∩δSi
dq (2)

Proof. We begin by observing that while function f can be
potentially discontinuous in q across resources’ coverage
boundaries due to finite coverage fields of resources, r(u)
integrates over q ∈ Q thereby removing the discontinuities.
Hence, instead of directly taking the derivative w.r.t. a par-
ticular resource’s location ui inside the integral sign, we
first split the integral into two parts - over the i-th resource’s
coverage area Si and outside it:

r(u) =

∫
Q∩Si

f(u, q) dq +

∫
Q\Si

f(u, q) dq (3)

Splitting the integral at the boundary of the discontinuity
allows us to explicitly capture the effect of a small change
in ui on this boundary. Denoting the interior of a set with
in(·) and the boundary with δ(·), the derivative w.r.t. ui can

be expressed using the Newton-Leibniz formula as:

∂r(u)

∂ui
=

∫
in(Q∩Si)

∂f(u, q)

∂ui
dq

+

∫
δ(Q∩Si)

f(u, q)
∂qδ(Q∩Si)

∂ui

T

nqδ(Q∩Si)
dq

+

∫
in(Q\Si)

∂f(u\i, q)

∂ui
dq

+

∫
δ(Q\Si)

f(u\i, q)
∂qδ(Q\Si)

∂ui

T

nqδ(Q\Si)
dq,

(4)

where
∂qδ(Q∩Si)

∂ui
denotes the boundary velocity for δ(Q∩Si)

and nqδ(Q∩Si)
denotes the unit-vector normal to a point q

on the boundary δ(Q ∩ Si) (similarly for δ(Q\Si)). Since
f(u\i, q) does not depend on ui, we can set ∂f(u\i,q)

∂ui
= 0.

Next observe that the boundaries can be further decomposed
as: δ(Q ∩ Si) = (δQ ∩ Si) ∪ (Q ∩ δSi) and similarly
δ(Q\Si) = (δQ\Si) ∪ (Q ∩ δSi). However since ui does
not change the boundary of the target domain δQ, we have:

∂qδQ∩Si
∂ui

= 0, ∀q ∈ δQ ∩ Si (5)

∂qδQ\Si
∂ui

= 0, ∀q ∈ δQ\Si (6)

Further on the boundary of Si, the following unit-vectors
normal to the boundary are oppositely aligned:

nqδ(Q\Si)
= −nqδ(Q∩Si)

∀q ∈ Q ∩ δSi. (7)

Substituting the above results, we can simplify the gradient
expression in eq 4 to:

∂r(u)

∂ui
=

∫
in(Q∩Si)

∂f(u, q)

∂ui
dq+∫

Q∩δSi

(
f(u, q)− f(u\i, q)

)∂qQ∩δSi
∂ui

T

nqQ∩δSi
dq (8)

Note that the first term in eq 2 corresponds to the change
in f inside the coverage area of resource i due to a small
change in ui, while the second term elegantly factors-in the
effects of movement or shape change of the coverage area
boundary due to changes in ui (e.g. when a drone moves
or elevates in height). This allows us to mitigate the discon-
tinuities due to finite coverage fields of resources. While

we show the general result here, the term ∂qQ∩δSi
∂ui

T
nqQ∩δSi

can be simplified further using implicit differentiation of the
boundary of Si, which depends on the particular game under
consideration. We show the simplification for our example
domains in section A.2 in the appendix.

1888

3.2 DISCRETIZATION-BASED APPROXIMATION
FRAMEWORK

While we now have a general form for r(u) and ∂r
∂u , both

forms comprise of non closed-form integrals over the tar-
get domain Q or its subsets. While evaluating r and ∂r

