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Abstract

The graphical structure of Probabilistic Graphical
Models (PGMs) encodes the conditional indepen-
dence (CI) relations that hold in the modeled dis-
tribution. Graph algorithms, such as d-separation,
use this structure to infer additional conditional
independencies, and to query whether a specific CI
holds in the distribution. The premise of all current
systems-of-inference for deriving CIs in PGMs,
is that the set of CIs used for the construction of
the PGM hold exactly. In practice, algorithms for
extracting the structure of PGMs from data, dis-
cover approximate CIs that do not hold exactly in
the distribution. In this paper, we ask how the er-
ror in this set propagates to the inferred CIs read
off the graphical structure. More precisely, what
guarantee can we provide on the inferred CI when
the set of CIs that entailed it hold only approxi-
mately? It has recently been shown that in the gen-
eral case, no such guarantee can be provided. We
prove that such a guarantee exists for the set of CIs
inferred in directed graphical models, making the
d-separation algorithm a sound and complete sys-
tem for inferring approximate CIs. We also prove
an approximation guarantee for independence rela-
tions derived from marginal CIs.

1 INTRODUCTION

Conditional independencies (CI) are assertions of the form
X⊥Y |Z, stating that the random variables (RVs) X and
Y are independent when conditioned on Z. The concept
of conditional independence is at the core of Probabilis-
tic graphical Models (PGMs) that include Bayesian and
Markov networks. The CI relations between the random
variables enable the modular and low-dimensional repre-
sentations of high-dimensional, multivariate distributions,

and tame the complexity of inference and learning, which
would otherwise be very inefficient [17, 21].

The implication problem is the task of determining whether
a set of CIs termed antecedents logically entail another
CI, called the consequent, and it has received considerable
attention from both the AI and Database communities [10,
12, 15, 16, 22, 23]. Known algorithms for deriving CIs from
the topological structure of the graphical model are, in fact,
an instance of implication. Notably, the DAG structure of
Bayesian Networks is generated based on a set of CIs termed
the recursive basis [11], and the d-separation algorithm
is used to derive additional CIs, implied by this set. The
d-separation algorithm is a sound and complete method
for deriving CIs in probability distributions represented by
DAGs [10, 11], and hence completely characterizes the CIs
that hold in the distribution. The foundation of deriving CIs
in both directed and undirected models is the semigraphoid
axioms [6, 9, 13].

Current systems for inferring CIs, and the semigraphoid
axioms in particular, assume that both antecedents and con-
sequent hold exactly, hence we refer to these as an exact
implication (EI). However, almost all known approaches for
learning the structure of a PGM rely on CIs extracted from
data, which hold to a large degree, but cannot be expected to
hold exactly. Of these, structure-learning approaches based
on information theory have been shown to be particularly
successful, and thus widely used to infer networks in many
fields [3, 4, 7, 16, 30].

In this paper, we drop the assumption that the CIs hold
exactly, and consider the relaxation problem: if an exact
implication holds, does an approximate implication hold
too? That is, if the antecedents approximately hold in the
distribution, does the consequent approximately hold as
well ? What guarantees can we give for the approximation?
In other words, the relaxation problem asks whether we
can convert an exact implication to an approximate one.
When relaxation holds, then any system-of-inference for
deriving exact implications, (e.g. the semigraphoid axioms,
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d-separation), can be used to infer approximate implications
as well.

To study the relaxation problem we need to measure the
degree of satisfaction of a CI. In line with previous work,
we use Information Theory. This is the natural semantics for
modeling CIs because X⊥Y |Z if and only if I(X;Y |Z) =
0, where I is the conditional mutual information. Hence, an
exact implication (EI) σ1, · · · , σk ⇒ τ is an assertion of
the form (h(σ1)=0 ∧ · · · ∧ h(σk)=0) ⇒ h(τ)=0, where
τ, σ1, σ2, . . . are triples (X;Y |Z), and h is the conditional
mutual information measure I(·; ·|·). An approximate impli-
cation (AI) is a linear inequality h(τ) ≤ λh(Σ), where
h(Σ)

def
=
∑k
i=1 h(σi), and λ ≥ 0 is the approximation

factor. We say that a class of CIs λ-relaxes if every ex-
act implication (EI) from the class can be transformed
to an approximate implication (AI) with an approxima-
tion factor λ. We observe that an approximate implica-
tion always implies an exact implication because the mu-
tual information I(·; ·|·) ≥ 0 is a nonnegative measure.
Therefore, if 0 ≤ h(τ) ≤ λh(Σ) for some λ ≥ 0, then
h(Σ) = 0⇒ h(τ) = 0.

Results. A conditional independence assertion (A;B|C) is
called saturated if it mentions all of the random variables in
the distribution, and it is called marginal if C = ∅.

We show that every conditional independence relation
(X;Y |Z) read off a DAG by the d-separation algorithm [10],
admits a 1-approximation. In other words, if Σ is the recur-
sive basis of CIs used to build the Bayesian network [10],
then it is guaranteed that I(X;Y |Z) ≤

∑
i∈Σ h(σi). Fur-

thermore, we present a family of implications for which our
1-approximation is tight (i.e., I(X;Y |Z) =

∑
i∈Σ h(σi)).

We also prove that every CI (X;Y |Z) implied by a set of
marginal CIs admits an |X| · |Y |-approximation (i.e., where
|X| denotes the number of RVs in the set X). The exact
variant of implication from these classes of CIs were ex-
tensively studied [8, 9, 10, 11, 12] (see below the related
work). Here, we study their approximation.

Of independent interest is the technique used for proving the
approximation guarantees. The I-measure [28] is a theory
which establishes a one-to-one correspondence between
information theoretic measures such as entropy and mutual
information (defined in Section 2) and set theory. Ours is the
first to apply this technique to the study of CI implication.

Related Work. The AI community has extensively studied
the exact implication problem for Conditional Independen-
cies (CI). In a series of papers, Geiger et al. showed that
the semigraphoid axioms [22] are sound and complete for
deriving CI statements that are implied by saturated CIs [9],
marginal CIs [9], and recursive CIs that are used in Bayesian
networks [8, 11]. The completeness of d-separation follows
from the fact that the set of CIs derived by d-separation is
precisely the closure of the recursive basis under the sem-
graphoid axioms [27]. Studený proved that in the general

case, when no assumptions are made on the antecendents,
no finite axiomatization exists [25]. That is, there does not
exist a finite set of axioms (deductive rules) from which
all general conditional independence implications can be
deduced.

