
Disentangling Mixtures of Unknown Causal Interventions

Supplementary Material

Abhinav Kumar1 Gaurav Sinha2

1Paypal, Hyderabad, Telangana, India
2Adobe Research, Bangalore, Karnataka, India

A PROOFS FROM SECTION 4

In this section, we provide missing proofs of the lemmas stated in Section 4.

A.1 PROOF OF LEMMA 4.1

Note that we have assumed ai > 0 for all i ∈ [k]. We iterate from i = 1 to k − 1 and apply the following row
transformations on our matrix.

Ri 7→ Ri − (ai

ak
)Rk

This results in the following linear system.


c 0 . − a1

ak
c

0 c . − a2
ak
c

. . . .

. . . .
−ak −ak . c− ak



x1
x2
.
.
xk

 =


b̃1
b̃2
.
.

b̃k


where b̃i = (bi − ai

ak
bk) for all i ∈ [k − 1] and b̃k = bk. Since c > 0, this matrix is easily seen to have rank ≥ k − 1.

Using c =
∑k

i=1 ai we can easily check that the last row Rk is −ak

c (R1 + . . .+Rk−1), implying that it has rank
k− 1. Since the system is assumed to have at least one solution, it actually has infinitely many solutions. The null
space of this matrix is the one dimensional space spanned by w = (a1

ak
, . . . , ak

ak
)T which has all positive entries

since ai > 0, i ∈ [k]. Assume there are two distinct solutions u = (u1, . . . , uk)T and v = (v1, . . . , vk)T in Rk
≥0

such that both have at least one of their co-ordinates 0, then u− v belongs to the null space i.e. u− v = λw
for some non-zero scalar λ. If the same co-ordinate of u,v are 0 i.e. for some i ∈ [k], ui = vi = 0, then since ai

ak

is non-zero λ = 0⇒ u = v, a contradiction. If different co-ordinates of u,v are 0, say u1 = v2 = 0, then since
u,v ∈ Rk

≥0, u1 − v1 is negative and u2 − v2 is positive. This is not possible since both these quantities should
have the same sign as λ, as all co-ordinates of w are strictly positive. Therefore we arrive at a contradiction and
there is a unique solution.

Having proved this uniqueness, finding the solution is easy. We perform the above-mentioned row transformations
and obtain the general solution. Then for each i ∈ [k], we set xi = 0 and try to solve for the other variables
x1, . . . , xi−1, xi+1, . . . , xk ∈ R≥0. By the above argument, we will get a valid solution for only one such i, which
we return as the unique solution. Clearly it takes kO(1) time.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Abhinav Kumar <abhinavkumar.sieger@gmail.com>?Subject=Your UAI 2021 paper
mailto:Gaurav Sinha <sinhagaur88@gmail.com>?Subject=Your UAI 2021 paper

A.2 PROOF OF LEMMA 4.2

1. Since V1 ≺ . . . ≺ VN+1 is a topological order, marginalizing over VN+1 in the factorization P(V) =∏N+1
i=1 P(Vi|pa(Vi)) will give the factorization P(VN) =

∏N
i=1 P(Vi|pa(Vi)) which is the factorization over

GN .

2. Let T = {(π1, t1), . . . , (πm, tm)} be a set of intervention tuples generating Pmix(V) and CVN+1 = {v1, . . . , vk}.
Marginalizing with respect to VN+1 for a single target ti, i ∈ [m] looks like,

k∑
l=1

Pti(VN , v
l) =

{
Pti(VN) : VN+1 /∈ Ti

Pti\{vj}(VN) : vj ∈ ti
(1)

Applying this marginalization to Equation 2, i.e., Pmix(V) =
∑m

i=1 πiPti(V), gives a convex linear combina-
tion of different Ps(VN), where s are values of some set of variables S ⊂ VN , implying that Pmix(VN) is a
mixture of interventions on GN .

3. This is straight-forward. To query P(v1, . . . , vN), we query P(v1, . . . , vN , vN+1) for all vN+1 ∈ CVN+1 and
sum them up. The same can be done to create access for Pmix(VN). Since we are summing at most kmax

terms, in O(kmax) time we can simulate access to both P(VN), Pmix(VN).

