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A MEDICAL DATA: DATA PRE-PROCESSING & EXPERIMENTAL SETUP DETAILS

This section describes our medical dataset and the experimental setting which is used to evaluate the accuracy and the
privacy of our proposals.

A.1 MEDICAL DATASET

A.1.1 The In-hospital Mortality Prediction Scenario

The ability to accurately predict the risks in the patient’s perspectives of evolution is a crucial prerequisite in order to adapt
the care that certain patients receive [Fejza et al., 2018].

We consider the scenario where several hospitals are collaborating to train models for in-hospital mortality prediction using
our Federated Learning schemes. This well-studied real-world problem consists in trying to precisely identify the patients
who are at risk of dying from complications during their hospital stay [Avati et al., 2018, Rajkomar and al., 2018, Fejza
et al., 2018]. As commonly found in the literature [Fejza et al., 2018], for such predictions, we focus on hospital admissions
of adults hospitalized for at least 3 days, excluding elective admissions.

A.1.2 The Premier Healthcare Database

We used EHR data from the Premier healthcare database1 which is one of the largest clinical databases in the United
States, collecting information from millions of patients over a period of 12 months from 415 hospitals in the USA [Fejza
et al., 2018]. These hospitals are supposedly representative of the United States hospital experience [Fejza et al., 2018].
Each hospital in the database provides discharge files that are dated records of all billable items (including therapeutic and
diagnostic procedures, medication, and laboratory usage) which are all linked to a given patient’s admission [Fejza et al.,
2018, Makadia and Ryan, 2014].

The initial snapshot of the database used in our work (before pre-processing step) comprises the EHR data of 1,271,733
hospital admissions. Electronic Health Record (EHR) is a digital version of a patient’s paper chart readily available in
hospitals. For developing supervised learning and specifically deep learning models, we focus on a specific set of features
from EHR data. The features of interest that capture the patients information are summarized in Table 1. There is a total of
24,428 features per patient, mainly due to the variety of drugs possibly served. As in Avati et al. [2018], we also removed all
the features which appear on less than 100 patients’ records, hence, the number of features was reduced to 7,280 features.

The Medication regimen complexity index (MRCI) [Mcdonald et al., 2012] is an aggregate score computed from a total of
65 items, whose purpose is to indicate the complexity of the patient’s situation. The minimum MRCI score for a patient is
1.5, which represents a single tablet or capsule taken once a day as needed (single medication). However the maximum is

1https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
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not defined since the number of medications increases the score [Mcdonald et al., 2012]. In our case, after statistical analysis
of our dataset, we consider the MRCI score as ranging from 2 to 60.

Most real datasets like ours are generally imbalanced with a skewed distribution between the classes. In our case, the positive
cases (patients who die during their hospital stay) represent only 3% of all patients. Table 2 gives more details about this
distribution after the pre-processing step which is discussed in A.2. To deal with this well-known problem, we have decided
to use downsampling technique [More, 2016, He and Garcia, 2009], a standard solution used for this purpose, as used in
Kerkouche et al. [2020].

A.2 PREPROCESSING

1. Features normalization: we extract from the dataset the values of each feature represented in Table 1. For gender,
we use one-hot encoding: Male, Female and Unknown. Similarly, for admission type we use 4 features: Emergency,
Urgent, Trauma Center, and Unknown 2. For drugs, we extract 24,419 features which correspond to the different drugs
(name and dosage). A given patient receives only a few of the possible drugs served, resulting in a very sparse patient’s
record. We use a MinMax normalization for age and MRCI in order to rescale the values of these features between 0
and 1 (using MinMaxScaler class of scikit-learn3). The labels that we consider are boolean: true means that the patient
died during his hospital stay while false means she survived.

2. Patients filtering: We consider patient and drug information of the first day at the hospital so that we can make
predictions 24 hours after admission (as commonly found in the literature [Rajkomar and al., 2018, Fejza et al., 2018]).
We filter out the pregnant and new-born patients because the medication types and admission services are not the same
for theses two categories of patients. Our model prediction is built without patients’ historical medical data. This has
the advantage to require minimum patient’s information and to work for new patients.

