
pRSL: Interpretable Multi–label Stacking by Learning Probabilistic Rules
Supplementary Material

Michael Kirchhof1 Lena Schmid1 Christopher Reining2 Michael ten Hompel2 Markus Pauly1

1Department of Statistics, TU Dortmund University, Dortmund, Germany
2Chair of Material Handling and Warehousing, TU Dortmund University, Dortmund, Germany

1 GRADIENTS

To perform gradient descent, we differentiate the joint log
likelihood of the true categories `∗ = (`∗1, . . . , `

∗
J) by the

noisy–or’s inhibition probabilities qkjm for all rules k =
1, . . . ,K, and all m = 1, . . . ,M(j) categories of labels
j = 1, . . . , J . To simplify notation, we define

R−k :=(R1, . . . , Rk−1, Rk+1, . . . , RK),

L−j :=(L1, . . . , Lj−1, Lj+1 . . . , LJ),

`−j :=(`1, . . . , `j−1, `j+1 . . . , `J),

`∗−j :=(`∗1, . . . , `
∗
j−1, `

∗
j+1 . . . , `

∗
J),

Lj=m :=

j−1⊗
v=1

{1, . . . ,M(v)}⊗

{m} ⊗
J⊗

v=j+1

{1, . . . ,M(v)},

Lj 6=m :=

j−1⊗
v=1

{1, . . . ,M(v)}⊗

{1, . . . ,m− 1,m+ 1, . . . ,M(j)}⊗
J⊗

v=j+1

{1, . . . ,M(v)} and

qk−j` :=

j−1∏
v=1

qkv`v ·
J∏

v=j+1

qkv`v and

qk−j`∗ :=

j−1∏
v=1

qkv`∗v ·
J∏

v=j+1

qkv`∗v .

1.1 ALL LABELS KNOWN

As discussed in the paper, we first differentiate in the case
where all true categories `∗1, . . . , `

∗
J are known.

Case 1: Category is incorrect. We start for those qkjm
where m is not the true category, that is `∗j 6= m:

Dk
jm :=

∂

∂qkjm
P (L = `∗|R = 1,x)

=
∂

∂qkjm

P (Rk = 1,L = `∗|R−k = 1,x)

P (Rk = 1|R−k = 1,x)
.

From here on, all probabilities stay conditioned on
R−k = 1,x, so we will write this condition behind the
expression in the following formulas.

Dk
jm =

∂

∂qkjm

P (Rk = 1,L = `∗)∑̀
∈L

(1− qkj`jq
k
−j`)P (L = `)

|R−k = 1,x

=
∂

∂qkjm
(P (Rk = 1,L = `∗))·∑

`∈L

P (L = `)−
∑

`∈Lj 6=m

qkj`jq
k
−j`P (L = `)−

qkjm
∑

`∈Lj=m

qk−j`P (L = `)

−1 |R−k = 1,x .

Simplifying the notation, the above expression can be writ-
ten as:

Dk
jm =

∂

∂qkjm

a1
a2 − qkjma3

|R−k = 1,x

=
a1a3

(a2 − qkjma3)2
|R−k = 1,x

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Michael Kirchhof <michael[insert dot]kirchhof[insert at sign]udo[insert dot]edu>?Subject=UAI2021 paper pRSL

for suitable choices of a1, a2, and a3. Substituting back and
multiplying with qkjm(qkjm)−1 we get:

Dk
jm =P (Rk = 1,L = `∗)·∑

`∈Lj=m

qkjmqk−j`P (L = `)

qkjmP (Rk = 1)2
|R−k = 1,x

=P (Rk = 1,L = `∗)·
P (Lj = m,Rk = 0)

qkjmP (Rk = 1)2
|R−k = 1,x .

