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Abstract

In this paper, we consider constrained optimiza-
tion problems subject to a convex set C. Stochastic
gradient descent (SGD) is a simple and popular
stochastic optimization algorithm that has been the
workhorse of machine learning for many years. We
show a new and surprising fact about SGD, in that
depending on the constraint set C, one can oper-
ate SGD with much lower-dimensional stochas-
tic gradients without affecting its performance. In
particular, we design an optimization algorithm
that operates with the lower-dimensional (com-
pressed) stochastic gradients, and establish that
with the right set of parameters it has the exact
same dimension-free convergence guarantees as
that of regular SGD for popular convex and non-
convex optimization settings. We also present two
applications of these bounds, one for improving
the empirical risk minimization bounds in differ-
entially private nonconvex optimization, and other
for reducing communication costs with distributed
SGD. Additionally, we also show that this connec-
tion between constraint set structure and gradient
compression also extends beyond SGD to the con-
ditional gradient (Frank-Wolfe) method. The geom-
etry of the constraint set, captured by its Gaussian
width, plays an important role in all our results.

1 INTRODUCTION

In this paper, we consider the classic optimization problem
of minimizing a function over a convex set:

min
w∈C

F (w), (1)

where C ⊆ Rd is a compact convex set and F : Rd → R.

(Projected) Stochastic Gradient Descent (SGD) is one of the

simplest and most popular stochastic first-order optimiza-
tion algorithms for solving (1). Stochastic gradient descent
is widely used in machine learning applications due to its
favorable computational scalability properties. This is no-
tably true in the deep learning setting, where gradients can
be computed efficiently via backpropagation. In convex opti-
mization, SGD can be used to optimize any convex function
F over a convex domain C, given access only to unbiased es-
timates of F ’s gradients (or more generally, subgradients1)
through an oracle. This feature makes it very useful for learn-
ing problems, where our goal is to minimize generalization
error based only on a finite sampled training set.

While classical results have focused on analyzing the perfor-
mance of SGD in convex optimization problems, the most
notable recent successes in machine learning have involved
nonconvex optimization. For example, in the unconstrained
setting (i.e., C = Rd) for a differentiable function that has an
µ-Lipschitz continuous gradient (i.e., µ-smooth), it is well
known that SGD finds an α-first-order stationary point (a
point w with ‖∇F (w)‖ ≤ α) withO(µ(F (w1)−F ?)/α2)
iterations [Nesterov, 1998], where w1 is the initial point and
F ? is the optimal value of F . For constrained nonconvex
smooth functions, a variety of similar dimension-free con-
vergence results are known under the appropriate notion of
stationarity [Ghadimi et al., 2016, Mokhtari et al., 2018].
These dimension-free convergence guarantees make SGD
extremely attractive when the parameter space is very high
dimensional.

1.1 OUR RESULTS

Our main result is a novel connection between constraint
set structure and compression of the gradients.2 We design a
new SGD-style optimization algorithm that operates with

1Following a common convention, we still refer to the algo-
rithm in this case as “gradient descent”.

2The term compressed gradient has been used in a variety
of contexts in prior literature, here we use the term to denote a
lower-dimensional representation of the gradient.
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just the lower-dimensional (compressed) stochastic gradi-
ents and has the exact same dimension-free convergence
guarantees as that of regular SGD for common convex and
nonconvex optimization settings. Formally, instead of the
usual stochastic gradient oracle, we assume the existence
of a compressed stochastic gradient oracle, that on inputs
Φ ∈ Rm×d and wt ∈ C, returns ϑt = Φĝt ∈ Rm where
ĝt is a stochastic subgradient of F at wt, and m could
be much smaller than d. Our new SGD procedure (Algo-
rithm COMPSGD), that has access only to this compressed
stochastic gradient oracle, first projects the current iterate
wt onto the lower-dimensional space using Φ, then updates
the iterate here using the compressed stochastic gradient
oracle, and then “lifts” back the result to C to get the new
iterate. We use ideas from geometry and high-dimensional
estimation to perform this lifting. An immediate advantage
of using compressed gradients (over regular SGD) comes
in a distributed setup for reducing the cost of transmitting
gradients.

We next investigate the convergence guarantees of this com-
pressed SGD algorithm for various classes of functions.
Our interest will be on Φ’s that are popularly referred to as
random projection matrices such as subgaussian random ma-
trices or sparse random matrices. Our analysis is based on
exploiting the geometric structure of C. We assume that in
each iteration t of the algorithm, compressed stochastic gra-
dient oracle is invoked using an independent random projec-
tion matrix Φt, and provide conditions on the learning rate
and the projection dimension under which the compressed
SGD has the same (up to constant factors) dimension-free
convergence guarantees as regular (uncompressed) SGD.

More precisely, let Φt ∈ Rmt×d be the random projec-
tion matrix used in iteration t with the compressed stochas-
tic gradient oracle. We show that with appropriate setting
of mt one could match the regular SGD guarantees. The
geometric parameter, Gaussian width, defined as ω(C) =
Er∈N (0,1)d [supw∈C〈w, r〉] plays an important role in our
analysis, and shows up repeatedly as a geometric measure of
the size of the set C. Gaussian width roughly captures the ex-
pected width of C along a random direction. Many constraint
sets have a small Gaussian width, for example, a common
choice of C for sparsity purposes, the `1-ball in Rd, has
a width of O(

√
log d). Setting, mt = Ω(ω(C)2/β2

t ), for a
parameter βt > 0, we establish the following bounds for the
convergence guarantees of our compressed SGD algorithm
over T iterations. For simplicity, we ignore dependence on
other parameters such as variance of the stochastic gradient,
the diameter of the convex set C, etc.