3. Hospitals filtering: The dataset contains 415 hospitals for a total size of 1,271,733 records. We split randomly the
dataset into disjoint training and testing data (80% and 20% respectively). The final dataset for testing contains 254,347
patients, with 7,882 deceased patients and 246,465 non-deceased patients (see Table 2).
Using Client-Level differential privacy requires adding more noise than Record-Level differential privacy, because the
privacy purposes are not the same as detailed in Section 2. To reduce the noise (when ε is fixed) and then improve the
utility, we have to reduce the number of iterations or to reduce the sampling probability which are the parameters used
to compute ε. We therefore have two options to reduce the sampling probability:

- Reducing the number of clients selected at each round |K|. However, this option also decreases the amount of
data, and hence have a negative impact on the utility. We therefore preferred to use the next option.

- Increasing the total number of clients N : we created more hospitals by splitting randomly the training data over
5010 "virtual" hospitals. We also, took care to have at least one in-hospital dead patient per hospital. Each hospital
contains 203 patients. 356 patients are used as public dataset to define the Top-K updated weights. We created
5010 hospitals in order to have approximately the same number of patients per hospital, each of them with some
in-hospital dead patients.
In practise, Client-Level differential privacy is more adapted to an environment with a large set of clients as
explained in McMahan et al. [2018], Geyer et al. [2017].

A.3 IMBALANCED DATA

The dataset of each hospital is imbalanced because the proportion of patients that leave the hospital alive is, fortunately,
much larger than in-hospital dead patients. To deal with this well-known problem, we have decided to use downsampling
technique [More, 2016, He and Garcia, 2009], a standard solution used for this purpose. 4

A.4 PERFORMANCE METRICS

We use the following metrics:

2https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
4We have also tested weighted loss function and oversampling techniques. But, we noticed experimentally that downsampling

technique outperforms the other techniques for all the schemes.

https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


• Balanced accuracy [Brodersen et al., 2010, Bekkar et al., 2013] is computed as 1/2 · ( TP
P + TN

N ) = TPR +TNR
2 and

is mainly used with imbalanced data. True Positive Rate (TPR ) and True Negative Rate (TNR ): TPR = TP
P and

TNR = TN
N , where P and N are the number of positive and negative instances, respectively, and TP and TN are the

number of true positive and true negative instances. We note that traditional (“non-balanced”) accuracy metrics such as
TP +TN

P +N can be misleading for very imbalanced data Akosa [2017]: in our dataset, the minority class has only 3% of all
the training samples (see Table 2), which means that a biased (and totally useless) model always predicting the majority
class would have a (non-balanced) accuracy of 97%.

• The area under the ROC curve (AUROC ) is also a frequently used accuracy metric. The ROC curve is calculated by
varying the prediction threshold from 1 to 0, when TPR and FPR are calculated at each threshold. The area under this
curve is then used to measure the quality of the predictions. A random guess has an AUROC value of 0.5, whereas a
perfect prediction has the largest AUROC value of 1.

A.5 EVALUATION METHOD.

First, we split randomly the dataset of each hospital into disjoint training and testing data (80% and 20% respectively). An
entire federated run is executed with this split, and all the metrics are evaluated in every round on the union of all clients’
testing data. All metric values of the round with the best balanced metric are recorded.

A.5.1 Model architecture

As in Avati et al. [2018], Kerkouche et al. [2020], we use a fully connected neural network model with the following
architecture: two hidden layers of 200 units, which use a Relu activation function followed by an output layer of 1 unit with
sigmoid activation function and a binary cross entropy loss function. This results in 1,496,601 parameters in total. We tune η
from 0.01 to 0.5 with an increment value of 0.005. As in Kerkouche et al. [2020], we fix the momentum parameter ρ to
0.9 and the global learning rate ηG to 1.0. The number of chunks is set to P = 100 (refers to Kerkouche et al. [2020] for
details). The hyperparameters used by each of the considered schemes are summarized in Table 3.