The database community has also studied the EI problem
for integrity constraints [1, 2, 18, 20], and showed that
the implication problem is decidable and axiomatizable
when the antecedents are Functional Dependencies or Mul-
tivalued Dependencies (which correspond to saturated CIs,
see [15, 19]), and undecidable for Embedded Multivalued
Dependencies [14].

The relaxation problem was first studied by Kenig and Suciu
in the context of database dependencies [15], where they
showed that CIs derived from a set of saturated antecedents,
admit an approximate implication. Importantly, they also
showed that not all exact implications relax, and presented a
family of 4-variable distributions along with an exact impli-
cation that does not admit an approximation (see Theorem
16 in [15]). Consequently, it is not straightforward that exact
implication necessarily imply its approximation counter-
part, and arriving at meaningful approximation guarantees
requires making certain assumptions on the antecedents,
consequent, or both.

Organization. We start in Section 2 with preliminaries. We
formally define the relaxation problem in Section 3, and
formally state our results in Section 4. In Section 5 we
establish, through a series of lemmas, properties of exact
implication that will be used for proving our results. In
Section 6 we prove that every implication from a set of
recursive CIs admits a 1-relaxation, and in Section 7 we
prove that every implication Σ⇒ (X;Y |Z) from a set of
marginal CIs admits an |X||Y |-relaxation. We conclude in
Section 8.

2 PRELIMINARIES

We denote by [n] = {1, 2, . . . , n}. If Ω = {X1, . . . , Xn}
denotes a set of variables and U, V ⊆ Ω, then we abbreviate
the union U ∪ V with UV .

2.1 CONDITIONAL INDEPENDENCE

Recall that two discrete random variables X,Y are called
independent if p(X = x, Y = y) = p(X = x) · p(Y = y)
for all outcomes x, y. Fix Ω = {X1, . . . , Xn}, a set of
n jointly distributed discrete random variables with finite
domains D1, . . . ,Dn, respectively; let p be the probability
mass. For α ⊆ [n], denote by Xα the joint random vari-
able (Xi : i ∈ α) with domain Dα

def
=
∏
i∈αDi. We write

p |= Xβ ⊥ Xγ |Xα when Xβ , Xγ are conditionally inde-
pendent given Xα; in the special case that Xα functionally
determines Xβ , we write p |= Xα → Xβ .
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An assertion X⊥Y |Z is called a Conditional Independence
statement, or a CI; this includes Z → Y as a special case.
When XY Z = Ω we call it saturated, and when Z = ∅ we
call it marginal. A set of CIs Σ implies a CI τ , in notation
Σ⇒ τ , if every probability distribution that satisfies Σ also
satisfies τ .

2.2 BACKGROUND ON INFORMATION THEORY

We adopt required notation from the literature on infor-
mation theory [29]. For n > 0, we identify the functions
2[n] → R with the vectors in R2n

.

Polymatroids. A function h ∈ R2n

is called a polymatroid
if h(∅) = 0 and satisfies the following inequalities, called
Shannon inequalities:

1. Monotonicity: h(A) ≤ h(B) for A ⊆ B
2. Submodularity: h(A∪B)+h(A∩B) ≤ h(A)+h(B)

for all A,B ⊆ [n]

The set of polymatroids is denoted Γn ⊆ R2n

. For any
polymatroid h and subsets A,B,C,D ⊆ [n], we define1

h(B|A)
def
= h(AB)− h(A) (1)

Ih(B;C|A)
def
= h(AB) + h(AC)− h(ABC)− h(A)

(2)

Then, ∀h ∈ Γn, Ih(B;C|A) ≥ 0 by submodularity, and
h(B|A) ≥ 0 by monotonicity. We say that A functionally
determines B, in notation A → B if h(B|A) = 0. The
chain rule is the identity:

Ih(B;CD|A) = Ih(B;C|A) + Ih(B;D|AC) (3)

We call the triple (B;C|A) elemental if |B| = |C| =
1; h(B|A) is a special case of Ih, because h(B|A) =
Ih(B;B|A). By the chain rule, it follows that every CI
(B;C|A) can be written as a sum of at most |B||C| ≤ n2

4
elemental CIs.

Entropy. If X is a random variable with a finite domain D
and probability mass p, then H(X) denotes its entropy

H(X)
def
=
∑
x∈D

p(x) log
1

p(x)
(4)

For a set of jointly distributed random variables Ω =
{X1, . . . , Xn} we define the function h : 2[n] → R as
h(α)

def
= H(Xα); h is called an entropic function, or, with

some abuse, an entropy. It is easily verified that the entropy
H satisfies the Shannon inequalities, and is thus a polyma-
troid. The quantities h(B|A) and Ih(B;C|A) are called the
conditional entropy and conditional mutual information re-
spectively. The conditional independence p |= B ⊥ C | A

1Recall that AB denotes A ∪B.

Information
µ∗

Measures
H(X) µ∗(m(X))

H(XY ) µ∗
(
m(X) ∪m(Y )

)
H(X|Y ) µ∗

(
m(X) ∩mc(Y )

)
IH(X;Y ) µ∗

(
m(X) ∩m(Y )

)
IH(X;Y |Z) µ∗

(
m(X) ∩m(Y ) ∩mc(Z)

)
Table 1: Information measures and associated I-measure

holds iff Ih(B;C|A) = 0, and similarly p |= A → B iff
h(B|A) = 0, thus, entropy provides us with an alternative
characterization of CIs.

2.2.1 The I-measure

The I-measure [28, 29] is a theory which establishes a one-
to-one correspondence between Shannon’s information mea-
sures and set theory. Let h ∈ Γn denote a polymatroid de-
fined over the variables {X1, . . . , Xn}. Every variableXi is
associated with a set m(Xi), and it’s complement mc(Xi).
The universal set is Λ

def
=
⋃n
i=1 m(Xi). Let α ⊆ [n]. We de-

note by Xα
def
= {Xj | j ∈ α}, and m(Xα)

def
=
⋃
i∈α m(Xi).