The first term in the nominator is computationally complex
and might get numerically instable with an increasing num-
ber of labels J , but since we optimize for the log–likelihood,
it vanishes via the chain rule:

∂

∂qkjm
log(P (L = `∗|R = 1,x))

=
1

P (L = `∗|R = 1,x)
Dk

jm

=
P (Rk = 1)

P (L = `∗, Rk = 1)
·

P (Rk = 1,L = `∗)
P (Lj = m,Rk = 0)

qkjmP (Rk = 1)2
|R−k = 1,x

=
P (Lj = m,Rk = 0)

qkjmP (Rk = 1)
|R−k = 1,x

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
|R−k = 1,x .

Note that P (Lj = m|Rk = 0) is returned for all categories
m = 1, . . . ,M(j) of all labels Lj , j = 1, . . . , J, by a single
marginal query. Hence, two marginal queries to the network
are sufficient to compute the gradient of all inhibition prob-
abilities related to a rule.

Case 2: Category is correct. Let us now differentiate for
qkjm where m is the true category, that is `∗j = m:

Dk
jm =

∂

∂qkjm
P (L = `∗|R = 1,x)

=
∂

∂qkjm
(P (L = `∗)− qkj`∗j q

k
−j`∗P (L = `∗))·∑

`∈L

P (L = `)−
∑

`∈Lj 6=m

qkj`jq
k
−j`P (L = `)−

qkjm
∑

`∈Lj=m

qk−j`P (L = `)

−1 |R−k = 1,x .

Again, we simplify the notation to make differentiation
easier to see:

=
∂

∂qkjm

b1 − qkjmb2

b3 − qkjmb4
|R−k = 1,x

=
b1b4 − b2b3

(b3 − qkjmb4)2
|R−k = 1,x .

Substituting back and multiplying by qkjm(qkjm)−1, we get:

=
P (L = `∗)(qkjmb4 − qkjmqk−j`b3)

qkjmP (Rk = 1)2
|R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = l∗)(P (Rk = 0, Lj = m)−
qkjmqk−j`(P (Lj = m) + P (Lj 6= m)−
P (Rk = 0, Lj 6= m)))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = `∗)(P (Rk = 0, Lj = m)−
qkjmqk−j`(P (Lj = m)+

P (Rk = 1, Lj 6= m)))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = `∗)(P (Rk = 0, Lj = m)−
qkjmqk−j`(P (Rk = 0, Lj = m) + P (Rk = 1, Lj = m)+

P (Rk = 1, Lj 6= m)))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = `∗)(P (Rk = 0, Lj = m)−
qkjmqk−j`(P (Rk = 0, Lj = m)

+ P (Rk = 1)))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = l∗)((1− qkjmqk−j`)P (Rk = 0, Lj = m)−
qkjmqk−j`P (Rk = 1))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L = `∗, Rk = 1)P (Rk = 0, Lj = m)−
P (L = `∗)qkjmqk−j`P (Rk = 1))) |R−k = 1,x .

Just as before, the computational heavy terms cancel out
when we optimize for log–likelihood:

∂

∂qkjm
log(P (L = l∗|R = 1,x))

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
−

qk−j`∗

1− qkjmqk−j`∗
|R−k = 1,x .

This term is similar to the previous gradient and requires the
same marginal queries.

1.2 MISSING LABELS

In this case only a subset of labels L′ ⊂ L is known
and takes the categories L′ = `′, while the ground truth
for all other labels L0 = L\L′ is unknown. In conse-
quence, the optimization goal changes slightly. We define
L0,L0

j=m,L0
j 6=m and `0 in analogy to before.

Case 1: Category is known and incorrect. As in the
previous section, we will first consider the case where Lj ∈
L′ is known and m is not the true category, that is `j 6= m:

∂

∂qkjm
P (L′ = l′|R = 1,x)

=
∂

∂qkjm

∑
`0∈L0

P (Rk = 1,L′ = `′,L0 = `0|R−k = 1,x)

P (Rk = 1|R−k = 1,x)

As the nominator is a factor independent of qkjm, the sum
can be placed before the expression and the computations
follow those in Section 1.1. When taking the logarithm, the
gradient is divided by P (L′ = `′|R = 1,x), so that the
resulting gradient remains the same as in Section 1.1:

∂

∂qkjm
log(P (L′ = `′|R = 1,x))

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
|R−k = 1,x .