∂u
in practice, we adopt a discretization based approach to ap-
proximate the integrals. Given a target domainQ ⊂ Rd with
d ∈ {2, 3}, we discretize the full Rd space into B1, . . . , Bd
bins respectively in each of the d dimensions (see figure 2a).
Approximating spatial maps: All spatial maps i.e. func-
tions over the target domain Q (e.g. f(u, q)), are inter-
nally represented as real tensors of dimension d with size:
(B1, . . . , Bd) (see figure 2b).
Approximating sets: All geometric shapes (or sets of
points) including Si for all resources (e.g., the circular
coverage areas of drones and lumberjacks) and the tar-
get domain Q itself (e.g., the irregular shaped forest) are
converted to binary tensors each of dimension d+ 1 with
size: (B1, . . . , Bd, 3). The final dimension of length 3 de-
notes interior, boundary and exterior of the geometric shape
respectively, i.e. a binary tensor T has Tb1,...,bd,0 = 1 if
the bin at index (b1, . . . , bd) is inside the geometric shape,
Tb1,...,bd,1 = 1 if the bin is on the boundary of the geometric
shape and Tb1,...,bd,2 = 1 if the bin is outside the geometric
shape (see figure 2c).
Approximating operators: Doing the above discretization
requires an efficient function for computing the binary ten-
sors associated with the in(·) and the δ(·) operators. This
is performed by our efficient divide-and-conquer shape dis-
cretizer, which is presented in section A.6 due to space
constraints. The other set operations are approximated as
follows: (a) set intersections are performed by element-wise
binary tensor products, (b) integrals of spatial maps over ge-
ometric sets are approximated by multiplying (i.e. masking)
the real tensor corresponding to the spatial map with the bi-
nary tensor corresponding to the geometric set followed by
an across-dimension sum over the appropriate set of axes.

Scaling: While our discretized bins growing exponentially
with dimension d of the target domain may come off as
a limitation, our method still scales well for most real-
world coverage problems since they reside on two or three-
dimensional target domains. Note that unlike previous ap-
proaches which discretize the target domain and simultane-
ously restrict the agents’ actions to discrete bins [Yang et al.,
2014, Haskell et al., 2014], we do not discretize the actions
u of agents. Hence, we do not run into intractability induced
by discretizing high-dimensional actions of agents owning
multiple resources and we keep u amenable to gradient-
based optimization.

Using the framework: Our proposed framework essen-
tially acts as an autograd module for r(u) differentiable
w.r.t. input u, which provides both the forward and the back-
ward calls (i.e. evaluation and gradients). Hence, it can now

(a) Discretize the target space Rd (but not action
space) into bins

(b) Approximate all spatial maps e.g., f(u, q) as real
tensors of shape (B1, B2)

(c) Approximate all sets e.g., spatial coverage field Si of each
resource and the target domain Q as binary tensors of shape
(B1, B2, 3)

Figure 2: Illustration of spatial discretization-based frame-
work for 2-D target domains.

be used for direct gradient-based optimization solutions to
multi-resource coverage problems. We describe our solution
approaches in the next section.

3.3 SOLUTION APPROACHES

For the single agent surveillance domain, we compare the
following solution approaches:

1. Genetic algorithm [gen]: We run a genetic algorithm
as shown in algorithm 1 to search for near-optimal
resource allocations (with population size K = 6 and
max_itr = 1000).

2. Gradient ascent [ga]: We perform gradient ascent on
a differentiable approximation to the coverage objec-
tive rD(uD), thereby converging at a (locally) optimal
value of uD:

(a) Neural nets [_nn]: We train feedforward neural
networks to approximate the coverage objective
and its gradients.

1889

(b) Graph neural nets [_gnn]: We train graph neural
networks to approximate the coverage objective
and its gradients.

(c) Our framework [_diff]: We use our spatial dis-
cretization based framework and the coverage gra-
dient theorem to approximate the coverage objec-
tive and its gradients.

3. Augmented genetic algorithm [agen]: We augment the
genetic algorithm as shown in algorithm 1, line 11 by
having an inner-loop which performs gradient ascent
on all population members in every iteration of the
algorithm. We use population size K = 6, max_itr =
1000 and 100 inner-loop gradient ascent iterations. We
again have the three variants: [_nn], [_gnn] and [_diff]
based on where the gradients come from.

For two-agent adversarial games, we employ the DeepFP
algorithm [Kamra et al., 2019], which is based on fictitious
play. Briefly summarized in algorithm 2, it obtains a differ-
entiable approximation to the reward functions rD,2p and
rA,2p, creates an empty memory to store a non-parametric
representation of the agents’ mixed strategies σ = (σD, σA)
and initializes best responses for both agents randomly [lines
1-3]. Then it alternatively updates: (a) the agents’ strategies,
by storing the current best responses in the memory [line
5], and (b) the best responses, by maximizing each agent
p’s differentiable reward function against a batch of sam-
ples drawn from the other agent’s strategy σ−p [lines 6-8].
We point the readers to Kamra et al. [2019] for details of
the algorithm. In our implementation, we used a modified
version of the DeepFP algorithm to apply it to our setting.
The modifications made and the reasons behind them have
been described in detail in section A.3 in the appendix. The
DeepFP hyperparameters used can be found in section A.5
in the appendix. Again we use neural nets [_nn], graph neu-
ral nets [_gnn] and our approximation framework [_diff] to
obtain the gradients of the coverage objective and compare
these variants empirically.

