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Abstract

In this supplementary document, we first provide
a detailed derivation of the proposed uncertainty
measure in terms of the underlying local cut prob-
abilities. Then, we provide additional evaluations
of the uncertainties in the context of minimum
cost multicuts for motion segmentation when the
GAEC heuristic Keuper et al. [2015] is applied as
a solver.

1 UNCERTAINTY ESTIMATION

Given an instance of the (lifted) multicut problem and its so-
lution, we employ the probability measures in equations
(6) (MP) and (7) (LMP) of the main paper. We iterate
through nodes vi ∈ {1, . . . , |V |} in vicinity of a cut, i.e.
∃e ∈ NE(vi) with e ∈ E and ye = 1. Assuming that vi
belongs to segment A and its neighbour vj according to E
belongs to the segment B, the amount of cost change γB is
computed in the linear cost function (defined in equations
(6) and (7) of the main paper) by moving vi from cluster A
to cluster B as

γB =
∑

vj∈NE′ (vi)∩A

c(vi,vj) −
∑

vj∈NE′ (vi)∩B

c(vi,vj). (1)

Thus, in γB , we accumulate all costs of edges from vi that
are not cut in the current decomposition and subtract all
costs of edges that are cut in the current decomposition but
would not be cut if vi is moved from A to B. Note that,
while the cost change is computed over all edges in E′ for
lifted graphs, only the uncertainty of nodes with an adjacent
cut edge in E can be considered in order to preserve the
feasibility of the solution. For each node vi the number
of possible moves depends on the labels of its neighbours
NE(vi), and Eq. (6) allows us to assign a cost to any such
node-label change. Altogether, we assess the uncertainty
of a given node label by the cheapest, i.e. the most likely,

Figure 1: In the current decomposition of the exemplary
graph G = (V,E) (top figure), we study the node uncertain-
ties as represented in equation (6). For instance, v1 is moved
from one partition (red label) to the new possible partitions
(blue and green labels) and the cost change is estimated. The
γα represents the cost which minimize the cost among these
moves.

possible move

γi = min
B

γB . (2)

and set γi to∞ if no move is possible. The minimization
in Eq. (2) corresponds to considering the local move of vi
which maximizes∏
e=(vi,vj),vj∈A

pYe|Xe
(1, xe)

pYe|Xe
(0, xe)

·
∏

e=(vi,vj),vj∈B

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)

.

(3)

To produce an uncertainty measure for each node in the
graph, we apply the logistic function on (2)

uncertainty =
1

1 + exp (−γi)
(4)

as it is the inverse of the logit function used in the cost
computation in (8).

In the following we show the expansion of equation (4), by
injecting the corresponding values for γi. The determine γi,
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the minimum change in the cost is computed among all the
possible changes between the clusters for each node vi ∈ V
(refer to Fig. 1 for an example), such that

uncertainty =
1

1 + exp (−min
B

γB)
(5)

where

γB =
∑

vj∈NE′ (vi)∩A

c(vi,vj) −
∑

vj∈NE′ (vi)∩B

c(vi,vj). (6)

The resulting uncertainty measure is thus of the form

uncertainty

=
1

1 + exp

 ∑
vj∈NE′ (vi)∩B

c(vi,vj) −
∑

vj∈NE′ (vi)∩A

c(vi,vj)

 .

(7)

According to the Bayesian model and the findings in Andres
et al. [2012], the costs c(vi,vj) for each e := (vi, vj) ∈ E are
computed via (refer to the equation (9) in the main paper),

∀e ∈ E : ce = log
pYe|Xe

(0, xe)

pYe|Xe
(1, xe)

+ log
1− β
β

. (8)

For simplicity and to be compatible with our experiments,
we set the value of β = 0.5 (i.e. we assume an unbiased
decomposition), which makes log 1−β

β = 0.

