TRUMPETS: Injective Flows for Inference and Inverse Problems*

Konik Kothari!

AmirEhsan Khorashadizadeh?

2

Maarten de Hoop® Ivan Dokmani¢

!Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
’Department of Mathematics and Computer Science, University of Basel
3 Computational and Applied Mathematics, Rice University

A NETWORK ARCHITECTURE AND
TRAINING DETAILS

We describe the injective portion of our network architecture
that was used to train a CelebA dataset in Figure |1} The
bijective revnet block has 3 bijective revnet steps in each
block while the injective revnet block has just one injective
revnet step which is explained in details in Section [2.1] The
bijective part of our network is not shown in Figure[I|but it
has 32 bijective revenet steps.

For the scale and bias terms of the coupling layer we used
the U-Net architecture with 2 downsampling blocks and 2
corresponding upsampling blocks. Each resolution change
is preceded by 2 convolution layers with 32 and 64 output
channels. We choose the latent space dimension as 64 for
MNIST, 256 for Chest X-ray dataset and 192 for all other
datasets. We normalize the data to lie in [—1, 1].

The number of training samples for CelebA, Chest X-ray,
MNIST and CIFAR10 are 80000, 80000, 60000, and 50000
respectively. We trained all models for about 300 epochs
with a batch size of 64.

All models are trained with Adam optimizer [Kingma and
Ba, 2014]] with learning rate 10~%. v = 1075 was used as
the Tikhonov regularizer parameter for computing pseudoin-
verse of injective convolutional layers.

B DERIVATIONS OF ERROR AND
LIKELIHOOD BOUNDS

“Code publicly available at https://github.com/
swing-research/trumpets,

B.1 BOUNDING LOG-LIKELIHOOD FOR
INJECTIVE FUNCTIONS

Claim 1. For an injective function f = f1 0 fao ... fr(2)
that maps z € R? f0 x € RP,

K
log | det J7 J¢| < log|det J], Jy, |

i=1

Proof. We demonstrate the claim for 3 layers; the general
statement follows by induction. Consider z = f(z) = f; o
f2 0 f3(2), where z € RP and z € R%, d < D. Assume
that f; : RP — RP, f3 : R? s R? are bijective and
fo : R — RP is injective. Then
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and we have

log det |J] J¢| = logdet |Jd JJ I Jy o Js
Forf 321
= 2logdet |J3| 4 log det | J3 J| J1 Ja|.
1)

Let now J; = U; 2, Vi and J; = U35V, . We can com-
pute as
log | det J3 JIJ1Jo| = log |det VaXoUy VIS UL UL 21 V) U Bo Vs |
= log |[VaXoU; ViZ3V, U BoVy |
= 2log | det ¥y| 4 log | det V, UL 22U Vy|
< 2log|det ¥s| + 21og | det X1
= log|det J, Jo| + log | det J] Ji |
2

where we used that 1T \;(UHUT) < II7"_; \;(H) for any
symmetric matrix H and unitary matrix U (Horn| [1950]).
Here \; (M) is the ith eigenvalue of matrix M.
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Figure 1: CelebA architecture for the injective portion g of
TRUMPET. The input size to each layer is written below it.

Substituting (2)) in (I) we obtain,

3
log | det JfTJf\ < Zlog | det JﬁJka

i=1

which establishes the claim. O

B.2 MEASURING ERROR DUE TO DEVIATIONS
FROM RANGE

Claim 2. Considery' =y +¢, e ~ N(0,021), y = £, (z)
and let Er, (y') == |05, (y') — 2|3 and the re-projection er-
ror Eproi(y') == |[€w(€1,(y')) — y'||2. Then for both ReLU
and linear variants of £,, we have

C
1
EEEIHV(y/) X 062 E S‘(’U})Q’
i=1""

EcEproj(y) o< o2,

where s;(w)’s are the singular values of w and c is the
number of input channels in the forward direction.