A.3 PROOF OF LEMMA 4.3

This follows by the marginalization equation (Equation 1 in Appendix A.2).

A.4 PROOF OF LEMMA 4.5

Let s ∈ Sr where r > i. This means that s is either sr or sr ∪ {v} for some v ∈ CVN+1 . We show that
Psr (vi,l) = Psr (si ∪ s−i ∪ {vl}) = 0 for all vl ∈ CVN+1 . The proof for s = sr ∪ {v} is identical. Since i < r, we
get that sr 6⊆ si. Now there are two cases, either the set of variables Sr ⊆ Si or Sr 6⊆ Si. In the first case,
since sr 6⊆ si we get that there is some variable Vj ∈ Sr,Si such that different values vr

j and vi
j belong to sr

and si respectively implying that Psr
(si ∪ s−i ∪ {v}) = 0. In the second case, there is some variable Vj ∈ Sr

(j ∈ [N]) that is not in Si. Note that the “missing value” v̄j ∈ CVj
(i.e. the one that is missing from all targets

sj , j ∈ [q]) belongs to s−i (since Vj /∈ Si) but it cannot belong to sr (since it is missing from all s1, . . . , sq)
⇒ Psr (si ∪ s−i ∪ {v}) = 0.

A.5 PROOF OF LEMMA 4.6

Let s ∈ Si. Note that s is either si or si ∪ {v} for some v ∈ CVN+1 . Using Equation 1 we get that for all
s ∈ Si, marginalization of VN+1 in πsPs(V) gives πsPsi

(VN). Marginalizing VN+1 in Equation 3, converts the
left hand side to Pmix(VN) and right-hand side to

∑q
i=1(

∑
s∈Si

πs)Psi
(VN) giving a set of intervention tuples

that generates Pmix(VN). By the inductive hypothesis, Pmix(VN) is generated by the unique set of intervention
tuples S satisfying Assumption 3.1. Since the intervention targets in S and the ones in the set of intervention
tuples we just obtained are the same, using uniqueness of S we get that µi =

∑
s∈Si

πs.

A.6 PROOF OF LEMMA 4.7

Note that since VN+1 is the last node in the topological order, using the definition of interventions, we can
conclude that,

Psi∪{vj}(si ∪ s−i ∪ {vl}) = Psi
(si ∪ s−i)δvj ,vl

where vl, vj ∈ CVN+1 = {v1, . . . , vk}. Recall that vi,l = si ∪s−i ∪{vl}. Now, on substituting for ∆ using Equation
4 into Equation 5, we obtain,

Pmix(vi,l)− µiPsi
(vi,l)−

i−1∑
j=1

∑
s∈Sj

πsPs(vi,l) =

∑
j∈[k]

πsi∪{vj}

(
Psi

(si ∪ s−i)δvj ,vl − Psi
(vi,l)

)

Note that all the unknown variables are on the right-hand side of this equation. Varying l ∈ [k], gives us a linear
system of equations satisfied by scalars πsi∪{vl}.

c− a1 −a1 . . −a1
−a2 c− a2 . . −a2
.
−ak −ak . . c− ak



x1
x2
.
xk

 =


b1
b2
.
bk


In the above system, we have renamed the known values as follows. For l ∈ [k], denote

al = Psi
(vi,l),

bl = Pmix(vi,l)− µiPsi
(vi,l)−

i−1∑
j=1

∑
s∈Sj

πsPs(vi,l),

c = Psi
(si ∪ s−i)

All al’s are probabilities from interventional distributions and can be computed as product of conditional
probabilities. Thus, by Assumption 3.2, al > 0 for all l ∈ [k]. It’s easy to see that c =

∑
l∈[k] al, by the sum

rule of probability. By statement of Lemma 4.3, for each i ∈ [q] and l ∈ [k], πsi∪{vl} ≥ 0. Since we are only
considering set of intervention tuples which satisfy Assumption 3.1, there is some l ∈ [k] such that πsi∪{vl} = 0.
On constraining the variables x1, . . . , xk in the above system to these conditions (i.e. xi ≥ 0 for all i ∈ [q]
and xi = 0 for some i ∈ [q]), by Lemma 4.1 we are guaranteed a unique solution. Therefore there is a unique
tuple (πsi∪{v1}, . . . , πsi∪{vk}) satisfying these requirements ⇒ Equation 5 has a unique solution which is easily
computed in kO(1) time using the technique described in proof of Lemma 4.1.