(a) Nonconvex Smooth Functions: For a nonconvex func-
tion F that is µ-smooth, we investigate two measures of
(non)stationarity. Firstly, we show that a minibatch ver-
sion of compressed SGD converges to α-first-order sta-

tionary point (α-FOSP)3 in T = Ω(µ(F (w1)− F ?)/α2)
iterations with ηt = 1/µ and βt ≈ α2/µ for all t ∈ [T ],
and appropriate minibatch size (Theorem 2.4). We also
investigate another popular measure of (non)stationarity
defined through gradient mapping, which is a natural
generalization of gradient for constrained problems [Nes-
terov, 1998, Ghadimi et al., 2016] (see Definition 8), and
reach to a similar conclusion (Theorem B.5).

(b) Convex and Strongly Convex Functions: In this case,
the goal is to bound the expected optimization error, de-
fined as E[F (wT ) − F (w?)], where w? ∈ C is some
minimizer of F . For a general convex function F (with-
out any smoothness assumption), setting βt = 1/t and
ηt = 1/

√
t, we get an error bound of O(log(T )/

√
T )

(Theorem B.9). For a λ-strongly convex functions F , set-
ting βt = 1/t and ηt = 1/(λt), we get a O(µ/(λ2T ))
bound on the expected error if F is µ-smooth and a bound
of O(log T/(λT )) without smoothness (Theorems B.7
and B.8). These match the known regular SGD bounds,
see, e.g., [Shamir and Zhang, 2013, Rakhlin et al., 2011].

These results demonstrate that for many problems, the com-
pression of the gradients comes for “free”. The intuition
behind this connection between constraint set structure and
compression is as follows. Given a Gaussian random ma-
trix and a finite set S of vectors, it is well-known (e.g.,
Johnson-Lindenstrauss Lemma) that projection with this
matrix preserves the norms of all these vectors in S when
the projection dimension is roughly log(|S|) [Johnson and
Lindenstrauss, 1984]. More generally, by measuring the
complexity of the constraint set through the notion of Gaus-
sian width, then the above compression guarantee can be
achieved with a projection dimension that is roughly square
of the Gaussian width of S [Gordon, 1988]. In our case,
we compress the gradients (and not the iterates), and we
show that by setting the projection dimension based on the
square of the Gaussian width of the constraint set, suffices
to well-approximate various norms that matter in conver-
gence results (for example, the potential function defined as
‖wt −w‖ for w ∈ C).

To achieve this, we carefully combine ideas from modern
SGD analyses, with ideas in convex geometry and high-
dimensional estimation. One of main challenge comes in
ensuring that the noise introduced by the random projection
is always bounded. The compressed SGD algorithm updates
the iterates in a lower-dimensional projected space, but we
track the SGD progress in the original higher-dimensional
space. To the best of our knowledge, these are the first
rigorous results in SGD based on strictly utilizing lower-
dimensional gradients.

Applications. We mention two applications of these com-

3w̄ ∈ C is an α-first-order stationary point if for all w ∈ C,
〈∇F (w̄),w − w̄〉 ≥ −α, ∇F (w̄) denotes the gradient of F at
w̄.
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pressed SGD results. Both these problems benefit from the
reduced dimensionality of the gradients.

(i) Differentially Private Empirical Risk Minimization
(ERM). Machine learning algorithms are frequently run
on sensitive data, and this has motivated the study of learn-
ing algorithms that have good performance guarantees
while providing strong (mathematically proven) privacy
protections for the training data. Differential Privacy (DP)
is a formal algorithmic guarantee provides provable pro-
tection against adversaries with arbitrary side information
and computational power, allows clear quantification of
privacy losses, and satisfies graceful composition over
multiple access to the same data [Dwork et al., 2006].
We provide the first results in differentially private non-
convex optimization for achieving first-order stationarity
where the sample size n needed for a non-trivial result
grows as ω(C) and not as

√
d (see Table 1). As an ex-

ample, if C is the `1-ball, then ω(C) = O(
√

log d), and
there is roughly an exponential improvement from

√
d

to
√

log d in the sample size needed compared to [Wang
et al., 2017, Zhang et al., 2017].

(ii) Reducing Communication Costs in Distributed Syn-
chronous SGD. Distributed stochastic gradient descent
plays a very important role in distributed learning. In
this work, we consider the data-distributed model of dis-
tributed SGD where the data sets are partitioned across
various compute nodes. In each iteration of synchronous
SGD, the compute nodes send their computed local gra-
dients to a parameter server that averages and updates
the global parameter. Since clients could be constrained
devices that are on slow/expensive connections, commu-
nication cost is a principal constraint, especially, the cost
of uploading gradients back to the server.
Firstly, our approach of utilizing lower-dimensional gradi-
ents already provides a way of reducing communication
costs in many settings, without any change in the conver-
gence rate. In addition, we show that combining this idea
with any other gradient communication cost reduction
scheme that provides unbiased estimates of the gradi-
ent can lead to even further communication cost savings,
however now with an increase in convergence rate that
only depends on the other chosen scheme. Our results
provide the first communication cost bounds for various
distributed optimization problems that depend on the ge-
ometry of C (see Table 2).

Extension to Conditional Gradient Method. We show
that the above-mentioned connection between constraint
set and gradient compression extends beyond SGD to con-
ditional gradient (Frank-Wolfe) method [Frank and Wolfe,
1956]. This method is a natural candidate for constrained
optimization because of its projection free property and its
ability to handle structured constraints [Jaggi, 2013]. We
present a Frank-Wolfe style optimization algorithm that

utilizes the compressed stochastic gradient oracle for its
gradient evaluations, and requires a linear minimization
oracle over the set ΦC. As in the case of SGD, we show
that a gradient dimension that is based on the square of the
Gaussian width of C suffices to obtain convergence bounds
that match those of regular stochastic Frank-Wolfe method
in convex/nonconvex settings (Theorems E.1 and E.2, Ap-
pendix E). Again, these are the first rigorous results for
the Frank-Wolfe method based on strictly utilizing lower-
dimensional gradients.

Due to space limitation, we leave many details, formal state-
ments, proofs, and experimental studies in the supplement.