Proof. Consider y' = y + €, where y = £,,() and € ~
N(0,0215,). We consider a vectorized = and write the 1 x
1 convolution as a matrix-vector product, Wz say. For a
ReLU injective convolution one could write the inverse as

=W, -IL]y. (3)

We calculate E||" — ]|3. Let M := [I,, —I,] and B :=
W, then

2’ = BM(y +¢)
2’ —x = BMe,
whence
|2 — /|3 = (BMe)"BMe
|2" — z[|3 = Tr (BMe(BMe)T)
|2" — z||3 = Tr (BMee" MTBT)
|2" — 2|3 = Tr (M BT BMee")
so that

E|jz' — z||3 = E. Tr (MTB"BMec")
Eellz’ — z[|3 = Tr (M"B"BM) o?
Eellz’ — z[|3 = 2Tr (B"B) o?

Ecllz’ — 23 =2 si(w) %02, O
i=1

Similarly for a linear layer the inverse is given as 2’ = By’
Therefore,

2 = Bly+¢)

2’ —x = Be



whence
o' — w2 = (Be) Be
|z" — z||3 = Tr (Be(Be)")
|z" — z||3 = Tr (Bee' BT)
2" — 2|3 = Tr (B Bee")

so that

Cc

Eclla’ — 23 =Y si(w) 202 O
=1

The re-projection error for a ReLLU layer is given as
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Figure 2: FID score of TRUMPET with sampling tempera-

C SAMPLES

In Figures and Figures [4a] Ab] we compare the per-
formance of TRUMPETS trained with ReLU and linear in-

jective convolutions on the MNIST and 64 x 64 CelebA
datsets. Both variants offer similar performance hence we
choose to use linear convolutions for the rest of our results
regarding inverse problems and uncertainty quantification.
In Figures [6]and [5] we show generated samples from TRUM-
PET and a few reconstructions of original samples, = given
as f(ff(x)) on the CIFAR10 and Chest X-ray datasets re-
spectively. For the CIFAR10 dataset, we do see a low fre-
quency bias in the generated samples. We hope to rectify
this as per our discussions in Section[6] For other datasets
the low-frequency bias seems to be less of a problem. In fact,
on these datasets TRUMPETS outperform previous injective
variants of flows [Brehmer and Cranmer, 2020, [Kumar et al.,
2020].
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Squaring both sides, we get
EProj(y/) = (Z\E + 1)2H6”2 O
Similarly, for a linear layer we have
B (4f) = [|We' — W — €|
= Wi |
= (c+1)7|lel”.
O

B.3 LOG-DETERMINANTS OF JACOBIANS FOR
RELU INJECTIVE CONVOLUTIONS

We vectorize x and, again, write the 1 x 1 convolution
as a matrix-vector product Wz. Then, for a ReLU 1 x 1
convolution, we have

o ()]

This could be trivially rewritten as y = W'z, where the
rows of W' are w] = w; if (w;,z) > 0 and w} = —w;
otherwise. We note that changing the row signs does not
change | det W|. Hence, for such a ReLU injective convo-
lutional layer, £,, log |det J} Jo, | = >27_ s7(w), where
s;(w)’s are the singular values of w, where w is the 1 x 1

kernel corresponding to the convolution matrix W.

The temperature of sampling has a significant effect on the
FID scores as shown in Figure[2] While samples in Figures
Hal @b are for 7' = 1 we share some samples in Figure [7) for
T = 0.85.
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(b) Linear 1 x 1 convolutions

Figure 3: TRUMPETs trained with (a) ReLU and (b) linear 1 x 1 convolutions give similar sample quality.
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(b) Linear 1 x 1 convolutions

Figure 4: TRUMPETS trained with (a) ReLLU and (b) linear 1 x 1 convolutions give similar sample quality. On the right, we
showcase the reconstruction performance—the left column is ground truth and the right is our reconstruction (see Table 2]
for quantitative assessment)

Figure 5: Generated samples on the Chest X-ray. On the right, we showcase the reconstruction performance—the left column
is ground truth and the right is our reconstruction (see Tablefor quantitative assessment)



Figure 6: Generated samples and reconstructions of original data on the CIFAR-10 dataset.

Figure 7: Generated samples on the celeba dataset with linear 1 x 1 convolution and 7" = 0.85.
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