4 EXPERIMENTS

In our experiments on both our application domains, we
differentiably approximate rewards using the following vari-
ants: (a) feedforward neural networks [nn], (b) graph neural
networks [gnn], and (c) our approximation framework [diff].
For the nn and gnn baselines, we trained neural networks,
one per forest and per value of m (and n for two-agent
games), to predict the reward of the defender (and attacker
in case of two-agent game) by minimizing the MSE loss us-
ing the Adam optimizer. The neural networks take as input
the action uD of the defender (and uA also for two-agent
game) and output a prediction for the reward r̂D,1p (r̂D,2p
and r̂A,2p for two-agent game). Please see section A.5 in ap-
pendix for network architectures and hyperparameters. We
also represent best responses with the following variants: (a)

Algorithm 1: A Genetic Algorithm for Resource Allo-
cation in Spatial Coverage Problems
Result: Final action u

1 Required: Coverage reward r(u) (a.k.a. fitness
function);

2 Initialize a population of K actions u1:K each ∈ Rm×d;
3 for itr ∈ {1, . . . ,max_itr} do

/* Evaluate population members */
4 Compute fitness r(ui) of population member

ui ∀i ∈ 1 : K;
/* Ranking */

5 Sort all population members in decreasing order of
fitness;
/* Cross-over */

6 Copy the top K/3 fittest population members;
7 Make a shuffled copy of these top K/3 members;
8 Between each pair of the original and shuffled

copies, swap the corresponding resource
placements with probability 0.5 generating 2 new
members per pair;

9 Discard the bottom 2K/3 population and replace
them with the newly crossed-over copies;
/* Perform mutation */

10 Randomly perturb the coordinates of the newly
generated 2K/3 copies by appropriate amounts
(we use uniform random numbers between
[−0.1, 0.1] per coordinate);
/* Perform inner-loop gradient

ascent if augmented genetic
algorithm */

11 In the augmented genetic algorithm variant, apply a
fixed number of gradient ascent iterations to each
population member using gradients from a
differentiable approximation r̂(u) to r(u);

12 Return arg maxu∈u1:K
r̂(u);

Algorithm 2: DeepFP
Result: Final strategies σD, σA in mem

1 Obtain a differentiable approximation r̂ = (r̂D, r̂A) to
the reward functions: (rD,2p, rA,2p);

2 Initialize best responses (brD, brA) randomly;
3 Create empty memory mem to store σ = (σD, σA);
4 for game ∈ {1, . . . , max_games} do

/* Update strategies */
5 Update σ by storing best responses {brD, brA} in

mem;
/* Update best responses */

6 for agent p ∈ {D,A} do
7 Draw samples {ui−p}i=1:bs from σ−p in mem;
8 brp := maxup

1
bs

∑bs
i=1 r̂p(up, u

i
−p);

1890

Table 1: Maximum reward averaged across forest instances achieved for Areal Surveillance domain.

m = 1 m = 2 m = 4 m = 8
gen 9378.46 ± 660.27 16061.02± 940.34 24857.09± 1593.90 33749.89± 2949.36

ga_diff 9364.07± 660.55 16086.24 ± 923.84 25109.58 ± 1552.05 34364.64 ± 3168.55
ga_nn 9337.57± 680.45 14308.12± 1070.00 19211.01± 2233.19 19127.45± 2498.12

ga_gnn 9291.36± 665.65 14082.38± 1073.62 19075.09± 1378.36 19657.22± 2346.1
agen_diff 9374.36 ± 660.56 16091.18 ± 927.46 25122.13 ± 1555.55 34792.45 ± 2924.52
agen_nn 9351.67± 674.55 14348.55± 1057.19 19236.34± 2229.72 19563.83± 2378.31
agen_gnn 9307.41± 676.78 14207.96± 1044.29 19652.45± 1712.13 20286.63± 2339.48

stochastic best response nets [brnet] as originally done by
DeepFP, and (b) our deterministic evolutionary population
[popK] with K being the population size (see section A.3
in the appendix for why this modification is useful). We
use d = 2 dimensional forests and discretize them into
B1 = B2 = 200 bins per dimension for a total of 40K bins
when using our framework.