B FASHION-MNIST DATA: DATA PRE-PROCESSING & EXPERIMENTAL SETUP
DETAILS

B.1 DATA DESCRIPTION

Fashion-MNIST database of fashion articles consists of 60,000 28x28 grayscale images of 10 fashion categories, along with
a test set of 10,000 images Xiao et al. [2017] Chollet et al. [2015b].

B.2 PUBLIC DATA DESCRIPTION

The MNIST database of handwritten digits. It consists of 28 x 28 grayscale images of digit items and has 10 output classes.
The training set contains 60,000 data samples while the test/validation set has 10,000 samples LeCun and Cortes [2010]
Chollet et al. [2015b].

B.3 PREPROCESSING

The pixel of each image is an unsigned integer in the range between 0 and 255. We rescale them to the range [0,1] instead.

B.4 MODEL ARCHITECTURE

For Fashion-MNIST, we use a model McMahan et al. [2016], Kerkouche et al. [2020] with the following architecture: a
convolutional neural network (CNN) with two 5x5 convolution layers (the first with 32 filters, the second with 64, each
followed with 2x2 max pooling), a fully connected layer with 512 units and ReLu activation, and a final softmax output
layer. This results in 1,663,370 parameters in total. We tune η from 0.01 to 0.5 with an increment value of 0.005. As in



Kerkouche et al. [2020], we fix the momentum parameter ρ to 0.9 and the global learning rate ηG to 0.35. Same for the
number of chunks used P = 200 (refers to Kerkouche et al. [2020] for more details). The hyperparameters used by each of
the considered schemes are summarized in Table 3.

C COMPUTATIONAL ENVIRONMENT

Our experiments were performed on a server running Ubuntu 18.04 LTS equipped with a Intel(R) Xeon(R) Silver 4114 CPU
@ 2.20GHz, 192GB RAM, and two NVIDIA Quadro P5000 GPU card of 16 Go each. We use Keras 2.2.0 Chollet et al.
[2015a] with a TensorFlow backend 1.12.0 Abadi et al. [2015] and Numpy 1.14.3 Oliphant [2006] to implement our models
and experiments. We use Python 3.6.5 and our code runs on a Docker container to simplify reproducibility.

D FURTHER EXPERIMENTS

The goal of this section is to compare the performance of our proposed schemes FL-TOP and FL-TOP-DP with several
baselines according to different compression ratios. More specifically, we consider the following additional baselines:

• FL-BAS-2: As in FL-BASIC, only a randomly selected set of parameters are selected and sent to the server at each
round. Importantly, none of the parameters are reinitialized during training.

• FL-BAS-3: This baseline is the same as FL-BASIC, except that the set of random parameters is fixed over all the
rounds.

• FL-BAS-4: Same as FL-BAS-2, except that the set of random parameters is the same over all the rounds.

• FL-TOP-BIS: Similarly to FL-TOP, it uses the same Top-K parameters over the whole training. The only difference is
that the n−K non-Top-K parameters are not re-initialized after each SGD iteration. As in FL-TOP, after Tgd SGD
iterations, clients send the update of the Top-K parameters to the server.

Note that all compression operators in the new baselines are still linear (just like FL-TOP-DP), and hence they can also be
used with secure aggregation. Their private extensions (i.e., FL-BAS-2-DP, FL-BAS-3-DP, FL-BAS-4-DP and FL-TOP-BIS-
DP) also clip and then noise the compressed updates as in FL-TOP-DP. The selection of sensitivity S happens similarly to
FL-TOP-DP and FL-BASIC-DP using the public data as described in Section 4.

D.1 RESULTS

Table 6 shows the best accuracy over 200 rounds for each scheme on the Fashion-MNIST dataset. Round corresponds to the
round when the best accuracy is achieved and Cost is the average bandwidth consumption calculated as: r × n × 32 ×
Round × C, where 32 is the number of bits necessary to represent a float value, n is the uncompressed model size, r = |T|

n ,
|T| is the compressed model size, C is the sampling probability of a client, and Round is the round when we get the the best
accuracy.