Definition 2.1. ([28, 29]) The field Fn generated by
sets m(X1), . . . ,m(Xn) is the collection of sets which
can be obtained by any sequence of usual set opera-
tions (union, intersection, complement, and difference) on
m(X1), . . . ,m(Xn).

The atoms of Fn are sets of the form
⋂n
i=1 Yi, where Yi is

either m(Xi) or mc(Xi). We denote by A the atoms of Fn.
We consider only atoms in which at least one set appears in
positive form (i.e., the atom

⋂n
i=1 mc(Xi)

def
= ∅ is empty).

There are 2n − 1 non-empty atoms and 22n−1 sets in Fn
expressed as the union of its atoms. A function µ : Fn → R
is set additive if for every pair of disjoint sets A and B
it holds that µ(A ∪ B) = µ(A)+µ(B). A real function µ
defined on Fn is called a signed measure if it is set additive,
and µ(∅) = 0.

The I-measure µ∗ on Fn is defined by µ∗(m(Xα)) =
H(Xα) for all nonempty subsets α ⊆ {1, . . . , n}, where
H is the entropy (4). Table 1 summarizes the extension of
this definition to the rest of the Shannon measures. Yeung’s
I-measure Theorem establishes the one-to-one correspon-
dence between Shannon’s information measures and µ∗.

Theorem 2.2. ([28, 29]) [I-Measure Theorem] µ∗ is the
unique signed measure on Fn which is consistent with all
Shannon’s information measures (i.e., entropies, conditional
entropies, and mutual information).

Let σ = (X;Y |Z). We denote by m(σ)
def
= m(X)∩m(Y )∩

mc(Z) the set associated with σ (see Table 1). For a set of
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triples Σ, we define:

m(Σ)
def
=
⋃
σ∈Σ

m(σ) (5)

Example 2.3. Let A, B, and C be three dis-
joint sets of RVs defined as follows: A=A1A2A3,
B=B1B2 and C=C1C2. Then, by Theorem 2.2:
H(A)=µ∗(m(A))=µ∗(m(A1)∪m(A2)∪m(A3)),
H(B)=µ∗(m(B))=µ∗(m(B1)∪m(B2)), and
µ∗(mc(C))=µ∗(mc(C1)∩mc(C2)). By Table 1:
I(A;B|C)=µ∗(m(A) ∩m(B) ∩mc(C)).

We denote by ∆n the set of signed measures µ∗ : Fn →
R≥0 that assign non-negative values to the atoms Fn. We
call these positive I-measures.

Theorem 2.4. ([29]) If there is no constraint on
X1, . . . , Xn, then µ∗ can take any set of nonnegative values
on the nonempty atoms of Fn.

Theorem 2.4 implies that every positive I-measure µ∗ cor-
responds to a function that is consistent with the Shannon
inequalities, and is thus a polymatroid. Hence, ∆n ⊂ Γn is
the set of polymatroids with a positive I-measure that we
call positive polymatroids.

2.3 BAYESIAN NETWORKS

A Bayesian network encodes the CIs of a probability dis-
tribution using a Directed Acyclic Graph (DAG). Each
node Xi in a Bayesian network corresponds to the vari-
able Xi ∈ Ω, a set of nodes α correspond to the set of
variables Xα, and xi ∈ Di is a value from the domain of
Xi. Each node Xi in the network represents the distribu-
tion p(Xi | Xπ(i)) where Xπ(i) is a set of variables that
correspond to the parent nodes π(i) of i. The distribution
represented by a Bayesian network is

p(x1, . . . , xn) =

n∏
i=1

p(xi|xπ(i)) (6)

(when i has no parents then Xπ(i) = ∅).

Equation 6 implicitly encodes a set of n conditional indepen-
dence statements, called the recursive basis for the network:

Σ
def
= {(Xi;X1 . . . Xi−1\π(Xi) | π(Xi)) : i ∈ [n]} (7)

The implication problem associated with Bayesian Net-
works is to determine whether Σ⇒ τ for a CI τ . Geiger and
Pearl have shown that Σ ⇒ τ iff τ can be derived from Σ
using the semigraphoid axioms [11]. Their result establishes
that the semigraphoid axioms are sound and complete for
inferring CI statements from the recursive basis.

3 THE RELAXATION PROBLEM

We now formally define the relaxation problem. We fix a
set of variables Ω = {X1, . . . , Xn}, and consider triples
of the form σ = (Y ;Z|X), where X,Y, Z ⊆ Ω, which we
call a conditional independence, CI. An implication is a
formula Σ⇒ τ , where Σ is a set of CIs called antecedents
and τ is a CI called consequent. For a CI σ = (Y ;Z|X), we
define h(σ)

def
= Ih(Y ;Z|X), for a set of CIs Σ, we define

h(Σ)
def
=
∑
σ∈Σ h(σ). Fix a set K s.t. K ⊆ Γn.

Definition 3.1. The exact implication (EI) Σ⇒ τ holds in
K, denoted K |=EI (Σ ⇒ τ) if, forall h ∈ K, h(Σ) = 0
implies h(τ) = 0. The λ-approximate implication (λ-AI)
holds in K, in notation K |= λ · h(Σ) ≥ h(τ), if ∀h ∈ K,
λ · h(Σ) ≥ h(τ). The approximate implication holds, in
notation K |=AI (Σ⇒ τ), if there exist a finite λ ≥ 0 such
that the λ-AI holds.

Notice that both exact (EI) and approximate (AI) impli-
cations are preserved under subsets of K: if K1⊆K2 and
K2|=x(Σ⇒τ), then K1|=x(Σ⇒τ), for x∈{EI,AI}.

Approximate implication always implies its exact coun-
terpart. Indeed, if h(τ) ≤ λ · h(Σ) and h(Σ) = 0, then
h(τ) ≤ 0, which further implies that h(τ) = 0, because
h(τ) ≥ 0 for every triple τ , and every polymatroid h. In
this paper we study the reverse.

Definition 3.2. Let L be a syntactically-defined class of
implication statements (Σ⇒ τ), and let K ⊆ Γn. We say
that L admits a λ-relaxation in K, if every exact implication
statement (Σ⇒ τ) in L has a λ-approximation:

K |=EI Σ⇒ τ iff K |=AI λ · h(Σ) ≥ h(τ).