1.2 RELATED WORK

There has been a growing interest in understanding the con-
vergence properties of SGD where instead of the true gra-
dients some quantized/sparsified/sketched version of gra-
dients is used in the SGD update step. The most common
application of these techniques are in distributed/federated
learning with the goal of reducing the communication costs,
e.g., [Seide et al., 2014, Strom, 2015, De Sa et al., 2015,
Konecnỳ et al., 2016, Wen et al., 2017, Alistarh et al., 2017,
Agarwal et al., 2018, Lin et al., 2017, Khirirat et al., 2018,
Bernstein et al., 2018, Wu et al., 2018, Wang et al., 2018,
Karimireddy et al., 2019, Stich et al., 2018, Mishchenko
et al., 2019, Acharya et al., 2019, Alistarh et al., 2018, Ivkin
et al., 2019, Gandikota et al., 2019, Horváth et al., 2019].
The general idea here is that a client could shrink the gradi-
ent communication cost by applying some encoding on the
gradient before transmitting it to the server. Generally, these
schemes come with an increase in the gradient variance. In
other words, these schemes are generally “lossy” and will
result in a slower convergence that using the true gradients.
This is one major difference compared to our results, where
we show that with the right set of parameters based on the
geometry of the constraint set, our dimensionality-reduction
scheme is “lossless”, in that we get the same convergence
rate as if using the true gradients.

We also investigate whether our idea of utilizing lower-
dimensional gradients can be combined with these existing
gradient encoding techniques. Existing gradient encoding
techniques can be categorized as either unbiased or biased
based on whether the gradient estimates are unbiased or
not. A number of gradient quantization methods are crafted
specifically to yield unbiased estimates [Alistarh et al., 2017,
Wen et al., 2017, Wang et al., 2018, Gandikota et al., 2019].
We show that one can combine our dimensionality-reduction
scheme with any unbiased gradient encoding technique to
get a reduction in communication cost at the expense of
increased variance in gradient estimate.

We note that a number of gradient encoding techniques
also produce biased gradient estimates [Seide et al., 2014,
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Strom, 2015, Bernstein et al., 2018]. Using the idea of error-
feedback, recently [Stich et al., 2018, Karimireddy et al.,
2019] gave convergence guarantees for this kind of biased
compression algorithm, showing that accumulating com-
pression error locally in the workers can overcome the bias
in the weight updates as long as the compression algorithm
obeys certain properties. On a related note, gradient sparsifi-
cation techniques with provable convergence were studied
in [Alistarh et al., 2018, Stich et al., 2018]. Another idea
proposed here is to use the count-sketch from the sketching
literature for reducing communication [Ivkin et al., 2019,
Rothchild et al., 2020]. An important point is that, in general,
none of these prior encoding techniques inherently change
the dimensionality of the gradient and also suffer from in-
flated variance at high compression rates. Also, in general
it is hard to compared biased vs. unbiased approaches be-
cause of the different guarantees they are shown to provide.
We leave the question of combining our dimensionality re-
duction idea with these biased gradient encoding schemes
and/or stochastic variance reduction ideas [Alistarh et al.,
2017, Horváth et al., 2019] for future work.

Another orthogonal idea to reduce communication, espe-
cially in the context of federated learning, is the idea of
local SGD [Stich, 2019, Basu et al., 2019], where the clients
perform local updates on their local data, and the clients
communicate with the server only after few rounds.

Beyond Gradient Descent. It is well-known that for certain
problems such as minimizing on the simplex with subgradi-
ents bounded in `∞-norm mirror descent outperforms SGD.
Our focus here is on techniques that apply to a broad class
of problems, including variety of constraint sets and non-
convex functions. Since SGD is arguably the most popular
and general optimization approach, we focus on it here.

Comparison with some additional related work based on
sketching the Hessian matrix, differentially private ERM is
presented in Appendix A.1.

1.3 PRELIMINARIES

Notation. We denote [n] = {1, . . . , n}. Vectors are denoted
by boldface letters. We use Ip to denote a p × p identity
matrix. For a vector v, ‖v‖ denotes its Euclidean-norm.
Throughout, we assume that C ⊆ Rd is a compact convex set.
We define the diameter of C as, ‖C‖ = supw,w′∈C ‖w−w′‖.
Given a Φ ∈ Rm×d, we define ΦC := {Φw : w ∈ C}.
Define the projection of w ∈ Rd onto a closed convex set
C ⊆ Rd as: ΠC(w) := argminw′∈C ‖w −w′‖. We review
some optimization fundamentals in Appendix A.2.

Gaussian width. Our analysis is based on exploiting the
geometric properties of the constraint set. We use the
well-studied quantity of Gaussian width that captures the
`2-geometric complexity of a set of points. Given a set
S ⊂ Rd, its Gaussian width ω(S) is defined as: ω(S) :=

Er∈N (0,Id) [supa∈S〈a, r〉].

Many interesting examples of S have low Gaussian width.
For example, the `1-ball and simplex in Rd have width of
O(
√

log d), whereas a convex hull of l vectors with bounded
`2-norm of c has width O(c

√
log l). See Table 3 in Ap-

pendix A.2 for additional examples of commonly used sets
with low Gaussian width.

Given a set S, the square of Gaussian width of S mea-
sures the dimension size one needs to take on a random
projection to still approximately preserve the norms of all
the points in S. For Gaussian random matrices Φ, this was
first shown in [Gordon, 1988], popularly referred to as Gor-
don’s theorem (Theorem A.3 in Appendix A.2). This was
recently extended to matrices drawn from subgaussian dis-
tributions [Dirksen, 2014] or distributions over sparse matri-
ces [Bourgain et al., 2015] (Theorem A.4 in Appendix A.2).
We will use this norm-preservation property and its conse-
quences throughout our analyses.

2 SGD WITH LOW-DIM. GRADIENTS

In a regular SGD setup, the assumption is that we do not
know F , and the only information is through a stochastic
gradient oracle, which given w ∈ C, produces a vector ĝ
such that E[ĝ] = g is a subgradient of F at w. In this sec-
tion, we introduce a dimensionality reduced gradient setup,
where the stochastic gradient oracle does not return ĝ but
only a lower-dimensional projection of ĝ, say obtained by
applying a dimensionality reducing random projection to the
subgradient. For a formal analysis, we define a compressed
stochastic gradient oracle as follows.