Table 7 and Table 8 display the best balanced accuracy over 100 rounds for each scheme on the Medical dataset. AUROC
corresponds to the AUROC value when the best balanced accuracy is reached, Round is the round when we get the best
balanced accuracy, and finally, Cost is the average bandwidth consumption calculated as for the Fashion-MNIST dataset
described above.

On the medical data (see Table 7 and 8), our schemes FL-TOP and FL-TOP-DP reach 0.64 of balanced accuracy and 0.70 of
AUROC for r = 0.01%, while FL-TOP-Bis and FL-TOP-Bis-DP, which are the best baselines, have 8% less of balanced
accuracy and 10% less of AUROC for identical compression ratios. Furthermore, for larger compression ratios, FL-TOP and
FL-TOP-DP have similar results to that of FL-TOP-Bis and FL-TOP-Bis-DP. However, above r = 1%, FL-TOP outperforms
FL-TOP-BIS. The same holds for FL-TOP-DP, which outperforms FL-TOP-Bis-DP when r is more than 0.05%.

On Fashion-MNIST, FL-TOP performs better than other schemes below r = 10%. For r = 10%, FL-CS and FL-TOP have
the same accuracy of 0.85. FL-TOP-DP is the best DP scheme independently of the compression ratio r.

Notice the the larger the compression ratio r is the smaller the performance gap between our schemes and the baselines
FL-BAS-1, FL-BAS-3. The same holds for their DP counterparts. This is mainly due to the fact that the larger r is the more
likely that all schemes update the same Top-K parameters.



FL-CS and FL-CS-DP fail to improve their model accuracy when r = 0.01% on the medical dataset. The same holds for
FL-BAS-3-DP when r = 0.1% on the Fashion-MNIST dataset.

On Fashion-MNIST, there is a decrease of accuracy for each of FL-TOP-DP, FL-TOP-BIS-DP and FL-CS-DP from r = 5%
to r = 10%. Indeed, as suggested in Kerkouche et al. [2020], it may be due to the increase of sensitivity S which will also
increase the noise and therefore its negative impact on convergence.

Table 1: Descriptions of features

Features Descriptions
Age Value in the range of 15 and 89

Gender Male, Female or Unknown
Admission type Emergency, Urgent, Trauma Center: visits to a trauma center/hospital or Unknown

MRCI Medication regimen complexity index score (ranging from 2 to 60)

Drugs and ICD9 codes

Drugs given to the patient on the 1st day of hospitalization. The ICD9 codes are composed
of procedures and diagnosis codes, the first gives details about the medical procedures performed
on the patient and the second about the doctor’s diagnosis of the patient. There is a total of 24,419
possible drugs and ICD9 codes [CUADRADO, 2019].

Table 2: Number of instances for our case study. The Medical dataset contains in total 1,271,733 records.

Data Positive cases Negative cases Ratio Total
Train 32,106 985,280 3.16% 1,017,386
Test 7,882 246,465 3.10% 254,347

Algorithm 1: FL-STD: Federated Learning

1 Server:
2 Initialize common model w0

3 for t = 1 to Tcl do
4 Select K clients uniformly at random
5 for each client k in K do
6 ∆wk

t = Clientk(wt−1)
7 end
8 wt = wt−1 +

∑
k
|Dk|∑
j |Dj |

∆wk
t

9 end
Output: Global model wt

10

11 Clientk(wk
t−1):

12 wk
t = SGD(Dk,w

k
t−1, Tgd)

Output: Model update (wk
t −wk

t−1)
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Algorithm 2: Stochastic Gradient Descent
Input: D : training data, Tgd : local epochs, w : weights

1 for t = 1 to Tgd do
2 Select batch B from D randomly
3 w = w − η∇f(B;w)

4 end
Output: Model w

Algorithm 3: FL-STD-DP: Federated Learning with Client Privacy

1 Server:
2 Initialize common model w0

3 for t = 1 to Tcl do
4 Select K clients randomly
5 for each client k in K do
6 ∆w̃k

t = Clientk(wt−1)
7 end
8 wt = wt−1 + 1

|K|
∑

k ∆w̃k
t

9 end
10 Clientk(wk

t−1):
11 ∆wk

t = SGD(Dk,w
k
t−1, Tgd)−wk

t−1

12 ∆ŵk
t = ∆wk

t /max
(

1,
||∆wk

t ||2
S
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Output: EncKk (G(∆ŵk

t , SIσ/
√
|K|))
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Datasets Common Parameters