In this paper, we focus on λ-relaxation in the set Γn of poly-
matroids, and two syntactically-defined classes: 1) Where
Σ is the recursive basis of a Bayesian network (see (7)), and
2) Where Σ is a set of marginal CIs.

Example 3.3. Let Σ={(A;B|∅), (A;C|B)}, and
τ=(A;C|∅). Since Ih(A;C|∅)≤Ih(A;BC), and since
Ih(A;BC)=Ih(A;B|∅)+Ih(A;C|B) by the chain
rule (3), then the exact implication Γn |=EI Σ⇒ τ admits
an AI with λ = 1 (i.e., a 1-AI).

4 FORMAL STATEMENT OF RESULTS

We generalize the results of Geiger et al. [10, 13], by proving
that implicates τ=(X;Y |Z) of the recursive set [10], and
of marginal CIs [13], admit a 1, and |X||Y |-approximation
respectively, and thus continue to hold also approximately.

4.1 IMPLICATION FROM RECURSIVE CIS

Geiger et al. [10] prove that the semigraphoid axioms are
sound and complete for the implication from the recursive
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set (see (7)). They further showed that the set of implicates
can be read off the appropriate DAG via the d-separation
procedure. We show that every such exact implication can
be relaxed, admitting a 1-relaxation, guaranteeing a bounded
approximation for the implicates (CI relations) read off the
DAG by d-separation.

We recall the definition of the recursive basis Σ from (7):

Σ
def
= {(Xi;Ri|Bi) : i ∈ [1, n], RiBi = U (i)} (8)

where Bi
def
=π(Xi) and U (i) def

={X1, . . . , Xi−1}. We observe
that |Σ|=n, there is a single triple σn=(Xn;Rn|Bn)∈Σ
that mentions Xn, and that σn is saturated.

We recall that ∆n ⊂ Γn is the set of polymatroids whose
I-measure assigns non-negative values to the atoms Fn (see
Section 2.2.1).

Theorem 4.1. Let Σ be a recursive set of CIs (see (8)), and
let τ = (A;B|C). Then the following holds:

∆n |=EI Σ⇒ τ iff Γn |= h(Σ) ≥ h(τ) (9)

We note that the only-if direction of Theorem 4.1 is im-
mediate, and follows from the non-negativity of Shannon’s
information measures. We prove the other direction in Sec-
tion 6. Theorem 4.1 states that it is enough that the ex-
act implication holds on all of the positive polymatroids
∆n, because this implies the (even stronger!) statement
Γn |= h(Σ) ≥ h(τ).

4.2 IMPLICATION FROM MARGINAL CIS

We show that any implicate τ=(A;B|C) from a set of
marginal CIs has an |A|·|B|-approximation. This general-
izes the result of Geiger, Paz, and Pearl [13], which proved
that the semigraphoid axioms are sound and complete for
deriving marginal CIs.

Theorem 4.2. Let Σ be a set of marginal CIs, and τ =
(A;B|C) be any CI.

Γn |=EI Σ⇒ τ iff Γn |= (|A||B|)h(Σ) ≥ h(τ)
(10)

Also here, the only-if direction of Theorem 4.2 is immediate,
and we prove the other direction in Section 7.

5 PROPERTIES OF EXACT
IMPLICATION

In this section, we use the I-measure to characterize some
general properties of exact implication in the set of positive
polymatroids ∆n (Section 5.1), and the entire set of poly-
matroids Γn (Section 5.2). The lemmas in this section will

be used for proving the approximate implication guarantees
presented in Section 4.

In what follows, Ω = {X1, . . . , Xn} is a set of n RVs,
Σ denotes a set of triples (A;B|C) representing mutual
information terms, and τ denotes a single triple. We denote
by var(σ) the set of RVs mentioned in σ (e.g., if σ =
(X1X2;X3|X5) then var(σ) = X1 . . . X5).

5.1 EXACT IMPLICATION IN THE SET OF
POSITIVE POLYMATROIDS

Lemma 5.1. The following holds:

∆n |=EI Σ⇒ τ iff m(Σ) ⊇ m(τ)

Proof. Suppose that m(τ)6⊆m(Σ), and let b ∈ m(τ)\m(Σ).
By Theorem 2.4 there exists a positive polymatroid in ∆n

with an I-measure µ∗ that takes the following non-negative
values on its atoms: µ∗(b)=1, and µ∗(a) = 0 for any atom
a∈Fn where a 6= b. Since b /∈ m(Σ), then µ∗(Σ) = 0
while µ∗(τ) = 1. Hence, ∆n 6|=Σ⇒ τ .

Now, suppose that m(Σ)⊇m(τ). Then for any positive I-
measure µ∗:Fn→R≥0, we have that µ∗(m(Σ))≥µ∗(m(τ)).
By Theorem 2.2, µ∗ is the unique signed measure onFn that
is consistent with all of Shannon’s information measures.
Therefore, h(Σ)≥h(τ). The result follows from the non-
negativity of the Shannon information measures.

An immediate consequence of Lemma 5.1 is that
m(Σ)⊇m(τ) is a necessary condition for implication be-
tween polymatroids.

Corollary 5.2. If Γn |=EI Σ⇒ τ then m(Σ) ⊇ m(τ).

Proof. If Γn |=EI Σ⇒ τ then it must hold for any subset
of polymatroids, and in particular, ∆n |=EI Σ ⇒ τ . The
result follows from Lemma 5.1.

Lemma 5.3. Let ∆n |=EI Σ⇒ τ , and let σ ∈ Σ such that
m(σ) ∩m(τ) = ∅. Then ∆n |=EI Σ\{σ} ⇒ τ .

Proof. Let Σ′ = Σ\{σ}, and suppose that ∆n 6|=EI Σ′ ⇒
τ . By Lemma 5.1, we have that m(Σ′) 6⊇ m(τ). In other
words, there is an atom a ∈ Fn such that a ∈ m(τ)\m(Σ′).
In particular, a /∈ m(σ) ∪m(Σ′) = m(Σ). Hence, m(τ) 6⊆
m(Σ), and by Lemma 5.1 we get that ∆n 6|=EI Σ⇒ τ .