Case 2: Category is known and correct. In the case that
m is known and the true category, that is Lj ∈ L′ and
`j = m, the sum can again be factored out. Thus, we can
again make use of the gradients from Section 1.1:

∂

∂qkjm
P (L′ = `′|R = 1,x)

=
∑

`0∈L0

∂

∂qkjm
P (L′ = `′,L0 = `0|R = 1,x)

=(qkjmP (Rk = 1)2)−1·
(P (L′ = `′, Rk = 1)P (Rk = 0, Lj = m)−
P (L′ = `′, Rk = 0)P (Rk = 1))) |R−k = 1,x .

When taking the logarithm, the expression gets slightly more
complicated than in Section 1.1:

∂

∂qkjm
log(P (L′ = `′|R = 1,x))

=(P (L′ = `′|R = 1,x))−1
∂

∂qkjm
P (L′ = `′|R = 1,x)

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
−

P (L′ = `′, Rk = 0)

P (L′ = `′, Rk = 1)
|R−k = 1,x

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
−

P (Rk = 0|L′ = `′)

P (Rk = 1|L′ = `′)
|R−k = 1,x .

So, one additional marginal query has to be calculated per
rule. Note that this expression simplifies to that of Section
1.1 if all labels are known, that is if L′ = L, because the
conditional probabilities in the second fraction are then the
rules conditional probability tables, given by q alone.

Case 3: Label is unknown. Interestingly, the gradients
can also be computed for labels that have no ground truth,
that is Lj ∈ L0. Obviously, we do not need to distinguish
whether m is correct or not. Let L0

−j := L0\Lj and let
qk−j` :=

∏
v:Lv∈L′ q

k
v`′v
·
∏

v:Lv∈L0
−j

qkv`v for simpler nota-
tion.

∂

∂qkjm
P (L′ = `′|R = 1,x)

=
∂

∂qkjm

∑
`0∈L0

(
(1− qkj`∗j q

k
−j`∗)·

P (L′ = `′,L0 = `0)

P (Rk = 1)

)
|R−k = 1,x

=
∂

∂qkjm

(∑
`0∈L0

P (L′ = `′,L0 = `0)−

∑
`0∈L0

−j

qkj`∗j q
k
−j`∗P (L′ = `′,L0 = `0)−

qkjm
∑

`0∈L0
−j

qk−j`∗P (L′ = `′,L0 = `0)

 ·
∑

`∈L

P (L = `)−
∑

`∈Lj 6=m

qkj`jq
k
−j`P (L = `)−

qkjm
∑

`∈Lj=m

qk−j`P (L = `)

−1 |R−k = 1,x .

Again, we substitute to make differentiation easier to see:

=
∂

∂qkjm

c1 − qkjmc2

c3 − qkjmc4
|R−k = 1,x

=
c1c4 − c2c3

(c3 − qkjmc4)2
|R−k = 1,x .

By substituting back and replacing the sum expressions with
corresponding probability terms, we receive:

=(P (Rk = 1)2)−1·
(P (L′ = `′)− P (Lj 6= m,L′ = `′, Rk = 0))·
(qkjm)−1P (Lj = m,Rk = 0)− (qkjm)−1·
P (Lj = m,L′ = `′, Rk = 0) · (P (Lj = m)+

P (Lj 6= m)− P (Lj 6= m,Rk = 0)) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (Lj = m,L′ = `′)+

P (Lj 6= m,L′ = `′)− P (Lj 6= m,L′ = `′, Rk = 0))·
P (Lj = m,Rk = 0)− P (Lj = m,L′ = `′, Rk = 0)·
(P (Lj = m) + P (Lj 6= m,Rk = 1))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (Lj = m,L′ = `′, Rk = 0)+