Fashion-MNIST dataset

C = 1/60; N = 6000; Tcl = 200;
Tgd = 5; |B| = 10; |Dk| = 10; n = 1, 663, 370;
δ = 10−5; SGD(η = 0.215); ηG = 0.35;
ρ = 0.9; P = 200; σ = 1.54; Tinit = 5

Medical dataset
C = 100/5010; N = 5010; Tcl = 100; Tgd = 40;

n = 1, 496, 601; δ = 10−5; SGD(η = 0.1); ηG = 1.0;
ρ = 0.9; P = 100; σ = 1.49; Tinit = 40

Table 3: Common environment between the schemes. ρ, ηG and P are only used with FL-CS and FL-CS-DP.
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Algorithms Compression ratio (r)
0.1% 0.5% 1% 5% 10%

FL-BASIC-DP 0.05 0.12 0.16 0.34 0.45
FL-BAS-2-DP 0.07 0.16 0.23 0.52 0.75
FL-BAS-3-DP 0.05 0.11 0.16 0.33 0.44
FL-BAS-4-DP 0.06 0.15 0.21 0.51 0.74

FL-CS-DP 0.21 0.26 0.32 0.57 0.79
FL-TOP-BIS-DP 1.25 1.59 1.79 2.18 2.34

FL-TOP-DP 0.50 0.61 0.64 0.87 1.0

Table 4: Sensitivity S used for each scheme and for different compression ratio r on Fashion-MNIST. For FL-STD-DP, S is set to 2.40.

Algorithms Compression ratio (r)
0.01% 0.05% 0.1% 0.5% 1% 5% 10%

FL-BASIC-DP 0.01 0.03 0.05 0.11 0.16 0.34 0.46
FL-BAS-2-DP 0.01 0.03 0.04 0.09 0.14 0.31 0.44
FL-BAS-3-DP 0.01 0.04 0.06 0.12 0.18 0.35 0.49
FL-BAS-4-DP 0.02 0.03 0.05 0.12 0.15 0.31 0.44

FL-CS-DP 0.002 0.005 0.006 0.01 0.02 0.04 0.06
FL-TOP-BIS-DP 0.60 0.73 0.81 1.03 1.13 1.31 1.32

FL-TOP-DP 0.23 0.46 0.59 1.03 1.18 1.31 1.32

Table 5: Sensitivity S used for each scheme and for different compression ratio r on the medical dataset. For FL-STD-DP, S is set to 1.40.
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Compression ratio (r) Algorithms Performance
Accuracy Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

0.1%

FL-BASIC 0.14 111 12308.94 12.31 N/A
FL-BAS-2 0.16 185 20514.9 20.51 N/A
FL-BAS-3 0.27 200 22.17 22.17 N/A
FL-BAS-4 0.17 200 22.17 22.17 N/A

FL-CS 0.37 200 22178.27 22.17 N/A
FL-TOPK-BIS 0.59 198 21.95 21.95 N/A

FL-TOP 0.78 199 22.06 22.06 N/A
FL-BASIC-DP 0.14 167 18518.85 18.51 0.95
FL-BAS-2-DP 0.14 124 13750.53 13.75 0.88
FL-BAS-3-DP - - - - -
FL-BAS-4-DP 0.15 137 15.19 15.19 0.90

FL-CS-DP 0.36 197 21845.59 21.84 1
FL-TOPK-BIS-DP 0.59 196 21.73 21.73 0.99

FL-TOP-DP 0.76 199 22.06 22.06 1

0.5%

FL-BASIC 0.65 193 21402.03 107 N/A
FL-BAS-2 0.46 196 21734.70 108.66 N/A
FL-BAS-3 0.73 200 110.88 110.88 N/A
FL-BAS-4 0.41 197 109.22 109.22 N/A