5.2 EXACT IMPLICATION IN THE SET OF
POLYMATROIDS

The main technical result of this section is Lemma 5.6. We
start with two short technical lemmas.
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Lemma 5.4. Let σ = (A;B|C) and τ = (X;Y |Z) be CIs
such that X ⊆ A, Y ⊆ B, C ⊆ Z and Z ⊆ ABC. Then,
Γn |= h(τ) ≤ h(σ).

Proof. Since Z⊆ABC, we denote by ZA=A∩Z,
ZB=B∩Z, and ZC=C∩Z. Also, denote by
A′=A\(ZA∪X), B′=B\(ZB∪Y ). So, we have that:
I(A;B|C)=I(ZAA

′X;ZBB
′Y |C). By the chain rule, we

have that:

I(ZAA
′X;ZBB

′Y |C) =

I(ZA;ZB |C) + I(A′X;ZB |CZA)

+ I(ZA;B′Y |ZBC) + I(X;Y |CZAZB)

+ I(X;B′|CZAZBY ) + I(A′;B′Y |CZAZBX)

Noting that Z = CZAZB , we get that I(X;Y |Z) ≤
I(A;B|C) as required.

Lemma 5.5. Let Σ = {σ1, . . . , } be a set of triples such that
var(σi) ⊆ {X1, . . . , Xn−1} for all σi ∈ Σ. Likewise, let τ
be a triple such that var(τ) ⊆ {X1, . . . , Xn−1}. Then:

Γn |=EI Σ⇒ τ iff Γn−1 |=EI Σ⇒ τ (11)

Proof. Suppose that Γn 6|=EI Σ ⇒ τ . Then there exists a
polymatroid (Section 2.2) f : 2[n] → R such that f(σ) = 0
for all σ ∈ Σ, and f(τ) 6= 0. We define g : 2[n−1] → R as
follows:

g(A) = f(A) for all A ⊆ {X1, . . . , Xn−1} (12)

Since f is a polymatroid, then so is g. Further, since Σ does
not mention Xn then, by (12), we have that g(σ) = f(σ)
for all σ ∈ Σ. Hence, Γn−1 6|=EI Σ⇒ τ .

If Γn−1 6|=EI Σ ⇒ τ . Then there exists a polymatroid
g : 2[n−1] → R such that g(σ) = 0 for all σ ∈ Σ, and
g(τ) 6= 0. Define f : 2[n] → R as follows:

f(A) = g(A \Xn) for all A ⊆ {X1, . . . , Xn} (13)

We claim that f ∈ Γn (i.e., f is a polymatroid). It then
follows that Γn 6|= Σ⇒ τ because by the assumption that
var(Σ) and var(τ) are subsets of {X1, . . . , Xn−1}, then
f(σ) = g(σ) for all σ ∈ Σ. Hence, f(Σ) = g(Σ) = 0
while f(τ) = g(τ) 6= 0.

We now prove the claim. First, by (13), we have that f(∅) =
g(∅) = 0. We show that f is monotonic. So let A ⊆ B ⊆
{X1, . . . , Xn}. If Xn /∈ B then Xn /∈ A and we have that:

f(B)− f(A) = g(B)− g(A) ≥︸︷︷︸
B⊇A
g∈Γn−1

0

If Xn ∈ B \A then we let B = B′Xn, and we have:

f(B′Xn)− f(A) =︸︷︷︸
(13)

g(B′)− g(A) ≥︸︷︷︸
B′⊇A

0

Finally, if Xn ∈ A ⊆ B, then by letting B = B′Xn,
A = A′Xn, we have that:

f(B′Xn)− f(A′Xn) =︸︷︷︸
(13)

g(B′)− g(A′) ≥ 0

We now show that f is submodular. Let A,B ⊆
{X1, . . . , Xn}. IfXn /∈ A∪B then f(Y ) = g(Y ) for every
set Y ∈{A,B,A∪B,A∩B}. Since g is submodular, then
f(A)+f(B)≥f(A∪B)+f(A∩B). If Xn ∈ A \ B then
we write A = A′Xn and observe that, by (13): f(A′Xn) =
g(A′), f(A∪B) = f(A′Xn∪B) = g(A′∪B), that f(B) =
g(B), and that f(A∩B) = f(A′∩B) = g(A′∩B). Hence:
f(A) + f(B) = g(A′) + g(B) ≥ g(A′∪B) + g(A′∩B).
The case where Xn ∈ B\A is symmetrical. Finally, if
Xn ∈ A∩B thenXn ∈ Y for all Y ∈ {A,B,A∩B,A∪B}.
Hence, for every Y in this set, we write Y = Y ′Xn. In par-
ticular, by (13) we have that f(Y ) = f(Y ′Xn) = g(Y ′),
and the claim follows since g ∈ Γn.

Lemma 5.6. Let τ = (A;B|C). If Γn |=EI Σ ⇒ τ then
there exists a triple σ = (X;Y |Z) ∈ Σ such that:

1. XY Z ⊇ ABC, and

2. ABC ∩X 6= ∅ and ABC ∩ Y 6= ∅.

Proof. Let τ = (A;B|C), where A = a1 . . . am, B =
b1 . . . b`, C = c1 . . . ck, and U = Ω\ABC. Following [12],
we construct the parity distribution P (Ω) as follows. We
let all the RVs, except a1, be independent binary RVs with
probability 1

2 for each of their two values, and let a1 be
determined from ABC \ {a1} as follows:

a1 =

m∑
i=2

ai +
∑̀
i=1

bi +

k∑
i=1

ci (mod 2) (14)

Let D ⊆ Ω and d ∈ D(D). We denote by DABC = D ∩
ABC, and by dABC the assignment d restricted to the RVs
DABC . We show that if DABC ( ABC then the RVs in D
are pairwise independent. By the definition of P we have
that:

P (D = d) =

(
1

2

)|D∩U |
P (DABC=dABC)

There are two cases with respect to D. If a1 /∈ D then, by
definition, P (DABC=dABC) =

(
1
2

)|DABC |, and overall

we get that P (D=d)=
(

1
2

)|D|
. Hence, the RVs in D are

pairwise independent. If a1∈D, then since DABC ( ABC
it holds that P (a1|DABC\{a1})=P (a1). To see this, ob-
serve that:

P (a1=1|DABC\{a1})

=

{
1
2 if

∑
y∈DABC\{a1} y (mod 2)=0

1
2 if

∑
y∈DABC\{a1} y (mod 2)=1
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because if, w.l.o.g,
∑
y∈DABC\{a1} y (mod 2)=0, then

a1=1 implies that
∑
y∈ABC\D y (mod 2)=1, and this

is the case for precisely half of the assignments
ABC\D→{0, 1}|ABC\D|. Hence, for any D ⊆ Ω such
that D ∩ var(τ) ( ABC it holds that P (D=d) =∏
y∈D P (y=dy) =

(
1
2

)|D|
, and therefore the RVs are pair-

wise independent.

