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A NETWORK ARCHITECTURE AND
TRAINING DETAILS

We describe the injective portion of our network architecture
that was used to train a CelebA dataset in Figure 1. The
bijective revnet block has 3 bijective revnet steps in each
block while the injective revnet block has just one injective
revnet step which is explained in details in Section 2.1. The
bijective part of our network is not shown in Figure 1 but it
has 32 bijective revenet steps.

For the scale and bias terms of the coupling layer we used
the U-Net architecture with 2 downsampling blocks and 2
corresponding upsampling blocks. Each resolution change
is preceded by 2 convolution layers with 32 and 64 output
channels. We choose the latent space dimension as 64 for
MNIST, 256 for Chest X-ray dataset and 192 for all other
datasets. We normalize the data to lie in [−1, 1].

The number of training samples for CelebA, Chest X-ray,
MNIST and CIFAR10 are 80000, 80000, 60000, and 50000
respectively. We trained all models for about 300 epochs
with a batch size of 64.

All models are trained with Adam optimizer [Kingma and
Ba, 2014] with learning rate 10−4. γ = 10−6 was used as
the Tikhonov regularizer parameter for computing pseudoin-
verse of injective convolutional layers.

B DERIVATIONS OF ERROR AND
LIKELIHOOD BOUNDS

*Code publicly available at https://github.com/
swing-research/trumpets.

B.1 BOUNDING LOG-LIKELIHOOD FOR
INJECTIVE FUNCTIONS

Claim 1. For an injective function f = f1 ◦ f2 ◦ . . . fk(z)
that maps z ∈ Rd to x ∈ RD,

log |det JT
f Jf | ≤
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i=1

log |det JT
fk
Jfk |

Proof. We demonstrate the claim for 3 layers; the general
statement follows by induction. Consider x = f(z) = f1 ◦
f2 ◦ f3(z), where x ∈ RD and z ∈ Rd, d < D. Assume
that f1 : RD 7→ RD, f3 : Rd 7→ Rd are bijective and
f2 : Rd 7→ RD is injective. Then
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where we used that Πn
i=1λi(UHU

T) ≤ Πn
i=1λi(H) for any

symmetric matrix H and unitary matrix U (Horn [1950]).
Here λi(M) is the ith eigenvalue of matrix M .
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Figure 1: CelebA architecture for the injective portion g of
TRUMPET. The input size to each layer is written below it.

Substituting (2) in (1) we obtain,

log |det JT
f Jf | ≤

3∑
i=1

log |det JT
fk
Jfk |,

which establishes the claim.

B.2 MEASURING ERROR DUE TO DEVIATIONS
FROM RANGE

Claim 2. Consider y′ = y + ε, ε ∼ N (0, σ2
ε I), y = `w(x)

and let EInv(y′) := ‖`†w(y′)−x‖22 and the re-projection er-
ror EProj(y

′) := ‖`w(`†w(y′))− y′‖22. Then for both ReLU
and linear variants of `w we have

EεEInv(y′) ∝ σ2
ε

c∑
i=1

1

si(w)2
, EεEProj(y

′) ∝ σ2
ε ,

where si(w)’s are the singular values of w and c is the
number of input channels in the forward direction.

Proof. Consider y′ = y + ε, where y = `w(x) and ε ∼
N (0, σ2

ε I2n). We consider a vectorized x and write the 1×
1 convolution as a matrix-vector product, Wx say. For a
ReLU injective convolution one could write the inverse as

x′ = W †
[
In −In

]
y′. (3)

We calculate Eε‖x′−x‖22. Let M :=
[
In −In

]
and B :=

W †, then
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whence
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Similarly for a linear layer the inverse is given as x′ = By′.
Therefore,

x′ = B(y + ε)

x′ − x = Bε



whence
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The re-projection error for a ReLU layer is given as√
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Squaring both sides, we get

EProj(y
′) = (2

√
c+ 1)2‖ε‖2.

Similarly, for a linear layer we have

EProj(y
′) = ‖Wx′ −Wx− ε‖2

=
∥∥WW †ε− ε

∥∥2
= (c+ 1)2 ‖ε‖2 .

B.3 LOG-DETERMINANTS OF JACOBIANS FOR
RELU INJECTIVE CONVOLUTIONS

We vectorize x and, again, write the 1 × 1 convolution
as a matrix-vector product Wx. Then, for a ReLU 1 × 1
convolution, we have

y = ReLU

([
W
−W

])
x.

This could be trivially rewritten as y = W ′x, where the
rows of W ′ are w′i = wi if 〈wi, x〉 > 0 and w′i = −wi
otherwise. We note that changing the row signs does not
change |detW |. Hence, for such a ReLU injective convo-
lutional layer, `w log |det JT`wJ`w | =

∑c
i=1 s

2
i (w), where

si(w)’s are the singular values of w, where w is the 1 × 1
kernel corresponding to the convolution matrix W .
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Figure 2: FID score of TRUMPET with sampling tempera-
ture.

C SAMPLES

In Figures 3a, 3b and Figures 4a, 4b we compare the per-
formance of TRUMPETs trained with ReLU and linear in-
jective convolutions on the MNIST and 64 × 64 CelebA
datsets. Both variants offer similar performance hence we
choose to use linear convolutions for the rest of our results
regarding inverse problems and uncertainty quantification.
In Figures 6 and 5 we show generated samples from TRUM-
PET and a few reconstructions of original samples, x given
as f(f†(x)) on the CIFAR10 and Chest X-ray datasets re-
spectively. For the CIFAR10 dataset, we do see a low fre-
quency bias in the generated samples. We hope to rectify
this as per our discussions in Section 6. For other datasets
the low-frequency bias seems to be less of a problem. In fact,
on these datasets TRUMPETs outperform previous injective
variants of flows [Brehmer and Cranmer, 2020, Kumar et al.,
2020].

The temperature of sampling has a significant effect on the
FID scores as shown in Figure 2. While samples in Figures
4a, 4b are for T = 1 we share some samples in Figure 7 for
T = 0.85.
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Figure 3: TRUMPETs trained with (a) ReLU and (b) linear 1× 1 convolutions give similar sample quality.
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(a) ReLU 1× 1 convolutions

(b) Linear 1× 1 convolutions

Figure 4: TRUMPETs trained with (a) ReLU and (b) linear 1× 1 convolutions give similar sample quality. On the right, we
showcase the reconstruction performance—the left column is ground truth and the right is our reconstruction (see Table 2
for quantitative assessment)

Figure 5: Generated samples on the Chest X-ray. On the right, we showcase the reconstruction performance—the left column
is ground truth and the right is our reconstruction (see Table 2 for quantitative assessment)
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Figure 6: Generated samples and reconstructions of original data on the CIFAR-10 dataset.

Figure 7: Generated samples on the celeba dataset with linear 1× 1 convolution and T = 0.85.
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