Definition 1 (Compressed Stochastic Subgradient Oracle
(CSFO)). Upon receiving query w and Φ ∈ Rm×d, the
compressed stochastic gradient oracle returns ϑ where
ϑ = Φĝ. Here, ĝ is an independent random vector whose
expectation E[ĝ] = g is a subgradient of F at w. Borrow-
ing from the stochastic optimization literature, we denote
this oracle as the compressed stochastic first-order oracle
(CSFO), and use the notation ϑ = CSFO(w,Φ).

Note that with Φ = Id, CSFO defaults to the standard
subgradient (SFO) oracle. Implementing a CSFO oracle
is easy, as it just computes a projection of the subgradient.
Hence, it can be efficiently implemented for any problem
for which subgradients can be computed efficiently. Our
convergence results, provide bounds on the number of calls
needed to a CSFO oracle to get accurate results. Transmit-
ting Φ to the oracle is unnecessary as long as both the oracle
and algorithm agree upon it. For example, as discussed in
Section 3, in a distributed setup one can avoid transmitting
Φ by using shared randomness between clients and server.

Note that when m < d, the ϑ = CSFO(w,Φ) ∈ Rm has
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a dimensionality lower than d.4 This creates an immediate
issue with using CSFO as there is now a dimensionality
mismatch for the SGD iterate update step. We first design
an SGD-style algorithm that overcomes this problem and
operates with only access to CSFO.

Our algorithm (Algorithm COMPSGD) is based on a simple
modification to the SGD procedure. Algorithm COMPSGD
is parameterized by two functions ηt and βt, where ηt de-
scribes the learning rate and βt ∈ (0, 1) relates to the di-
mension of the compressed gradient. In each iteration t, the
algorithm picks an independent random projection matrix
Φt of dimension mt × d. Various choices of Φt could work
here. For example, Φt could be a Gaussian matrix with
where each entry is sampled i.i.d. from N(0, 1/mt) or Φt
could be a sparse JL matrix as defined by [Kane and Nel-
son, 2014]. Our approach can be informally described as:
i) take an SGD step in the projected domain Rmt using the
lower-dimensional subgradient, ii) do a projection onto ΦC,
and iii) lift back the solution to C to form the new iterate.

Algorithm COMPSGD

Objective: minw∈C F (w)
Input: Convex set C, learning rate parameters {ηt},
and projection dimension parameters {βt}.

1. Pick w1 as any point in C
2. for t = 1 to T do

a. Set mt ← Ω
(
min{d, ω(C)2/β2

t }
)

b. Let Φt ∈ Rmt×d be an i.i.d. random pro-
jection matrix (e.g., subgaussian or sparse JL
matrix)
c. Let ϑt ← CSFO(wt,Φt) (from com-
pressed stochastic gradient oracle)

d. Let θt ← ΠΦtC(Φtwt − ηtϑt)
e. Let wt+1 ← pick any element from the
set St = {w ∈ C : Φtw = θt} (e.g., by
solving (2))

Note that for any Φ ∈ Rm×d, ΦC is a convex set, and since
C is compact and closed, implies ΦC is closed. This follows
because if C is compact then the recess cone RC = {0}
(Definition 6), which implies that ΦC is closed [Bertsekas,
2009]. Therefore, by properties of the projection operator
ΠΦC is well-defined and satisfies the projection properties
in (5) and (6). For common C’s of interest here such as
convex hulls (polytopes), the linear transformation (through
Φ) is also a convex hull (polytope) in Rm, so the standard
techniques for projection onto these sets are applicable for
projection onto ΦC.

4Given Φĝ ∈ Rm (with m� d) it is not possible to recover
ĝ without further structural assumptions (such as sparsity) on ĝ,
which are generally not true.

In Algorithm COMPSGD, wt+1 exists because θt ∈ ΦtC =
{Φtw : w ∈ C} so we can represent θt = Φw̃ with
w̃ ∈ C, therefore the set St = {w ∈ C : Φtw = θt} has
at least one entry w̃. For our theoretical results, it suffices
that we pick any wt+1 ∈ St. We now discuss an idea for
constructing wt+1, based on estimating w̃ which lies in C,
given θt = Φtw̃. For any vector w ∈ Rd, the Minkowski
functional of C ⊆ Rd is the non-negative number ‖w‖C
defined by the rule: ‖w‖C = inf{τ ∈ R : w ∈ τC}.
Minkowski functional of a convex set is a convex function.
In particular, when C is a symmetric convex body, then ‖·‖C
defines a norm (called Minkowski norm). Now consider the
following optimization problem:

InvC(θt,Φt)
def
= argminw′∈Rd‖w′‖C s.t. Φtw

′ = θt. (2)

We now show that we can pick wt+1 by solving (2).

Lemma 2.1. For any wt+1 ∈ InvC(θt,Φt), wt+1 ∈ St.

For any convex set C, the optimization problem in (2) is
a convex program, and hence can be solved using convex
programming solvers. In fact, if is a C polytope then this is a
linear program. For example, if C is the popular `1-sparsity
constraint, then (2) reduces to the well-studied basis-pursuit
problem

argminw′∈Rd ‖w′‖1 subject to Φtw
′ = θt. (3)

for which lots of efficient solution techniques are
known [Hastie et al., 2015]. In our experiments, we no-
ticed that using sparse random matrices and known tricks
for solving (3) (see, e.g., [Lorenz et al., 2015]), the per-
iteration cost of Algorithm COMPSGD is almost identical
to that of regular SGD. On the other hand, the reduction in
gradient dimension could be quite substantial. Another point
to note here is that in a distributed setup (as we discuss in
Section 3.2), the selection of wt+1 will be performed on the
server, which is assumed to be computationally powerful,
therefore this step will not be a matter of concern.

2.1 CONVERGENCE ANALYSIS

We now analyze the convergence guarantees of Algo-
rithm COMPSGD. In all our results, the final expectation
(E[·]) is over the stochastic gradient noise and other ran-
domness in the SGD algorithm (as is standard), but not over
the randomness introduced by the random projection. The
following inequality will play an important role in keeping
track of the algorithm’s progress.