By definition of entropy (see (4)) we have that H(Xi) = 1
for every binary RV in Ω. Since the RVs in D are pairwise
independent then H(D) =

∑
y∈DH(y) = |D|2. Further-

more, for any (X;Y |Z) ∈ Σ s.t. XY Z 6⊆ ABC we have
that:

I(X;Y |Z) = H(XZ) +H(Y Z)−H(Z)−H(XY Z)

= |XZ|+ |Y Z| − |Z| − |XY Z|
= |X|+ |Y |+ |Z| − |XY Z|
= 0

On the other hand, letting A′ def
=A\{a1}, then by chain rule

for entropies, and noting that, by (14), ABC\a1 → a1,
then:

H(var(τ)) = H(ABC) = H(a1A
′BC)

= H(a1|A′BC) +H(A′BC)

= 0 + |ABC| − 1 = |ABC| − 1.

and thus

I(A;B|C) = H(AC) +H(BC)−H(C)−H(ABC)

= |AC|+ |BC| − |C| − (|ABC| − 1) (15)
= 1

In other words, the parity distribution P of (14) has an
entropic function hP ∈ Γn, such that hP (σ) = 0 for all
σ ∈ Σ where var(σ) 6⊇ ABC, while hP (τ) = 1. Hence, if
Γn |= Σ⇒ τ , then there must be a triple σ = (X;Y |Z) ∈
Σ such that XY Z ⊇ ABC.

Now, suppose that ABC ⊆ XY Z and that ABC ∩ Y = ∅.
In other words, ABC ⊆ XZ. We denote XABC

def
=

X ∩ ABC and ZABC = Z ∩ ABC. Therefore, we can
write I(X;Y |Z) as I(XABCX

′;Y |ZABCZ ′) where X ′ =
X\XABC and Z ′ = Z\ZABC . It is easily shown that if
ABC ⊆ X or ABC ⊆ Z then I(X;Y |Z) = 0. Otherwise
(i.e., XABC 6= ∅ and ZABC 6= ∅), then due to the proper-
ties of the parity function, we have that H(Y Z ′ZABC) =
H(Y ) +H(Z ′) +H(ZABC). Noting that XABCZABC =
ABC, we get that I(XABCX

′;Y |ZABCZ ′) = 0.

Overall, we showed that for all triples (X;Y |Z) ∈ Σ that
do not meet the conditions of the lemma, it holds that
IhP

(X;Y |Z) = 0, while IhP
(A;B|C) = 1 (see (15))

2This is due to the chain rule of entropy, and the fact that if X
and Y are independent RVs then H(Y |X) = H(Y ).

where hP is the entropic function associated with the parity
function P in (14). Therefore, there must be a triple σ ∈ Σ
that meets the conditions of the lemma. Otherwise, we arrive
at a contradiction to the EI.

6 APPROXIMATE IMPLICATION FOR
RECURSIVE CIS

We prove Theorem 4.1. Let P be a multivariate distribution
over Ω={X1, . . . , Xn}, and Σ be a recursive set (see (8)).
We prove Theorem 4.1 by induction on the highest RV-index
mentioned in any triple of Σ.

The claim trivially holds for n=1 (since no conditional inde-
pendence statements are implied), so we assume correctness
when the highest RV-index mentioned in Σ is ≤ n−1, and
prove for n.

We recall that Σ = {σ1, . . . , σn} where σi = (Xi;Ri|Bi)
where RiBi = {X1, . . . , Xi−1}. In particular, only σn =
(Xn;Rn|Bn) mentions the RV Xn, and it is saturated (i.e.,
XnRnBn = Ω). We denote by Σ′ = Σ \ {σn}, and note
that Xn /∈ var(Σ′). The induction hypothesis states that:

∆n |=EI Σ′ ⇒ τ iff Γn |= h(Σ′) ≥ h(τ) (16)

Equivalently, by Lemma 5.1, and due to the one-to-one cor-
respondence between Shannon’s information measures and
µ∗ (Theorem 2.2), we can state the induction hypothesis:

m(Σ′) ⊇ m(τ) iff µ∗(m(Σ′)) ≥ µ∗(m(τ)) (17)

Now, we consider τ = (X;Y |Z). We divide to three cases,
and treat each one separately.

1. Xn /∈ XY Z
2. Xn ∈ Z
3. Xn ∈ X (or, symmetrically, Xn ∈ Y )

Case 1: Xn /∈ XY Z. We will show that ∆n |=EI

Σ′ ⇒ τ , and the claim will follow from the induction
hypothesis (16) because Σ′ does not mention Xn, and
h(Σ) ≥ h(Σ′) ≥ h(τ) as required.

Suppose, by way of contradiction, that ∆n |=EI Σ′ 6⇒ τ .
Since neither Σ′ nor τ mention Xn then, by Lemma 5.5,
we have that ∆n−1 |=EI Σ′ 6⇒ τ . Hence, by Lemma 5.1,
we have that m(Σ′) 6⊇ m(τ), and there exists an atom
a ∈ Fn−1 such that a ∈ m(τ)\m(Σ′). Consequently, there
exist two atoms a1, a2 ∈ Fn where:

a1
def
= a ∩m(Xn) a2

def
= a ∩mc(Xn)

such that {a1, a2}⊆m(τ) and {a1, a2} ∩ m(Σ′) =
∅. By our observation, σn=(Xn;R|B). Therefore,
we have that m(σn) ⊆ m(Xn) (i.e., see Table 1).
So, we get that a2 /∈m(σn). Overall, we have that
a2 /∈m(σn)∪m(Σ′)=m(Σ), and by Lemma 5.1, we get that
∆n |=EI Σ 6⇒ τ , a contradiction.
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Case 2: τ = (W ;Y |ZXn). Then m(τ)⊆mc(Xn),
and since σn has the form σn=(Xn;R|B), then
m(σn)⊆m(Xn) (see Table 1). Hence, m(τ) ∩m(σn) = ∅,
and by Lemma 5.3, if ∆n |=EI Σ ⇒ τ then it must hold
that ∆n |=EI Σ′ ⇒ τ , and the claim follows from the in-
duction hypothesis (16) because Σ′ does not mention Xn,
and h(Σ) ≥ (Σ′) ≥ h(τ).