4.1 RESULTS ON AREAL SURVEILLANCE
DOMAIN

We show the experiment results achieved by using all meth-
ods: gen, ga_diff, ga_nn, ga_gnn, agen_diff, agen_nn and
agen_gnn for different values of m ∈ {1, 2, 4, 8} over 5
different forest instances differing in shape and tree density.
The maximum true reward rD,1p achieved by all methods
averaged over all the forest instances is shown in Table 1.

It is clear that agen_diff always achieves the maximum true
reward for nearly all values of m (except m = 1 due to
stochasticity of genetic algorithms). This is because gen
only performs undirected global search, while the ga vari-
ants perform only directed local optimization with gradient
ascent. The agen variants are the only ones which combine
the undirected global search of genetic algorithms with local
optimization of gradient-based optimization and hence out-
perform other baselines. Figure 3 shows the final locations
computed for a randomly chosen forest and with m = 2 for
all methods.

Amongst the diff, nn and gnn variants, the diff variants al-
ways outperform the other two since our approximation
framework is quite precise while neural networks become
more inaccurate at approximating the coverage objective
and its gradients, especially as m increases and the objec-
tive becomes combinatorially harder to approximate. This
is also reflected in the plots of true reward achieved vs train-
ing iterations shown in Figure 4 for simple gradient ascent
(ga) variants. Since diff variants are unbiased approximators
of the true reward2, the true reward continues to increase
till convergence for diff. For nn and gnn variants, the true
reward increases initially but eventually goes down as the de-

2The only bias in diff is the discretization bin sizes, which can
be made arbitrarily small in principle.

fender action uD begins to overfit the potentially inaccurate
approximations made by nn and gnn.

Next, we compare the runtimes of all algorithms for the
Areal Surveillance domain in Table 2. Note that all [ga_]
variants employ 100 iterations of gradient ascent each. The
genetic algorithm [gen] uses max_itr = 1000 iterations to
converge, while the augmented variants [agen_] converge
much faster and usemax_itr = 10 outer loop iterations and
100 inner loop gradient ascent iterations each. We observe
that the [_diff] variants are always faster than [_nn] and
[_gnn] variants and the best performing [agen_] variant,
namely [agen_diff], only requires a little bit more time than
[ga_] variants and [gen].

Table 2: Runtimes of algorithms (in seconds).

m = 1 m = 2 m = 4 m = 8
gen 3.5 3.5 4.5 6

ga_diff 3.6 4 4.4 5.2
ga_nn 4.2 4.6 4.8 5.2

ga_gnn 3.6 4.4 5 5.4
agen_diff 4.92 4.45 4.62 6.14
agen_nn 5.33 4.55 4.68 8.51
agen_gnn 8.45 12.45 12.6 13.46

4.2 RESULTS ON ADVERSARIAL COVERAGE
GAME

We implemented different variants of DeepFP with vari-
ations of differentiable reward models in {nn, gnn, diff }
along with variations of best responses in {brnet, pop4}. We
measured the exploitability εD(σD) of the defender strat-
egy found by all methods to compare them against each
other. To compute the exploitability of the defender strategy
found by any variant of DeepFP, we froze the defender strat-
egy σD and directly maximized EuD∼σD [r̂A(uD, uA)] w.r.t.
uA with r̂A being approximated by diff. This is a single-
agent objective and can be directly maximized with gradient
ascent. We perform 30 independent maximization runs to
avoid reporting local maxima and report the best as the
exploitability. Note that nash equilibrium strategies are the
least exploitable strategies, hence lower the value of εD(σD)
found, the closer σD is to the nash equilibrium strategy.

1891

(a) Forest tree density (b) Action found via gen (c) Action found via ga_diff (d) Action found via ga_nn

(e) Action found via ga_gnn (f) Action found via agen_diff (g) Action found via agen_nn (h) Action found via agen_gnn

Figure 3: Visualizing final actions for a randomly chosen forest with m = 2.

(a) m = 1 (b) m = 2

(c) m = 4 (d) m = 8

Figure 4: Plots of true reward achieved by diff, nn and gnn
variants over gradient ascent iterations for m ∈ {1, 2, 4, 8}.