P (Lj = m,L′ = `′, Rk = 1)+

P (Lj 6= m,L′ = `′, Rk = 1))·
P (Lj = m,Rk = 0)− P (Lj = m,L′ = `′, Rk = 0)·
(P (Lj = m,Rk = 0) + P (Lj = m,Rk = 1)+

P (Lj 6= m,Rk = 1))) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (Lj = m,L′ = `′, Rk = 1)P (Lj = m,Rk = 0)+

P (Lj = m,L′ = `′, Rk = 0)P (Lj = m,Rk = 0)+

P (Lj 6= m,L′ = `′, Rk = 1)P (Lj = m,Rk = 0)−
P (Lj = m,L′ = `′, Rk = 0)P (Lj = m,Rk = 0)−
P (Lj = m,L′ = `′, Rk = 0)P (Lj = m,Rk = 1)−
P (Lj = m,L′ = `′, Rk = 0)·
P (Lj 6= m,Rk = 1)) |R−k = 1,x

=(qkjmP (Rk = 1)2)−1·
(P (L′ = `′, Rk = 1)P (Lj = m,Rk = 0)−
P (Lj = m,L′ = `′, Rk = 0)·
P (Rk = 1)) |R−k = 1,x .

As before, the log likelihood removes the computationally
complicated terms:

∂

∂qkjm
log(P (L′ = `′|R = 1,x))

=
P (Lj = m,Rk = 0)

qkjmP (Rk = 1)
−

P (Lj = m,Rk = 0|L′ = `′)

qkjmP (Rk = 1|L′ = `′)
|R−k = 1,x .

At this point it can be seen that the gradient reduces to 0 if
no label has a ground truth, that is L′ = ∅, which makes
intuitive sense. Applying one last transformation gives a
form that is easier to compute:

=
P (Lj = m|Rk = 0)(1− P (Rk = 1))

qkjmP (Rk = 1)
−

P (Lj = m|Rk = 0,L′ = `′)(1− P (Rk = 1|L′ = `′))

qkjmP (Rk = 1|L′ = `′)

|R−k = 1,x .

So, overall four marginal queries are required to compute
this gradient, or two more than in the case of known labels.

2 EXTENSION OF NOISY–OR

The ordinary noisy–or gate as defined in Pearl [1988] is
connected to a set of binary input variables L1, . . . , LJ .
Each variable can only set the gate Rk to Rk = 1 with a
probability 1− qkj1 if the variable itself is Lj = 1. Thus the
conditional probability distribution that defines Rk is:

P (Rk = 0|L1 = `1, . . . , LJ = `J) =

J∏
j=1

(qkj1)
`j .

In our case, the input variables may have multiple categories
m = 1, . . . ,M(j) and each of these categories can trigger
the gate to be Rk = 1 with a probability 1 − qkjm. To find
the conditional probability distribution of Rk in this case,
we start by splitting each input variables Lj up into several
binary auxiliary variables Ljm where

P (Ljm = 1|Lj = a) =

{
1, a = m

0, a 6= m
= 1Lj=m(Lj) .

These variables can then be connected to the ordinary binary–
input noisy–or gate as visualized in Figure 1 with their corre-
sponding inhibition probability qkjm. We will now show that
this process extends the binary–input noisy–or gate to mul-
ticategorical input naturally. We start with the conditional
probability via the above described structure with auxiliary
variables.

L1

. . .

LJ

L11
. . . L1M LJ1

. . . LJM

Rk

Figure 1: Decomposition of Multicategorical Inputs for a
Binary–Input Noisy–Or Gate.