Case 3: τ = (WXn;Y |Z). By the chain rule (see (3)):

(WXn;Y |Z) = (W ;Y |Z)︸ ︷︷ ︸
τ1

+ (Xn;Y |WZ)︸ ︷︷ ︸
τ2

(18)

Hence, if ∆n|=EIΣ⇒τ then ∆n|=EIΣ⇒τ1, and
∆n|=EIΣ⇒τ2. We have already shown, in case 1, that the
former implies ∆n|=EIΣ

′⇒τ1.

Let σn = (Xn;R|B), and let Y = Y1 . . . Ym where m ≥ 1.
We claim that Y ⊆ R. Since σn is saturated then Y ⊆ RB.
Now, suppose by way of contradiction, that Yi ∈ B for
some i ∈ [1,m]. Consider the atom

a
def
= m(Xn) ∩m(Yi)

⋂
X∈[n]\{Xn,Yi}

mc(X).

We observe that a ∈ m(τ2). Since, by our assumption
Yi∈B, then a /∈ m(σn). On the other hand, for every
σ = (A;B|C) ∈ Σ′, we also have that a /∈ m(σ). To
see why, note that Xn /∈ AB. Therefore, every atom of
m(σ) contains at least two sets in positive form: m(Xi) for
some Xi ∈ A and m(Xj) for some Xj ∈ B. Since neither
of these areXn, then at least one of them appears in negative
form in a. Overall, we get that m(Xn;Y |WZ) 6⊆ m(Σ),
and by Lemma 5.1 that ∆n |=EI Σ 6⇒ τ2. Hence, from (18),
we get that ∆n |=EI Σ 6⇒ τ , a contradiction.

Since Y⊆R, we can write
σn=(Xn;Y RWRZR

′|BWBZB′) where RW
def
= R ∩W ,

RZ
def
= R ∩ Z, and R′

def
= R\RWRZY . Likewise,

BW
def
=B∩W ,BZ

def
=B∩Z, and B′

def
=B\BWBZ . Further,

since σn is saturated then W = RWBW and Z = RZBZ .
By the chain rule, we have that:

h(σn) = Ih(Xn;Y RWRZR
′|BWBZB′)

= Ih(Xn;Y RWRZ |BWBZB′) + Ih(Xn;R′|WZY B′)

≥ Ih(Xn;RWRZ |BWBZB′) + Ih(Xn;Y |WZB′)

≥ Ih(Xn;Y |ZWB′) (19)

Now, if B′ = ∅ then we are done because h(σn) ≥
h(Xn;Y |ZW ) = h(τ2) and by the induction hypothesis
if ∆n |= Σ′ ⇒ τ1 then h(Σ′) ≥ h(τ1). So assume that
B′ 6= ∅, and consider the following set of atoms:

A
def
= m(Xn)∩

⋃
y∈Y

m(y)

∩
 ⋃
b∈B′

m(b)

∩ ⋂
X∈ZW

mc(X)

We note that m(τ2) ⊇ A. By our assumption that σn =
(Xn;R|BWBZB′), then A ∩ m(σn) = ∅. Since ∆n |=
Σ⇒ τ2 then by Lemma 5.3, it must hold that m(Σ′) ⊇ A.
Furthermore, since Xn /∈ var(Σ′) then it must hold that
m(Σ′) ⊇ A′ where:

A′
def
=

⋃
y∈Y

m(y)

 ∩
 ⋃
b∈B′

m(b)

 ∩ ⋂
X∈ZW

mc(X)

Denote by τ3
def
= (Y ;B′|ZW ), and hence m(τ3) = A′ (see

Table 1). In particular, m(Σ′) ⊇ m(τ3), and by Lemma 5.1
we have that ∆n |= Σ′ ⇒ τ3. Since neither Σ′ nor τ3
mention Xn, then by the induction hypothesis (17), we have
that µ∗(m(Σ′)) ≥ µ∗(m(τ3)).

Since ∆n |= Σ⇒ τ1, and since Xn /∈ var(τ1), then by the
argument of case 1 we have that ∆n |= Σ′ ⇒ τ1, and hence
by Lemma 5.1 that m(Σ′) ⊇ m(τ1). Now, by the previous
reasoning, we have also have that m(Σ′) ⊇ m(τ3). By not-
ing that m(τ1) ∩m(τ3) = ∅, and applying Lemma 5.3, we
get that m(Σ′)\m(τ3) ⊇ m(τ1). Applying the induction hy-
pothesis (17), we get that µ∗

(
m(Σ′)\m(τ3)

)
≥ µ∗(m(τ1)).

Now, since µ∗ is set-additive, and m(Σ′) ⊇ m(τ3), we get
that µ∗(m(Σ′)) − µ∗(m(τ3)) ≥ µ∗(m(τ1)). And, by the
one-to-one correspondence between Shannon’s information
measures and the I-measure (Theorem 2.2), we get that
h(Σ′)− h(τ3) ≥ h(τ1).

Now, from (19) we have that h(σn) ≥ Ih(Xn;Y |ZWB′).
By applying the chain rule:

Ih(Xn;Y |ZWB′)︸ ︷︷ ︸
≤h(σn)

+ Ih(Y ;B′|ZW )︸ ︷︷ ︸
=h(τ3)

= Ih(B′Xn;Y |WZ) ≥ h(τ2)

Overall, we get that:

Ih (W ;Y |Z)︸ ︷︷ ︸
τ1

+Ih (Xn;Y |WZ)︸ ︷︷ ︸
τ2

≤ h(Σ′)−h(τ3)+h(τ3)+h(σn) = h(Σ)

as required.