Table 3 shows the exploitability values for different variants
of DeepFP. We observe that the exploitability when best
responses are approximated by a population-based variant
with K = 4 is always lower than that of stochastic best
response networks employed by original DeepFP. Further,
with few agent resources m = n = 1, the exploitability
across diff, nn and gnn is nearly similar but the disparity
increases for larger number of agent resources and diff dom-
inates over nn and gnn with less exploitable defender strate-
gies. Notably, the original DeepFP (nn + brnet) is heavily
exploitable while our proposed variant (diff + popK) is the
least exploitable. In Figure 5, we show a visualization of the

points sampled from the defender and attacker’s strategies
for m = n = 2 case on the same forest from Figure 3a. The
visualization confirms that diff + popK covers the dense core
of the forest with the defender’s drones so the attacking lum-
berjacks attack only the regions surrounding the dense core,
while nn + brnet drones often gets stuck and concentrated in
a small region thereby allowing lumberjacks to exploit the
remaining dense forest. Please also see section A.4 in the
appendix exploring the trade-offs in the choice of population
size K.

Table 3: Exploitability of the defender from DeepFP variants
averaged across forest instances.

εD(σD) m=n=1 m=n=2 m=n=4
brnet

diff 209.78 399.95 559.36
(ours) ±49.94 ±57.70 ±164.21

nn 203.92 323.00 787.53
±54.67 ±39.55 ±194.82

gnn 204.55 307.74 597.23
±50.72 ±62.67 ±125.01

pop4 (ours)
diff 116.41 141.09 141.54

(ours) ±15.02 ± 13.90 ± 26.60
nn 113.61 208.23 339.31

± 6.92 ±22.76 ±116.77
gnn 113.99 176.25 172.30

±13.74 ±15.21 ±34.08

1892

(a) Strategy for diff + brnet (b) Strategy for nn + brnet

(c) Strategy for gnn + brnet (d) Strategy for diff + pop4

(e) Strategy for nn + pop4 (f) Strategy for gnn + pop4

Figure 5: Visualizing final strategies found via diff, nn and
gnn with best responses of the form brnet and pop4 on a
randomly chosen forest with m = n = 2. The blue (red)
dots are sampled from the defender’s (attacker’s) strategy
for the 2 drones (lumberjacks).

5 DISCUSSION AND CONCLUSION

In this work, we propose the Coverage Gradient Theorem to
directly compute the gradients of a large class of multi-
resource spatial coverage objectives. We also provide a
tractable and scalable spatial discretization-based frame-
work to approximate the resulting gradient expressions. Our
generalized formulation supports multiple agents, multiple
resources, arbitrary (even non-convex) shapes for target
domains and arbitrary continuous distributions for targets.
By augmenting existing approaches with our approxima-
tion framework, we show improved performance in both
single-agent and adversarial two-agent multi-resource spa-
tial coverage problems.

One of the key limitations of the approximation framework

is to approximate the integrals using discretization. While
this scales well for two or three dimensional target domains,
it is harder to scale if we are working with target spaces of
larger dimensions and one needs to explore alternative but
less accurate methods, e.g., sampling. However, while it is
much more manageable to store discretized shape tensors in
GPU memory, working with samples from geometric shapes
and defining operators on them is generally harder. Further,
while our framework scales linearly with the number of re-
sources for single player games, the size of the spatial maps
and binary tensors involved depends on the number of bins
chosen per dimension of the target domain. This number
can be large if a fine-grained discretization is being used or
the target space is huge and can require multiple GPUs in
parallel to store the full forward and backward models. To
obtain the best trade-off between memory and paralleliza-
tion on GPUs, working on scalable adaptive sampling-based
frameworks is a promising next step for future research.

Author Contributions

N. Kamra conceived the idea, performed the experiments
and wrote the paper. Y. Liu provided helpful discussions,
feedback and funding for the work.

Acknowledgements

This research was supported in part by NSF Research Grant
IIS-1254206, MURI Grant W911NF-11-1-0332 and the
USC Viterbi Graduate PhD fellowship.

References

Alireza Dirafzoon, Mohammad Bagher Menhaj, and Ahmad
Afshar. Decentralized coverage control for multi-agent
systems with nonlinear dynamics. IEICE TRANSAC-
TIONS on Information and Systems, 94(1):3–10, 2011.