Algorithm 1 Simulation Dataset Generation
Require: nLabels, nRules, nData

1: pRSL← empty model
2: for i in 1, . . . , nLabels do
3: nCategories ∼ U{2, . . . , 4}
4: Add label node with nCategories to pRSL
5: for i in 1, . . . , nRules do
6: nCategories ∼ U{2, . . . , 5}
7: categories← Draw nCategories from all

{1, . . . ,M(1), . . . , 1, . . . ,M(J)}
8: for each categories do
9: inhProb ∼ Distribution with density

f(x) = 2 · (1− x) · 1[0,1](x)

10: Add rule with categories and inhProbs to pRSL
11: for i in 1, . . . , nData do
12: for each label node in pRSL do
13: classifierOutput[label][i] ∼ Dir(1)
14: return pRSL, classifierOutput

P (Rk = 0|L = `)

=
∑

`11,...,`JM(J) in{0,1}

P (Rk = 0|L11 = `11, . . . , LJM(J) = `JM(J))·
P (L11 = `11|L1 = `1) · . . . ·
P (LJM(J) = `JM(J)|LJ = `J)

=
∑

`11,...,`JM(J)∈{0,1}

J∏
j=1

(qkjm)Ljm(1L1=1(L1))
`11 · . . . ·

(1L1=M(1)(L1))
`1M(1) · . . . · (1LJ=1(LJ))

`J1 · . . . ·
(1LJ=M(J)(LJ))

`JM(J) .

With 00 := 1, we can see that the only time the term inside
the sum is not 0 is when Ljm = 1 iff Lj = m for all
j = 1, . . . , J . This leaves open only one possible allocation
of the binary auxiliary variables due to their XOR relation
within j, so that the sum and the auxiliary variables vanish.
We finally get a familiar expression that naturally extends

the binary noisy–or to the multicategorical case:

P (Rk = 0|L = `) =

J∏
j=1

qkj`j .

3 SIMULATION DATASET GENERATION

Algorithm 1 describes the sampling procedure used to gen-
erate the simulation datasets used in Section 4.1. In the first
ten lines of code, a pRSL model containing nLabels label
nodes and nRules rule nodes is randomly generated. In lines
11 to 13, the classifier outputs for each classifier node are
simulated by dirichlet noise for nData observations. Both
the simulated data and the data–generating pRSL model
are returned to allow performing approximate marginal and
MPE queries on the correct model in Section 4.1.

References

Judea Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

Table 1: Performance of pRSL on Train, Validation, and Test Data. Mean ± Standard Deviation Between Folds.

Emotions Yeast Birds Medical Enron Mediamill

Joint Accuracy (higher = better)

Train 0.351± 0.015 0.227± 0.010 0.516± 0.010 0.500± 0.019 0.153± 0.010 0.146± 0.001
Validation 0.339± 0.031 0.251± 0.026 0.516± 0.042 0.497± 0.027 0.154± 0.010 0.149± 0.006
Test 0.348± 0.067 0.236± 0.015 0.507± 0.032 0.491± 0.031 0.153± 0.020 0.149± 0.002

Joint log–Likelihood (higher = better) Label–wise log–Likelihood (higher = better)

Train −1.802± 0.077 −3.589± 0.054 −2.534± 0.060 −1.587± 0.022 −6.598± 0.079 −6.585± 0.006
Validation −1.921± 0.241 −3.538± 0.177 −2.532± 0.269 −1.625± 0.051 −6.564± 0.178 −6.563± 0.005
Test −1.839± 0.273 −3.592± 0.085 −2.458± 0.156 −1.565± 0.120 −6.479± 0.242 −6.532± 0.061

Label–wise Hamming Loss (lower = better)

Train 0.182± 0.005 0.191± 0.003 0.043± 0.001 0.015± 0.001 0.046± 0.001 0.027± 0.000
Validation 0.181± 0.018 0.188± 0.004 0.042± 0.004 0.015± 0.001 0.046± 0.001 0.027± 0.000
Test 0.182± 0.022 0.190± 0.005 0.043± 0.002 0.015± 0.001 0.046± 0.001 0.027± 0.000

	Gradients
	All Labels Known
	Missing Labels

	Extension of Noisy–Or
	Simulation Dataset Generation