Lemma 2.2. In Algorithm COMPSGD, for any t ∈ [T ],
(1− βt)‖wt+1 −w‖2 ≤ ‖(wt − ηtĝt)−w‖2.

The challenge in our analysis comes from the fact that
we have access to only to lower-dimensional gradients,
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the updates happen in the compressed space, and the ran-
dom projection introduces noise in the gradients. Our anal-
yses will establish the values of ηt, βt under which Al-
gorithm COMPSGD has same (up to constant factors)
dimension-free convergence guarantees as regular SGD. The
analyses for the strongly convex and convex cases (with or
without smoothness) are deferred to Appendix B.2 (Theo-
rems B.7, B.8 and B.9). We get the following result.

Theorem 2.3. 1. [Strongly Convex, Smooth] Let F be
a λ-strongly convex and µ-smooth function over a con-
vex set C, and E[‖ĝt‖2] ≤ G2 for all t ∈ [T ] (where
ϑt = Φtĝt). Then with ηt = 2/(λt) and βt = 1/t, Al-
gorithm COMPSGD satisfies: E[F (wT ) − F (w?)] =
O(µG2/(λ2T )).

2. [Strongly Convex] Let F be a λ-strongly convex func-
tion over a convex set C, and E[‖ĝt‖2] ≤ G2 for all
t ∈ [T ] (where ϑt = Φtĝt). Then with ηt = 2/(λt) and
βt = 1/t, Algorithm COMPSGD satisfies: E[F (wT )−
F (w?)] = O(G2(1 + log(T ))/(λT )).

3. [Convex] Let F be convex function over a con-
vex set C, and E[‖ĝt‖2] ≤ G2 for all t ∈ [T ]
(where ϑt = Φtĝt). Then with ηt = ϕ/

√
t and

βt = 1/t, Algorithm COMPSGD satisfies: E[F (wT )−
F (w?)] = O(

(
‖C‖2/ϕ+ ϕG2

)
(log T/

√
T )). In par-

ticular with ϕ = ‖C‖/G, E[F (wT ) − F (w?)] =
O(‖C‖G log T/

√
T ).

Convergence Analysis for Nonconvex Functions. We now
focus on the analysis for the nonconvex case. For nonconvex
functions, in the constrained setting, several measures of
(non)stationarity have been considered for projected gradi-
ent methods [Ghadimi et al., 2016, Mokhtari et al., 2018,
Nouiehed et al., 2018]. We work with two popular station-
arity notions here: a) α-FOSP (Definition 7)3 and b) norm
of the gradient mapping (deferred to Appendix B.1.2). Let
F ? = minw∈C F (w). Missing details from this section are
collected in Appendix B.1.

In this case, we assume a stronger stochastic approximation
to the subgradient in that we use a minibatch version of
Algorithm COMPSGD, where b is the minibatch size (for-
mally described in Appendix B.1). Theorem 2.4 shows that
after ≈ O(α−2) iterations, even with compressed gradients,
minibatch Algorithm COMPSGD converges to an α-FOSP
(with high probability). The proof has two parts, first we
show that when the difference between two consecutive iter-
ates is small then we have an α-FOSP, and then we bound
the number of iterations before which this iterate difference
condition is achieved. We show that the algorithm fails with
a low probability to produce an α-FOSP (in which case it
outputs ⊥). We assume the following.

Assumptions: E[‖ĝ(i)
t ‖2] ≤ G2 and

E[‖∇F (wt)− ĝ
(i)
t ‖2] ≤ ζ2, ∀i ∈ [b], t ∈ [T ]. (4)

Theorem 2.4. Let F be µ-smooth and continuously differ-
entiable function over a convex set C. Let the assumptions
in (4) hold. Let ρ ∈ (0, 1) and α > 0. Consider the mini-
batch version of Algorithm COMPSGD with output of first
wτ (if it exists) in (w1, . . . ,wT ) such that ‖wτ −wτ+1‖ ≤
α/(G+ µ‖C‖), and ⊥ (fail) otherwise. Set ηt = η = 1/µ,
βt = β = min{1/4, (µα2)/(64G‖C‖(G + µ‖C‖)2)} for
all t ∈ [T ], and batchsize b = Ω((1/ρ) ·max{1, (‖C‖ζ(G+
µ‖C‖)2/(α2µ))2}). Then, if T = Ω((F (w1) − F ?)(G +
µ‖C‖)2/(µα2ρ)), with probability at least (1 − ρ)2, this
procedure outputs a wτ that is an α-FOSP for F .

One may notice that in the above theorem βt’s are fixed
across all iterations and scales as ≈ α2. whereas in the
convex settings we set βt = 1/t. This distinction comes
because the nature of guarantees differ in these two cases.
In the convex case, as we get closer to the global optimum,
we need a more precise estimate of the stochastic gradient
(as compression adds noise), which is achieved by reducing
βt. In the nonconvex case, we can set β to a fixed value
based on the required guarantee and there seems to be no
advantage in adjusting it per iteration. We conjecture that
for the convex cases, this dependence on βt on t is unavoid-
able, if we want the corresponding convergence rates of
Algorithm COMPSGD to match that of regular SGD.

The batchsize in Theorem 2.4 is carefully selected for our
analysis to go through, and even with full stochastic gra-
dients a similar batchsize would probably be needed, see
for e.g., [Mokhtari et al., 2018] (note that the batchsize is
independent of βt and ω(C)). In practice, small batchsizes
suffices as observed in our experiments.

2.2 EXPERIMENTAL RESULTS

We now experimentally compare Algorithm COMPSGD to
SGD with the goal of validating our theoretical findings.
Missing details about the datasets and experimental setup
are provided in Appendix B.3. There we also have addi-
tional experimental results under other constraint sets such
as subspace and (positive) simplex (Figure 5).