FL-CS 0.57 185 20514.9 102.56 N/A
FL-TOPK-BIS 0.76 200 110.88 110.88 N/A

FL-TOP 0.82 200 110.88 110.88 N/A
FL-BASIC-DP 0.59 200 22178.27 110.88 1
FL-BAS-2-DP 0.38 200 22178.27 110.88 1
FL-BAS-3-DP 0.56 200 110.88 110.88 1
FL-BAS-4-DP 0.33 200 110.88 110.88 1

FL-CS-DP 0.53 200 22178.27 110.88 1
FL-TOPK-BIS-DP 0.68 184 102.01 102.01 0.97

FL-TOP-DP 0.81 200 110.88 110.88 1

1%

FL-BASIC 0.71 194 21512.92 215.12 N/A
FL-BAS-2 0.59 200 22178.27 221.77 N/A
FL-BAS-3 0.76 200 221.77 221.77 N/A
FL-BAS-4 0.56 195 216.23 216.23 N/A

FL-CS 0.69 200 22178.27 221.77 N/A
FL-TOPK-BIS 0.79 197 218.45 218.45 N/A

FL-TOP 0.83 200 221.77 221.77 N/A
FL-BASIC-DP 0.65 197 21845.59 218.45 1
FL-BAS-2-DP 0.62 198 21956.48 219.56 1
FL-BAS-3-DP 0.66 198 219.56 219.56 1
FL-BAS-4-DP 0.52 198 219.56 219.56 1

FL-CS-DP 0.66 189 20958.46 209.58 0.98
FL-TOPK-BIS-DP 0.70 174 192.94 192.94 0.96

FL-TOP-DP 0.81 183 202.92 202.92 0.97

5%

FL-BASIC 0.78 196 21734.70 1086.73 N/A
FL-BAS-2 0.72 199 22067.38 1103.36 N/A
FL-BAS-3 0.81 199 1103.36 1103.36 N/A
FL-BAS-4 0.76 196 1086.73 1086.73 N/A

FL-CS 0.82 200 22178.27 1108.91 N/A
FL-TOPK-BIS 0.83 196 1086.73 1086.73 N/A

FL-TOP 0.84 200 1108.91 1108.91 N/A
FL-BASIC-DP 0.76 195 21623.81 1081.18 0.99
FL-BAS-2-DP 0.72 195 21623.81 1081.18 0.99
FL-BAS-3-DP 0.76 199 1103.36 1103.36 1
FL-BAS-4-DP 0.75 191 1059.01 1059.01 0.99

FL-CS-DP 0.78 160 17742.61 887.13 0.94
FL-TOPK-BIS-DP 0.71 152 842.77 842.77 0.92

FL-TOP-DP 0.81 152 842.77 842.77 0.92

10%

FL-BASIC 0.81 196 21734.70 2173.47 N/A
FL-BAS-2 0.78 199 22067.38 2206.74 N/A
FL-BAS-3 0.82 195 2162.38 2162.38 N/A
FL-BAS-4 0.79 200 2217.83 2217.83 N/A

FL-CS 0.85 182 20182.22 2018.22 N/A
FL-TOPK-BIS 0.84 196 2173.47 2173.47 N/A

FL-TOP 0.85 199 2206.74 2206.74 N/A
FL-BASIC-DP 0.79 189 20958.46 2095.85 0.98
FL-BAS-2-DP 0.77 189 20958.46 2095.85 0.98
FL-BAS-3-DP 0.79 183 2029.31 2029.31 0.97
FL-BAS-4-DP 0.78 195 2162.38 2162.38 0.99

FL-CS-DP 0.72 167 18518.85 1851.89 0.95
FL-TOPK-BIS-DP 0.69 138 1530.30 1530.30 0.90

FL-TOP-DP 0.80 157 1740.99 1740.99 0.93

100%
FL-STD 0.86 200 22178.27 22178.27 N/A

FL-STD-DP 0.56 60 6653.48 6653.48 0.76

Table 6: Summary of results on Fashion-MNIST dataset.