B NON-NECESSITY OF ASSUMPTION 3.2

With the help of an example we argue that Assumption 3.2 is not necessary in Theorem 3.1.

Example B.1. Consider a causal Bayesian Network

V1 → V2

defined over two binary variable V = {V1, V2} with CVi
= {0, 1}, i ∈ [2]. Further, define CPDs, P(V1 = 1) = 0.5,

P(V2 = 1|V1 = 0) = 0.5, and P(V2 = 1|V1 = 1) = 0. Clearly P(V2 = 1, V1 = 1) = 0 implying that this CBN doesn’t
satisfy Assumption 3.2.

Let Pmix(V) be a mixture distribution defined as

1
2P(V |do(V1 = 0)) + 1

2P(V |do(V1 = 0, V2 = 0))

This mixture satisfies Assumption 3.1. Our algorithm first marginalizes on V2 and tries to find the unique set of
intervention targets for Pmix(V1). For this sub-problem, all steps of Algorithm 1 go through (since the distribution
P(V1) satisfies positivity), and the correct components get identified. Note that, for this sub-problem the algorithm
identifies that Pmix(V1) = P(V1|do(V1 = 0)). Now it tries to lift this computed target (V1 = 0) to targets for the
full mixture Pmix(V).

Since the algorithm does not try to lift the target (V1 = 1) (as it was not found as a target for Pmix(V1)), it does
not require P(V2|V1 = 1) to be non-zero. This can be easily checked in the lifting process described in Section
4.2.1. We do not repeat the steps of our algorithm here and encourage the reader to work through the lifting steps
outlined in Section 4.2.1 and obtain unique solutions proving our point that Assumption 3.2 is not necessary and
can be weakened.

C WORKED-OUT EXAMPLES

In this section, we illustrate the workings of Algorithm 1 (in the main paper) using two worked-out examples.
Example C.1 is simpler and uses a mixture distribution on a CBN with just two nodes. It does not really require
all of the crucial ideas from the lifting procedure described in Section 4.2.1. However, we believe it is important
since it gives a good broad understanding of the entire algorithm. Example C.2 is complicated enough (using a
mixture distribution on a CBN with three nodes) to highlight some of the key novelties of our lifting procedure in
Section 4.2.1. We urge the reader to first work through Example C.1 and then through Example C.2 to get a full
understanding of the critical ideas that make our proof of Theorem 3.1 work.

Example C.1. Consider a causal Bayesian Network

V1 → V2

defined over two binary variable V = {V1, V2} with CVi = {0, 1}, i ∈ [2]. Further, define CPDs, P(V1 = 1) = 0.5,
P(V2 = 1|V1) = 0.5 for both V1 = 0 and V1 = 1. Clearly, this CBN satisfies Assumption 3.2. Let Pmix(V) be a
mixture distribution defined as

1
2P(V |do(V1 = 0)) + 1

2P(V |do(V1 = 0, V2 = 0))

This mixture satisfies Assumption 3.1. On marginalizing variable V2, the mixture becomes Pmix(V1) =
P(V1|do(V1 = 0)) which also satisfies Assumption 3.1, as a mixture of interventions on the CBN comprising of the
single variable V1. A general mixture distribution on variable V1 looks like,

π0P(V1|do(V1 = 0)) + π1P(V1|do(V1 = 0)) + (1− π0 − π1)P(V1)