We insert c(vi, vj) = log
pYe|Xe (0,xe)

pYe|Xe (1,xe)
, (e = (vi, vj)) into

Eq. (7) and denote vj ∈ NE′(vi) ∩ B by e,B where e =
(vi, vj), vj ∈ B and vj ∈ NE′(vi) ∩ A by e,A where
e = (vi, vj), vj ∈ A, and get

uncertainty

=
1

1 + exp

∑
e,B

log
pYe|Xe

(0, xe)

pYe|Xe
(1, xe)

−
∑
e,A

log
pYe|Xe

(0, xe)

pYe|Xe
(1, xe)



=
1

1 + exp

log
∏
e,B

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)

− log
∏
e,A

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)



=
1

1 + exp

log
∏
e,B

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)

+ log
∏
e,A

pYe|Xe
(1, xe)

pYe|Xe
(0, xe)



Figure 2: Study on the trajectory uncertainty on the
GAEC Keuper et al. [2015] solver. The experiment relates
to the Variation of Information (VI) and Rand Index (RI)
on the train (left) and test (right) set of FBMS59 Ochs et al.
[2014].

Figure 3: Study on the trajectory uncertainty on the
GAEC Keuper et al. [2015] solver. The experiment relates to
the Variation of Information (VI) and Rand Index (RI) on the
train (left) and validation (right) set of DAVIS2016 Perazzi
et al. [2016].

=
1

1 + exp

log

∏
e,B

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)

.
∏
e,A

pYe|Xe
(1, xe)

pYe|Xe
(0, xe)


=

1

1 +

∏
e,B

pYe|Xe
(0, xe)

pYe|Xe
(1, xe)

.
∏
e,A

pYe|Xe
(1, xe)

pYe|Xe
(0, xe)


=

1

1 +


∏
e,B

pYe|Xe
(0, xe)∏

e,B

pYe|Xe
(1, xe)

.

∏
e,A

pYe|Xe
(1, xe)∏

e,A

pYe|Xe
(0, xe)


(9)

Note that in the denominator, we have exactly 1 + the term
from Equation (12) in the main paper. With a slight refor-
mulation, we get

=

∏
e,A

pYe|Xe (0, xe).
∏
e,B

pYe|Xe (1, xe)∏
e,A

pYe|Xe (0, xe).
∏
e,B

pYe|Xe (1, xe) +
∏
e,B

pYe|Xe (0, xe).
∏
e,A

pYe|Xe (1, xe)

(10)

or by a simplified notation pYe|Xe
(1, xe) =: pc for cut

probabilities and pYe|Xe
(0, xe) =: pj for join probabili-

ties.



uncertainty =

∏
e,B

pc
∏
e,A

pj∏
e,B

pc
∏
e,A

pj +
∏
e,B

pj
∏
e,A

pc
(11)

where the nominator is exactly the product of the local
probabilities for the observed solution at node vi (compare
Eq. (6) in the main paper) and the denominator sums trivially
to one in the case of |NE′(vi)| = 1.

2 UNCERTAINTY ON MINIMUM COST
MULTICUT SOLUTIONS FROM GAEC

In Figures 2 and 3, we provide an additional evaluation of
the proposed uncertainty measure in the motion segmen-
tation setting. Specifically, we compute solutions for the
same motion segmentation problem instances as used in the
main paper on the FBMS59 and DAVIS2016 datasets. While
the main paper evaluates using the widely employed high
quality solutions from the KLj heuristic, we here addition-
ally assess uncertainties on a faster, lower quality solver,
GAEC Keuper et al. [2015]. It can be seen that the sparsi-
fication plots behave as expected. The VI decreases as the
segmentation becomes sparser and the RI increases. How-
ever, it can be seen that for the poorer segmentation results,
the RI does not increase as monotonically as this was the
case for KLj. Specifically when considering the high spar-
sity regime, the RI metric becomes brittle, indicating that
entire labels might have been removed from the solution.
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