Compression ratio (r) Algorithms Performance
Bal_Acc AUROC Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

0.01%

FL-BASIC 0.49 0.45 100 11948.91 1.19 N/A
FL-BAS-2 0.49 0.45 94 11231.98 1.12 N/A
FL-BAS-3 0.49 0.45 81 0.96 0.96 N/A
FL-BAS-4 0.49 0.49 100 1.19 1.19 N/A

FL-CS - - - - - N/A
FL-TOP-Bis 0.59 0.63 100 1.19 1.19 N/A

FL-TOP 0.64 0.70 60 0.71 0.71 N/A
FL-BASIC-DP 0.49 0.45 6 716.93 0.07 0.74
FL-BAS-2-DP 0.49 0.45 100 11948.91 1.19 1
FL-BAS-3-DP 0.49 0.45 95 1.13 1.13 0.99
FL-BAS-4-DP 0.49 0.47 96 1.14 1.14 0.99

FL-CS-DP - - - - - -
FL-TOP-Bis-DP 0.59 0.63 94 1.12 1.12 0.99

FL-TOP-DP 0.64 0.70 100 1.19 1.19 1

0.05%

FL-BASIC 0.50 0.48 100 11948.91 5.97 N/A
FL-BAS-2 0.49 0.46 100 11948.91 5.97 N/A
FL-BAS-3 0.51 0.49 100 5.97 5.97 N/A
FL-BAS-4 0.51 0.52 57 3.40 3.40 N/A

FL-CS 0.51 0.50 100 11948.91 5.97 N/A
FL-TOP-Bis 0.68 0.75 92 5.49 5.49 N/A

FL-TOP 0.68 0.75 54 3.22 3.22 N/A
FL-BASIC-DP 0.49 0.46 84 10037.08 5.02 0.96
FL-BAS-2-DP 0.49 0.46 100 11948.91 5.97 1
FL-BAS-3-DP 0.50 0.48 99 5.91 5.91 1
FL-BAS-4-DP 0.52 0.51 100 5.97 5.97 1

FL-CS-DP 0.49 0.48 100 11948.91 5.97 1
FL-TOP-Bis-DP 0.68 0.75 92 5.49 5.49 0.98

FL-TOP-DP 0.68 0.75 99 5.91 5.91 1

0.1%

FL-BASIC 0.51 0.51 99 11829.42 11.82 N/A
FL-BAS-2 0.50 0.47 100 11948.91 11.94 N/A
FL-BAS-3 0.53 0.53 100 11.94 11.94 N/A
FL-BAS-4 0.50 0.53 94 11.23 11.23 N/A

FL-CS 0.53 0.55 100 11948.91 11.94 N/A
FL-TOP-Bis 0.69 0.76 100 11.94 11.94 N/A

FL-TOP 0.69 0.76 68 8.12 8.12 N/A
FL-BASIC-DP 0.50 0.49 100 11948.91 11.94 1
FL-BAS-2-DP 0.50 0.47 100 11948.91 11.94 1
FL-BAS-3-DP 0.55 0.56 100 11.94 11.94 1
FL-BAS-4-DP 0.51 0.52 100 11.94 11.94 1

FL-CS-DP 0.51 0.51 99 11829.42 11.82 1
FL-TOP-Bis-DP 0.68 0.75 89 10.63 10.63 0.98

FL-TOP-DP 0.69 0.76 85 10.15 10.15 0.97

0.5%

FL-BASIC 0.58 0.68 100 11948.91 59.74 N/A
FL-BAS-2 0.56 0.58 99 11829.42 59.15 N/A
FL-BAS-3 0.61 0.68 100 59.74 59.74 N/A
FL-BAS-4 0.56 0.59 100 59.74 59.74 N/A

FL-CS 0.66 0.71 100 11948.91 59.74 N/A
FL-TOP-Bis 0.71 0.78 100 59.74 59.74 N/A

FL-TOP 0.71 0.79 95 56.76 56.76 N/A
FL-BASIC-DP 0.57 0.64 100 11948.91 59.74 1
FL-BAS-2-DP 0.57 0.59 100 11948.91 59.74 1
FL-BAS-3-DP 0.58 0.67 100 59.74 59.74 1
FL-BAS-4-DP 0.54 0.57 34 20.31 20.31 0.83

FL-CS-DP 0.61 0.68 100 11948.91 59.74 1
FL-TOP-Bis-DP 0.68 0.75 55 32.86 32.86 0.89

FL-TOP-DP 0.69 0.76 24 14.34 14.34 0.80

Table 7: Summary of results on Medical dataset (Part 1).