Experimental Results on Convex Functions. In Fig-
ure 1, we compare the performance of SGD and Algo-
rithm COMPSGD on sparse linear regression [Hastie et al.,
2015] and logistic regression with `1-constraint [Lee et al.,
2006].We use a sparse random projection matrix in our ex-
periments. We use the linear program in (3) to pick wt+1,
and use heuristic stopping ideas from [Lorenz et al., 2015]
on an `1-homotopy solver for efficiency. Based on the Gaus-
sian width of the `1-ball, we set mt = max{d, t2 log(d)}
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where d here is the dimensionality of the input. In Ap-
pendix B.3, we presents some results with other types of
constraint sets.

With sparse linear regression, given a matrix A ∈ Rn×d
and y ∈ Rn where y = Aw? with sparse w?, we solve:
minw ‖y −Aw‖2 subject to an `1-constraint on w. In Fig-
ure 1a, we plot the objective value (error) ‖y−Awt‖2 over
SGD and COMPSGD iterations. We use synthetic random
data for A with n = 1000, d = 10000. With logistic regres-
sion, we minimize the standard logistic regression objective
but with an additional `1-constraint [Lee et al., 2006].

The performance COMPSGD is almost identical (some-
times marginally better) than SGD. Computationally too
Algorithm COMPSGD matches that of SGD. For example,
on the MNIST, Reuters, and IMDB datasets, SGD took an
average of 0.58, 6.36, 7.04 seconds per epoch respectively,
whereas Algorithm COMPSGD took an average of 0.75,
6.76, 7.49 seconds per epoch respectively. So, for exam-
ple on the IMDB dataset, CompSGD is only about 6.3%
slower than SGD, however, as Figure 3d (Appendix B.3)
shows the dimensionality of utilized gradients is signifi-
cantly smaller, by a factor of ≈ 19 over the entire run. So,
overall, Algorithm COMPSGD matches (or marginally im-
proves) SGD performance, achieves significant gradient
compression, with a minor increase in the computational
cost. Training accuracy plots are in Figure 3 (Appendix B.3).
The variance across runs for Algorithm COMPSGD is also
low (see, e.g., Figure 4, Appendix B.3). In theory, this stems
because of the tight concentration results we have with these
random projections [Oymak et al., 2018, Theorem 1.3].

Experimental Results on Nonconvex Functions. We use
an MLP with three hidden fully-connected layers (input
dimension×50, 50×50, and 50× number of output classes)
with ReLU activations, followed by softmax classifier. We
optimize the network under an `1-constraint on weights.
Figure 2 presents the test accuracy plots for this network.
For COMPSGD, we set mt = di/10 for each layer i, where
di is the original number of parameters in layer i. The results
show that convergence of SGD and COMPSGD are near
identical, even though COMPSGD uses a factor of 10 lower-
dimensional gradients. The training accuracy plots presented
in Figure 6 (Appendix B.3) also exhibit a similar behavior.

3 APPLICATIONS

We now consider two different problems in which reducing
the dimensionality of the gradient proves helpful.

3.1 DIFF. PRIV. ERM WITH NONCONVEXITY

We consider the standard Empirical Risk Minimization
(ERM) framework. Given a dataset D = (z1, . . . , zn)
from a data universe Dn, the goal in ERM is to:

minw∈C F (w;D) := 1
n

∑n
i=1 f(w; zi), where f : Rd →

R is the loss of model w ∈ Rd for data record zi. Let us
start with the definition of differential privacy. Let D rep-
resent some domain. We say two datasets D ∈ Dn and
D′ ∈ Dn with n elements each are neighbors if they differ
in one entry.

Definition 2 ((ε, δ)-DP [Dwork et al., 2006]). A random-
ized algorithm A is (ε, δ)-differentially private if for all
neighboring datasets D,D′ and for all outcomes Γ in the
output space of A, we have Pr[A(D) ∈ Γ] ≤ exp(ε) ·
Pr[A(D′) ∈ Γ] + δ, where the probability is taken over
the randomness of the algorithm.

Missing details and formal statements from this section are
provided in Appendix C.

One of the basic ideas for achieving DP for ERM prob-
lems is add noise to the gradients using the (DP-SGD) algo-
rithm [Song et al., 2013, Bassily et al., 2014]. The DP-SGD
iteration is of the form, θt+1 ← θt − ηt (∇F (w;D) + et),
where et ∼ N (0, σ2Id) is the calibrated noise to achieve
(ε, δ)-differential privacy. The fact that ∇F (w;D) ∈ Rd,
means that the popular Gaussian mechanism (Theorem A.1)
idea in DP requires E[‖et‖2] = σ2d that brings about the
dependence on the dimension d in the utility analysis.

An approach to reduce the dependence on d arising from
noise addition in DP-SGD iteration is to reduce the di-
mensionality of the gradient vector. For example, if we
take Φ ∈ Rm×d with entries drawn i.i.d from N (0, 1/m),
then Φ∇F (w;D) ∈ Rm. Therefore, by using the Gaussian
mechanism now, one could add noise as: Φ∇F (w;D) + et
where et ∼ N (0, σ2Im). This roughly changes the depen-
dence on d to m in the convergence analysis. This idea is
formalized in Algorithm PRIVSGD (Appendix C). Table 1
summarizes the improved sample size bounds. These are
the first results in differentially private nonconvex optimiza-
tion which provides meaningful guarantees when n� ω(C)
rather than requiring n�

√
d. So for common C’s, such as

the `1-ball, this reduction in sample size would be exponen-
tial from roughly d to log d.