Varying V1 in {0, 1} gives the system of equations,[
1− 0.5 −0.5
−0.5 1− 0.5

] [
π0
π1

]
=
[

Pmix(V1 = 0)− 0.5
Pmix(V1 = 1)− 0.5

]
Lemma 4.1 highlights why such a system has a unique non-negative solution if we assume that at least one of
π0, π1 is 0, i.e. the set of intervention tuples we are trying to construct satisfy Assumption 3.1. Lemma 4.1 also
provides an efficient algorithm to find the unique solution giving Pmix(V1) = P(V1|do(V1 = 0)). Now we have
one intervention target (V1 = 0) at hand, which we will try to lift. Note that, the possible lifts of such a target
are (V1 = 0), (V1 = 0, V2 = 0), (V1 = 0, V2 = 1). Our next step will search within this space of targets and try to
complete the construction. A general solution for mixtures within this space would look like

µ0P(V |do(V1 = 0)) + µ1P(V |do(V1 = 0, V2 = 0)) + µ2P(V |do(V1 = 0, V2 = 1))

where µi ≥ 0, i ∈ {0, 1, 2}. So we want to find µ0, µ1, µ2 such that the above general solution becomes equal
to Pmix(V). Since we already know that Pmix(V1) = P(V1|do(V1 = 0)), marginalizing on V2 implies that
µ0 + µ1 + µ2 = 1. We substitute µ0 = 1− µ1 − µ2, equate the above general mixture to Pmix(V), and re-arrange
terms to get,

Pmix(V)− P(V |do(V1 = 0)) = µ1(P(V |do(V1 = 0, V2 = 0))− P(V |do(V1 = 0)))
+ µ2(P(V |do(V1 = 0, V2 = 1))− P(V |do(V1 = 0)))

We evaluate this mixture at settings V1 = 0, V2 = 0, and V1 = 0, V2 = 1, to get a system of linear equations in
(µ1, µ2), [

1− 0.5 −0.5
−0.5 1− 0.5

] [
µ1
µ2

]
=
[

Pmix(0, 0)− 0.5
Pmix(0, 1)− 0.5

]

Again, since we are solving for a set of intervention tuples satisfying Assumption 3.1, one of µ1, µ2 would be 0.
This used with Lemma 4.1 gives the unique solution µ1 = 0.5, π2 = 0⇒ µ0 = 0.5, thereby identifying the correct
set of intervention tuples.

We would like to note that the example we illustrated above is rather simple and does not capture some main
non-trivial aspects of our Algorithm. However, we think it is important as a warm up exercise. A more involved
example that would bring out the crucial ideas of our proof is presented below in Example C.2.

Example C.2. Consider a causal Bayesian Network defined over three binary variables V = {V1, V2, V3} taking
values in CVi

= {0, 1}, i ∈ [3], with pa(V1) = ∅, pa(V2) = {V1} and pa(V3) = {V1, V2}. Let CPDs be such that
Assumption 3.2 is satisfied. Consider a mixture distribution

Pmix(V) = µ0P(V |do(V1 = 0)) + µ1P(V |do(V1 = 0, V2 = 0)) + µ2P(V |do(V1 = 0, V2 = 0, V3 = 0))

with positive scalars µ0, µ1, µ2 satisfying µ0 + µ1 + µ2 = 1. Marginalizing on V3, gives,

Pmix(V1, V2) = π0P(V1, V2|do(V1 = 0)) + π1P(V1, V2|do(V1 = 0, V2 = 0))

Our inductive hypothesis assumes that this mixture on smaller number of nodes is generated by a unique set of
intervention tuples that satisfies Assumption 3.1 and also that this set can be efficiently computed. This will
give us access to the two scalars π0, π1 and to the two targets (V1 = 0) and (V1 = 0, V2 = 0) (we call them the
currently computed targets). We need to lift these targets to targets for the original mixture distribution like we
did in Example C.1. However, the situation is not as simple here. Note that (V1 = 0) can be lifted to one of the
three targets (V1 = 0), (V1 = 0, V3 = 0), (V1 = 0, V3 = 1). Similarly (V1 = 0, V2 = 0) can be lifted to one of the
three targets (V1 = 0, V2 = 0), (V1 = 0, V2 = 0, V3 = 0), (V1 = 0, V2 = 0, V3 = 1). So there are 6 possible targets in
the original mixture and therefore a general solution for our mixture can be written using 6 new variables (say
δ0, δ1, δ2, δ3, δ4, δ5) such that,