Fei Fang, Albert Xin Jiang, and Milind Tambe. Optimal
patrol strategy for protecting moving targets with multiple
mobile resources. In AAMAS, pages 957–964, 2013.

William Haskell, Debarun Kar, Fei Fang, Milind Tambe,
Sam Cheung, and Elizabeth Denicola. Robust protection
of fisheries with compass. In IAAI, 2014.

Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme.
Mobile sensor network deployment using potential fields:
A distributed, scalable solution to the area coverage prob-
lem. In Distributed Autonomous Robotic Systems 5, pages
299–308. Springer, 2002.

Taoan Huang, Weiran Shen, David Zeng, Tianyu Gu, Rohit
Singh, and Fei Fang. Green security game with com-
munity engagement. arXiv preprint arXiv:2002.09126,
2020.

1893

Matthew P. Johnson, Fei Fang, and Milind Tambe. Patrol
strategies to maximize pristine forest area. In AAAI, 2012.

Nitin Kamra, Umang Gupta, Kai Wang, Fei Fang, Yan Liu,
and Milind Tambe. Deepfp for finding nash equilibrium
in continuous action spaces. In Decision and Game The-
ory for Security (GameSec), pages 238–258. Springer
International Publishing, 2019.

Christopher Kiekintveld, Manish Jain, Jason Tsai, James
Pita, Fernando Ordóñez, and Milind Tambe. Comput-
ing optimal randomized resource allocations for massive
security games. In AAMAS, pages 689–696, 2009.

Chan Sze Kong, New Ai Peng, and Ioannis Rekleitis. Dis-
tributed coverage with multi-robot system. In Proceed-
ings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., pages 2423–2429.
IEEE, 2006.

Prashanth Krishnamurthy and Farshad Khorrami. Opti-
mal sensor placement for monitoring of spatial networks.
IEEE Transactions on Automation Science and Engineer-
ing, 15(1):33–44, 2016.

Ali Nasri Nazif, Alireza Davoodi, and Philippe Pasquier.
Multi-agent area coverage using a single query roadmap:
A swarm intelligence approach. In Advances in practical
multi-agent systems, pages 95–112. Springer, 2010.

Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and
Aria Nefian. Cooperative and distributed reinforcement
learning of drones for field coverage. arXiv preprint
arXiv:1803.07250, 2018.

S. Poduri and G. S. Sukhatme. Constrained coverage for mo-
bile sensor networks. In IEEE International Conference
on Robotics and Automation (ICRA), 2004.

Alessandro Renzaglia, Lefteris Doitsidis, Agostino Mar-
tinelli, and Elias B Kosmatopoulos. Multi-robot three-
dimensional coverage of unknown areas. The Inter-
national Journal of Robotics Research, 31(6):738–752,
2012.

Martin Saska, Jan Chudoba, Libor Přeučil, Justin Thomas,
Giuseppe Loianno, Adam Třešňák, Vojtěch Vonásek, and
Vijay Kumar. Autonomous deployment of swarms of
micro-aerial vehicles in cooperative surveillance. In 2014
International Conference on Unmanned Aircraft Systems
(ICUAS), pages 584–595. IEEE, 2014.

Milind Tambe. Security and Game Theory: Algorithms, De-
ployed Systems, Lessons Learned. Cambridge University
Press, New York, NY, 2011.

Daoqin Tong, Alan Murray, and Ningchuan Xiao. Heuris-
tics in spatial analysis: a genetic algorithm for coverage
maximization. Annals of the Association of American
Geographers, 99(4):698–711, 2009.

Mohamed Amine Yakoubi and Mohamed Tayeb Laskri. The
path planning of cleaner robot for coverage region us-
ing genetic algorithms. Journal of innovation in digital
ecosystems, 3(1):37–43, 2016.

Rong Yang, Benjamin Ford, Milind Tambe, and Andrew
Lemieux. Adaptive resource allocation for wildlife pro-
tection against illegal poachers. In AAMAS, 2014.

Yue Yin, Bo An, and Manish Jain. Game-theoretic resource
allocation for protecting large public events. In AAAI,
pages 826–833, 2014.

1894

	Introduction
	Multi-resource spatial coverage problems
	Methods
	Differentiable approximation for coverage objectives
	Discretization-based Approximation Framework
	Solution Approaches

	Experiments
	Results on Areal Surveillance domain
	Results on Adversarial Coverage game

	Discussion and Conclusion