3.2 REDUCING COMMUNICATION IN DIST. SGD

We consider the data-distributed model of distributed SGD.
Let us assume that there are M clients, numbered 1, . . . ,M .
Let F (w) : Rd → R. We investigate the following op-
timization problem: minw∈C F (w) := 1

M

∑M
i=1 fi(w),

where each fi resides at the ith client. As an illustration
of the above setup, consider a machine learning prob-
lem, with data {z1, . . . , zn} partitioned on the clients,
with Pi the set of indexes of datapoints on client i, then
with fi(w) = (M/n)

∑
j∈Pi

f(w; zj), we get F (w) =

(1/n)
∑n
i=1 f(w; zi). Missing details are provided in Ap-

pendix D.
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Figure 1: (a) Performance comparison for sparse linear regression on a synthetic dataset. (b), (c), and (d) Performance
comparison for logistic regression with `1-constraint on the MNIST dataset, Reuters dataset, and IMDB datasets, respectively.
We use a constant learning rate at 0.1 based on its good performance for SGD and use minibatch size of 32.
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Figure 2: Performance comparison of training a MLP network with SGD vs. COMPSGD on different datasets. Again, we
use a constant learning rate at 0.1 based on its good performance for SGD and use minibatch size of 32.

Guarantee DP-SGD Sample Size Reqd. Algorithm PRIVSGD Sample Size Reqd.

α-FOSP Ω

(√
d · ‖C‖(L+µ‖C‖)2L

√
T log(1/δ)

√
ρα2µε

)
Ω

(
min

{
ω(C)
β ,
√
d
}
· ‖C‖(L+µ‖C‖)2L

√
T log(1/δ)

√
ρα2µε

)
Table 1: Comparison of sample size (n) needed for achieving α-FOSP for a nonconvex µ-smooth function under (ε, δ)-DP.
Assume ‖∇f(w; ·)‖ is uniformly bounded by L for all w ∈ C. The settings of β and the upper bound on T are from
Corollary C.2. Additional results are presented in Table 4, Appendix C.

Assumptions on F SGD SGD with Contraction C Algorithm COMPDISTSGD
and Guarantee (Total comm. cost) (Total comm. cost) (Total comm. cost)

Convex Õ
(
G2‖C‖2
α2 d

)
Õ

(
χCd

G2‖C‖2

α2 γCd

)
Õ

(
χCd

G2‖C‖2

α2 min {γCd , γCr}
)

E[F (wT )− F (w?)] ≤ α Shamir and Zhang [2013] (From Corollary D.2, Part 3)
µ-smooth and diff. nonconvex O (κ1Td) O (κTγCd) O (κT min {γCd , γCr})

α-FOSP Mokhtari et al. [2018] (From Corollary D.2, Part 4)

Table 2: Comparison of the total communication costs of distributed synchronous SGD, distributed synchronous SGD
with contraction operator C, and our proposed Algorithm COMPDISTSGD. For convex case, we set κ = 1 and r =
(ω(C)χCd

G2‖C‖2/α2)2. The Õ(·) notation hides some logarithmic terms. The settings of κ, β, T for the nonconvex case is
from Corollary D.2, Part 4 and r = ω(C)2/β2. Here, κ1 is the value of κ obtained by setting χCd

= 1. Additional results
are presented in Table 5, Appendix D.

In each iteration t of synchronous SGD, the server randomly
picks a set Rt of κ ≥ 1 clients and sends them the current
model parameter wt. Each of these selected client i com-
putes ĝ(i)

t an independent stochastic (sub)gradient of fi at

wt, and communicates ĝ(i)
t back to the server. The central

server then aggregates these gradients and applies the up-
date wt+1 ← wt − ηt

κ

∑
i∈Rt

ĝ
(i)
t . Naively for the above

protocol, the resulting per round communication is roughly
κ · (32d) bits (assuming 32-bit floating point numbers). Our
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results (Theorems B.7, B.8, B.9, 2.4, and B.5) already show
that, by transmitting lower-dimensional gradients, we can
reduce communication costs, while preserving the conver-
gence guarantees to within constant factor of the regular
distributed SGD. In this section, we build on these results
and show that in fact one can use any unbiased gradient
compression scheme on top of our idea of utilizing lower-
dimensional gradients.

For a formal analysis, we define a contraction opera-
tor to capture a general class of existing unbiased gra-
dient encoding schemes. Following [Stich et al., 2018],
we define a contraction operator as a (possibly random-
ized) function Ca defined as mapping from Ra → Ra
for a ∈ N that satisfies these following common assump-
tions: (i) ∀v ∈ Ra,E[Ca(v)] = v (unbiasedness) and (ii)
E[‖Ca(v)−v‖2] ≤ χCa‖v‖2 (variance bound). Let γCa de-
note the bits needed to communicate Ca(v) from a client to
server. This general notion captures many common unbiased
quantization techniques such as stochastic rounding [Alis-
tarh et al., 2017, Wen et al., 2017], vector quantization
techniques such as vqSGD [Gandikota et al., 2019], and
unbiased sparsification techniques such as random sparsifi-
cation [Stich et al., 2018]. As an example, the quantization
technique of [Alistarh et al., 2017] satisfies χCa

= 1 and
γCa
≈ 2.8a+ 32 for all a ∈ N.

Our procedure is presented in Algorithm COMPDISTSGD
(Appendix D). The overall idea is simple, take a random
projection of a gradient and then apply the contraction oper-
ator Cmt . More formally, client i at iteration t will transmit
Cmt(Φtĝ

(i)
t ). The total communication cost in iteration t

equals κ · γCmt
bits. This saves at least a factor γCd

/γCmt

over just applying the contraction operator over the true gra-
dients in each iteration t, which could be significant when
mt � d.5 For example, if C is the quantization technique
of [Alistarh et al., 2017], then γCd

/γCmt
≈ d/mt where

mt ≈ ω(C)2/β2
t , and for sets C such as the unit l1-ball,

ω(C)2 = O(log d).

The cost of communicating Φt is not significant as it can be
achieved using various techniques such as one-to-all broad-
casting. In practice, Φt will be generated by a pseudorandom
generator initialized by some seed, so by just communicat-
ing the seed we can regenerate Φt at each device. In Table 2,
we summarize the total communication cost (summed over
all rounds) for a convex and nonconvex setting considered.
Additional results and formal statements are provided in
Appendix D.