TIGHTNESS OF BOUND

Consider the probability distribution P over Ω =
{X1, . . . , Xn}, and suppose that the following recursive
set of CIs holds in P :

Σ = {(X1;Xi|X2 . . . Xi−1) : i ∈ {2, . . . , n}} (20)

Let τ = (X1;X2X3 . . . Xn). It is not hard to see that by
the chain rule:

I(X1;X2X3 . . . Xn) =

n∑
i=2

I(X1;Xi|X2 . . . Xi−1) = h(Σ)

(21)
Hence, Σ⇒EI τ , and the bound of (21) is tight.
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7 APPROXIMATE IMPLICATION FOR
MARGINAL CIS

In this section, we prove Theorem 4.2. Let Σ be a set of
marginal mutual information terms, and let τ = (A;B|D)
such that Γn|=EIΣ⇒τ . Then, by the chain rule (3), τ
can be written as a sum of at most |A||B| elemental CIs
(a; b|C). In Lemma 7.1 we show that for every such ele-
mental triple (a; b|C), there exists a marginal (X;Y )∈Σ
such that XY⊇abC, a∈X , and b∈Y . Consequently, from
Lemma 5.4, we get that h(Σ)≥I(X;Y )≥I(a; b|C). Hence,
it follows from lemma 7.1 that |A||B|h(Σ)≥h(τ), and this
will complete the proof for Theorem 4.2.

Lemma 7.1. Let Σ be a set of marginal mutual informa-
tion terms, and let τ = (a; b|C) be an elemental mutual
information term. The following holds:

Γn |=EI Σ⇒ τ iff
∃(X;Y ) ∈ Σ :

XY ⊇ abC and a ∈ X, b ∈ Y

Proof. We prove by induction on |C|. When |C| = 0 then
τ = (a; b). Consider the atom:

t
def
= m(a) ∩m(b)

⋂
y∈Ω\ab

mc(y) (22)

Clearly, t∈m(τ). Suppose, by way of contradiction, that
for every σ = (X;Y )∈Σ it holds that ab ∩ X = ∅ or
ab ∩ Y = ∅. If, without loss of generality, we assume the
former then clearly t /∈ m(σ) because all of the RVs in X
appear in negative form in the atom t. If this is the case
for all σ ∈ Σ, then t /∈ m(Σ), and m(τ) 6⊆ m(Σ). But
then, by Corollary 5.2, it cannot be that Γn |=EI Σ⇒ τ , a
contradiction.

So, we assume correctness for elemental terms (a; b|C)
where |C|≤k−1, and prove for |C|=k. Since Γn |=EI Σ⇒
τ , then by Lemma 5.6 there exists a mutual information
term σ=(X;Y )∈Σ such that XY⊇abC. Hence, we denote
C=CXCY , where CX=X∩C and CY =Y ∩C. There are
two cases. If σ = (aCXX0; bCY Y0) then, by Lemma 5.4,
we have that h(σ)≥h(τ), and we are done.

Otherwise, w.l.o.g, σ = (abCXX0;CY Y0). By item 2 of
Lemma 5.6, it holds that CY 6=∅.

We define:

α1
def
= (a;CY |CX) α2

def
= (a;CY |bCX) (23)

By Lemma 5.4, we have that h(σ) ≥ h(α1) and h(σ) ≥
h(α2), and thus Γn |=EI Σ ⇒ {α1, α2}. Noting that τ =
(a; b|CXCY ), we have that Γn |=EI Σ ⇒ (a; b|CXCY ).
By the chain rule (see (3)) we have that Σ implies:

(a;CY |CX), (a; b|CXCY )⇒ (a; bCY |CX)⇒ (a; b|CX)

In other words, we have that Γn |=EI Σ⇒ (a; b|CX).

By item 2 of Lemma 5.6 it holds that CY 6= ∅. Hence,
CX(C. Therefore, by the induction hypothesis, there ex-
ists an α3

def
= (aC1

XZ1; bC2
XZ2) ∈ Σ where CX=C1

XC
2
X .

In particular, by Lemma 5.4, we have that α3 ⇒ α4
def
=

(a; b|CX), and h(α4) ≤ h(α3) where α3 ∈ Σ. Furthermore,
by our assumption (i.e., that σ=(abCXX0;CY Y0)), then σ
and α3 are distinct. Consequently, we get that:

I(a; b|CX)︸ ︷︷ ︸
≤h(α3)

+ I(a;CY |bCX)︸ ︷︷ ︸
≤h(σ)

=I(a; bCY |CX) ≥ I(a; b|CXCY ) = h(τ) (24)

Overall, we get that h(τ) ≤ h(α3) + h(σ) ≤ h(Σ) because
α3, σ ∈ Σ are distinct, by our assumption. This completes
the proof.

8 CONCLUSION AND DISCUSSION

We study the approximation variant of the well known impli-
cation problem, and showed that d-separation, the popular
inference system used to derive CIs in Bayesian networks,
continues to be sound and complete for inferring approx-
imate CIs. We prove a tight approximation factor of 1 for
the case of recursive CIs, and an approximation factor that
depends on the size of the implicate for marginal CIs.

The question that remains is whether there are other classes
of CIs that admit a λ-relaxation for a bounded λ. Previous
work has shown that without making any assumptions on
the antecedents or the inference system, the answer is nega-
tive [15], and when the inference system is the polymatroid
inequalities (or equivalently, the semigraphoid axioms) then
the bound is (2n)!. Despite these negative results, when
the set of antecedents fall into certain classes, then they
do admit bounded relaxation. This is the case for saturated
CIs [15], which are the foundation for undirected PGMs.
It has been shown that the semigraphoid axioms are sound
and complete for deriving constraints from saturated CIs [9].
The semigraphoid axioms are also sound and complete for
sets of CIs whose cardinality is at most two [26], and for
the enhanced recursive set which is a combination of CIs
corresponding to a DAG along with functional dependen-
cies [11]. We conjecture that these two sets of CIs also admit
a bounded relaxation.

As part of future work we intend to empirically evaluate the
extent to which our approach can be applied to the task of
extracting the structure of PGMs from observational data.
We intend to evaluate our approach along two measures.
First, how close the learned model matches the empirical
distribution induced by the observed data, and second, how
it compares in terms of both accuracy and efficiency to
constraint-based algorithms that perform statistical indepen-
dence tests [5, 24].
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