Compression ratio (r) Algorithms Performance
Bal_Acc AUROC Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

1%

FL-BASIC 0.64 0.72 100 11948.91 119.49 N/A
FL-BAS-2 0.62 0.66 100 11948.91 119.49 N/A
FL-BAS-3 0.62 0.66 85 101.57 101.57 N/A
FL-BAS-4 0.56 0.59 100 119.49 119.49 N/A

FL-CS 0.68 0.75 100 11948.91 119.49 N/A
FL-TOP-Bis 0.72 0.79 100 119.49 119.49 N/A

FL-TOP 0.72 0.79 58 69.30 69.30 N/A
FL-BASIC-DP 0.64 0.70 100 11948.91 119.49 1
FL-BAS-2-DP 0.62 0.67 100 11948.91 119.49 1
FL-BAS-3-DP 0.61 0.71 100 119.49 119.49 1
FL-BAS-4-DP 0.57 0.66 100 119.49 119.49 1

FL-CS-DP 0.66 0.72 100 11948.91 119.49 1
FL-TOP-Bis-DP 0.68 0.74 53 63.33 63.33 0.89

FL-TOP-DP 0.69 0.76 22 26.29 26.29 0.79

5%

FL-BASIC 0.72 0.80 100 11948.91 597.45 N/A
FL-BAS-2 0.68 0.75 100 11948.91 597.45 N/A
FL-BAS-3 0.69 0.76 98 585.5 585.5 N/A
FL-BAS-4 0.66 0.72 100 597.45 597.45 N/A

FL-CS 0.73 0.81 98 11709.93 585.5 N/A
FL-TOP-Bis 0.72 0.79 100 597.45 597.45 N/A

FL-TOP 0.72 0.80 95 567.57 567.57 N/A
FL-BASIC-DP 0.69 0.76 100 11948.91 597.45 1
FL-BAS-2-DP 0.68 0.75 98 11709.93 585.5 1
FL-BAS-3-DP 0.65 0.71 90 537.70 537.70 0.98
FL-BAS-4-DP 0.67 0.74 98 585.5 585.5 1

FL-CS-DP 0.69 0.76 100 11948.91 597.45 1
FL-TOP-Bis-DP 0.67 0.74 38 227.03 227.03 0.84

FL-TOP-DP 0.68 0.75 23 137.41 137.41 0.79

10%

FL-BASIC 0.74 0.81 100 11948.91 1194.89 N/A
FL-BAS-2 0.70 0.77 100 11948.91 1194.89 N/A
FL-BAS-3 0.72 0.80 98 1170.99 1170.99 N/A
FL-BAS-4 0.70 0.77 99 1182.94 1182.94 N/A

FL-CS 0.74 0.82 100 11948.91 1194.89 N/A
FL-TOP-Bis 0.72 0.80 100 1194.89 1194.89 N/A

FL-TOP 0.74 0.82 90 1075.40 1075.40 N/A
FL-BASIC-DP 0.69 0.76 99 11829.42 1182.94 1
FL-BAS-2-DP 0.69 0.76 95 11351.46 1135.15 0.99
FL-BAS-3-DP 0.69 0.76 95 1135.15 1135.15 0.99
FL-BAS-4-DP 0.69 0.76 100 1194.89 1194.89 1

FL-CS-DP 0.69 0.76 96 11470.95 1147.09 0.99
FL-TOP-Bis-DP 0.67 0.73 37 442.11 442.11 0.84

FL-TOP-DP 0.68 0.74 23 274.82 274.82 0.79

100%
FL-STD 0.74 0.82 99 11829.42 11829.42 N/A

FL-STD-DP 0.66 0.72 62 7408.32 7408.32 0.91

Table 8: Summary of results on Medical dataset (Part 2).
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