In Figure 7, we provide experiments supporting our theoret-
ical results. For illustration, we used the simple stochastic
gradient quantization technique of [Alistarh et al., 2017]
(described in Appendix D.1) for the contraction operator
and assume just one client. Otherwise, we use the same

5γCa is a non-decreasing function in a, i.e., cost of communi-
cating a longer vector can’t be less than one for a shorter vector.

experimental setup as described in Section 2.2. Again, the
main takeaway is that the performance of COMPDISTSGD
matches that of SGD under the same contraction operator.
The performance drop in both these schemes (compared to
Figure 2 where we do not have any quantization) comes due
to the applied quantization.

4 EXTENSIONS AND CONCLUSIONS

Frank-Wolfe with Low-Dim. Gradients. The Frank-Wolfe
(FW) optimization algorithm requires access to a linear op-
timization oracle over C. In Appendix E, we show how one
could recover the standard convergence guarantees of Frank-
Wolfe algorithm (for both convex and nonconvex functions)
with only access to compressed gradients provided through
the CSFO oracle (see Algorithm COMPFW). The main dif-
ference, compared to a traditional Frank-Wolfe algorithm, is
how we invoke the linear optimization oracle. A traditional
(stochastic) FW update computes a stochastic approxima-
tion to the gradient at the current iterate wt and invokes
the LOO oracle with it. This gives the element in C that
correlates the most with the steepest descent (the negative
stochastic gradient). We use a similar idea but instead solve a
linear minimization problem with the compressed gradients
over the set ΦtC. We then utilize the lifting idea from (2) to
compute a direction to take the step.

In Theorem E.2 (Appendix E), we establish that for
convex functions the convergence guarantees of Algo-
rithm COMPFW matches the known results with stochastic
Frank-Wolfe algorithm [Hazan and Luo, 2016, Theorem 3].
In Theorem E.1 (Appendix E), we show that for smooth
nonconvex functions Algorithm COMPFW, after O(α−2)
iterations, converges to an α-FOSP (with high probability).

Concluding Remarks. We introduce the setting of SGD
with compressed gradients, a fundamental question that stud-
ies how much bits of gradient information are truly needed
for SGD to continue providing its guarantees, and also cap-
tures practical applications in private nonconvex ERM and
distributed SGD. This new setup requires a rethinking of
the SGD algorithm, and a subsequent careful analyses of
the SGD guarantees. We also show that these ideas extend
beyond SGD to the conditional gradient method. While we
focused on getting bounds which hold in expectation it is
possible that under assumptions on the tail of the noise dis-
tribution (such as [Harvey et al., 2019]) one could obtain
high probability bounds. A natural question that arises from
this work is whether the connection between constraint set
structure and gradient compression that we observe here is
inherent for any first-order optimization scheme. Extending
the presented techniques to compress higher-order deriva-
tives is an interesting open research direction.
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Jakub Konecnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency. arXiv preprint arXiv:1610.05492, 2016.

Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y
Ng. Efficient `1-regularized logistic regression. In AAAI,
volume 6, pages 401–408, 2006.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J
Dally. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

Dirk A Lorenz, Marc E Pfetsch, and Andreas M Tillmann.
Solving basis pursuit: Heuristic optimality check and
solver comparison. ACM Transactions on Mathematical
Software (TOMS), 41(2):1–29, 2015.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takác,
and Peter Richtárik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269,
2019.

Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie. Es-
caping saddle points in constrained optimization. In Ad-
vances in Neural Information Processing Systems, pages
3629–3639, 2018.

Yurii Nesterov. Introductory lectures on convex program-
ming volume i: Basic course. Lecture notes, 3(4):5, 1998.

Maher Nouiehed, Jason D Lee, and Meisam Raza-
viyayn. Convergence to second-order stationarity for
constrained non-convex optimization. arXiv preprint
arXiv:1810.02024, 2018.

Samet Oymak, Benjamin Recht, and Mahdi Soltanolkotabi.
Isometric sketching of any set via the restricted isometry
property. Information and Inference: A Journal of the
IMA, 7(4):707–726, 2018.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan.
Making gradient descent optimal for strongly convex
stochastic optimization. arXiv preprint arXiv:1109.5647,
2011.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita
Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez,
and Raman Arora. Fetchsgd: Communication-efficient

federated learning with sketching. In International Con-
ference on Machine Learning, pages 8253–8265. PMLR,
2020.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech dnns. In
Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

Ohad Shamir and Tong Zhang. Stochastic gradient descent
for non-smooth optimization: Convergence results and
optimal averaging schemes. In International Conference
on Machine Learning, pages 71–79, 2013.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate.
Stochastic gradient descent with differentially private
updates. In Global Conference on Signal and Informa-
tion Processing (GlobalSIP), 2013 IEEE, pages 245–248.
IEEE, 2013.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified sgd with memory. In Advances in Neural
Information Processing Systems, pages 4447–4458, 2018.

Sebastian Urban Stich. Local sgd converges fast and com-
municates little. In ICLR 2019 ICLR 2019 International
Conference on Learning Representations, 2019.

Nikko Strom. Scalable distributed dnn training using com-
modity gpu cloud computing. In Sixteenth Annual Con-
ference of the International Speech Communication Asso-
ciation, 2015.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private
empirical risk minimization revisited: Faster and more
general. In Advances in Neural Information Processing
Systems, pages 2722–2731, 2017.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary
Charles, Dimitris Papailiopoulos, and Stephen Wright.
Atomo: Communication-efficient learning via atomic
sparsification. In Advances in Neural Information Pro-
cessing Systems, pages 9850–9861, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradi-
ents to reduce communication in distributed deep learning.
In Advances in neural information processing systems,
pages 1509–1519, 2017.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong
Zhang. Error compensated quantized sgd and its appli-
cations to large-scale distributed optimization. In Inter-
national Conference on Machine Learning, pages 5321–
5329, 2018.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang.
Efficient private erm for smooth objectives. arXiv preprint
arXiv:1703.09947, 2017.

1915


	Introduction
	Our Results
	Related Work
	Preliminaries

	SGD with Low-Dim. Gradients
	Convergence Analysis
	Experimental Results

	Applications
	Diff. Priv. ERM with Nonconvexity
	Reducing Communication in Dist. SGD

	Extensions and Conclusions

