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A MISSING PROOFS FROM SECTION 4

Claim A.1 The function
∏n−1
i=1 (1− pi) · (

∑n−1
i=1 pi) attains its maximal value for 0 ≤ pi ≤ 1, when for every i, pi = 1/n.

Proof: We simply take partial derivatives and compare them to 0. To this end, it will be more convenient to use qi = 1− pi
and take partial derivatives of the function

f(q1, . . . , qn) =

n−1∏
i=1

qi · (n− 1−
n−1∑
i=1

qi).

Observe that:

∂f

∂qi
=
∏
j 6=i

qj(n− 1−
∑
j 6=i

qj)− 2 ·
∏
j

qj

By comparing it to 0 and some rearranging we get that:

2 ·
∏
j

qj =
∏
j 6=i

qj(n− 1−
∑
j 6=i

qj)

=⇒ 2qi = n− 1−
∑
j 6=i

qj

=⇒ qi = n− 1−
∑
j

qj

Thus,we have that for every i, qi has the same value of qi = n− 1−
∑
j qj and to compute the value of qi we can solve:

q = n− 1− (n− 1)q which implies that q = n−1
n . Thus, we have that in our original maximization problem, for every i,

pi = 1/n.

Lemma A.2 For any n ≥ 3 the value of λ in Theorem 4.4 is smaller than 1.

Proof: Recall that λ = πo

(1−p)n−1(n−1)c where πo =
1−(1−p)n−1

p (p− c), p = 1
n and c = 1

n −
1
n2 . By plugging in the values

of p, c and πo we get that

λ =
(1− (1− 1

n )
n−1)

n(1− 1
n )
n+1
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Figure 1: On each edge edge the left expression is the probability of taking the edge and the right number is the cost if the
edge is taken. For R = 1, we have that πs = 0 and πo = λ

1+λ ·R− ε.

To show that λ ≤ 1 it suffices to show that:

(1− 1

n
)n−1 + n(1− 1

n
)n+1 ≥ 1

Let f(n) = (1 − 1
n )
n−1 + n(1 − 1

n )
n+1. Observe that f(3) = 28/27 > 1. Thus, showing that f(n) is increasing will

complete the proof. Note that

f ′(n) =

(
n−1
n

)n ((
n2 − n+ 1

)
ln
(
n−1
n

)
+ 2n− 1

)
n− 1

and by using calculus one can show that it is indeed the case that f ′(n) > 0 for any n > 2 which completes the proof.

B THREE NODE INSTANCES

Claim B.1 In an alternative model in which costs are positioned on the the edges. For any ε there exists a 3-node graph in
which πs = 0 and πo = λ

1+λ ·R− ε.

Proof: Consider the 3-node graph depicted in Figure 1. In this graph, it is clear that the optimal agent will not continue
from v to t but the sophisticated agent will. Thus, the expected payoff of the optimal agent is:

πo = (1− ε) · 1− ε · 1

(1 + λ)ε
=

λ

1 + λ
− ε

If a λ biased sophisticated agent will choose to traverse the graph he will always reach the target. Thus, its expected payoff
will be:

1− ε( 1

(1 + λ)ε
+

λ

(1 + λ)ε
) = 0

Thus, the payoff of the sophisticated agent is 0.

Claim B.2 For any 3-node graph and any λ ≥ 0, πs ≥ πo − 2+λ−2
√
1+λ

λ ·R and this is tight.

Proof: Consider the graph in figure 2. First, one can observe that the only two possible scenarios in which the optimal and
the sophisticated agent will have different payoffs are:

• The optimal agent traverses the graph for a single step and the sophisticated agent continues.

• The optimal agent traverses the graph for a single step and the sophisticated agent is unwilling to start.
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Figure 2: 3-node graph illustration for Claim B.2.

These are the only scenarios we should consider as if the optimal agent does not traverse the graph or continues at v then the
sophisticated agent will do the same.

We begin by considering the scenario in which the optimal agent traverses the graph for a single step and the sophisticated
agent continues. Observe that πo = pR− C. Notice that if the sophisticated agent would start traversing the graph it would
continue at v. Thus, its expected payoff for traversing the graph is pR− C − (1− p)λC ≤ 0. By rearranging we get that
p ≤ C(1+λ)

R+λC . Thus, to maximize the expected payoff of the optimal agent, we set p = C(1+λ)
R+λC and get that:

πo =
C(1 + λ)

R+ λC
·R− C

To maximize πo we take a derivative with respect to C and compare it to 0:

∂πo
∂C

=
R(1 + λ)(R+ λC)− λCR(1 + λ)

(R+ λC)2
− 1 =

R2(1 + λ)

(R+ λC)2
− 1

R2(1 + λ)

(R+ λC)2
− 1 = 0 =⇒ R2(1 + λ) = (R+ λC)2

C =
R

λ

(√
1 + λ− 1

)
which gives

p =
R
(√

1 + λ− 1
)
(1 + λ)

λ(R+R(
√
1 + λ− 1))

=

(√
1 + λ− 1

)√
1 + λ

λ

=
1 + λ−

√
1 + λ

λ

Therefore:

πo =
1 + λ−

√
1 + λ

λ
·R− R

λ
(
√
1 + λ− 1)

=
(2 + λ− 2

√
1 + λ)

λ
·R

For 0 < λ ≤ 1 we get that 0 < πo − πs ≤ 0.172R.

Finally, we consider the scenario in which the sophisticated agent traverse the graph and continues at v while the optimal
agent stops traversing the graph at v. We show that optimizing the payoff difference for this scenario get us to the same
optimization problem as we just solved. Denote by c(v) the cost at v. Since the sophisticated agent continues we have that
R− c(v) ≥ −λC =⇒ c(v) ≤ R+ λC. Also, since the expected payoff of the sophisticated agent is positive we have that:

πs = pR− C + (1− p)(R− c(v)) > 0 =⇒
R+ pc(v)− c(v)− C > 0 =⇒

c(v) <
R− C
1− p



Consider the difference between the payoffs of the agents:

πo − πs = −(1− p)(R− c(v)) = (1− p)(c(v)−R)

Clearly, the difference is maximized for the maximal value of c(v). Since c(v) ≤ min{R−C1−p , R+λC} we get that this value

is maximized when R−C
1−p = R+ λC by rearranging we get that in this case p = C(1+λ)

R+λC . Since in this case we have that:

πo − πs ≤ (1− p)(min{R− C
1− p

,R+ λC} −R) = p ·R− C

This implies the exact optimization problem as in the first case, which completes the proof.
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