Pmix(V) = δ0P(V |do(V1 = 0)) + δ1P(V |do(V1 = 0, V3 = 0)) + δ2P(V |do(V1 = 0, V3 = 1))
+ δ3P(V |do(V1 = 0, V2 = 0)) + δ4P(V |do(V1 = 0, V2 = 0, V3 = 0)) + δ5P(V |do(V1 = 0, V2 = 0, V3 = 1))

(2)

where all δi are non-negative By marginalizing on V3, and using the solution we got from the inductive hypothesis
(like we did in Example C.1), we can show that,

π0 = δ0 + δ1 + δ2, π1 = δ3 + δ4 + δ5

Now the two main non trivial ingredients needed from here are:

• Deciding the order in which the currently computed targets should be lifted, and
• Deciding the settings for V that would give linear systems where we can argue about unique solutions like in

Example C.1.

For the first one, we lift the currently computerd targets in an order which does not violate set inclusion for these
targets, i.e. we first lift (V1 = 0) and then lift (V1 = 0, V2 = 0). This can be done by considering any extension
of the set inclusion partial order on these targets. Then for lifting the target (V1 = 0), we choose to evaluate
on the settings v1 = (V1 = 0, V2 = 1, V3 = 0),v2 = (V1 = 0, V2 = 1, V3 = 1). Here, we pick the value of V2 that
is missing from the currently computed target under consideration i.e. (V1 = 0). There will always be one such
missing value (it follows from Assumption 3.1). Evaluating on these settings simplifies our equation drastically.
For l ∈ [2], we get,

Pmix(vl) = δ0P(vl|do(V1 = 0)) + δ1P(vl|do(V1 = 0, V3 = 0)) + δ2P(vl|do(V1 = 0, V3 = 1))

Basically all possible lifts of the other currently computed target i.e. (V1 = 0, V2 = 0) vanish and we have a
much simpler system of equations at hand. From here the solution follows exactly like the previous example. We
substitute δ0 = π0 − δ1 − δ2 and rearrange to get a linear system in 2 equations and 2 variables δ1, δ2. Similar
to the argument made in Example C.1, at least one of δ1, δ2 will be 0 and therefore this system has a unique

solution (using Lemma 4.1) giving values of δ0, δ1, δ2. These can then be substituted back in Equation 2 reducing
the number of variables to 3 (i.e. δ3, δ4, δ5). Again we substitute δ3 = π1 − δ4 − δ5 and reduce the equation to
just two unknowns. Finally by using settings v1 = (V1 = 0, V2 = 0, V3 = 0),v2 = (V1 = 0, V2 = 0, V3 = 1) in
Equation 2 we will be left with 2 equations in 2 variables. Exactly like our argument for lifting of (V1 = 0) (i.e.
using Lemma 4.1), we can show that, when at least one of δ4, δ5 is 0, this system has a unique solution as well.
Lemma 4.1 would efficiently give us the values of δ4, δ5 and therefore of δ3. Thus, we uniquely identify a set of
intervention tuples that satisfies Assumption 3.1 and generates Pmix(V).

D FINITE SAMPLE ALGORITHM

In a real world scenario, we will only have finitely many samples from the distributions P(V) and Pmix(V). We
still assume access to the underlying causal graph G (the CPDs might not be known though). In this situation,
we modify Algorithm 1 (from the main paper) slightly to make it work with finitely many samples. The resulting
algorithm is presented in Algorithm 1 (Appendix D). Let the sets containing the samples be B = {b1, . . . , bM}
where bi ∼ P(V) and Bmix = {bmix

1 , . . . , bmix
M } where bmix

j ∼ Pmix(V). As a preprocessing step, we estimate the
distributions P(V) and Pmix(V) as P̂(V) and P̂mix(V) (respectively) using samples in B and Bmix respectively.
P̂(V) is estimated by estimating all the CPDs using maximum likelihood estimation (MLE). In our implementation,
we use a function from the pgmpy library (Ankan and Panda [2015]), to compute these MLE estimates. We
enforce Assumption 3.2 on P̂(V), by enforcing it on all it’s CPDs, using a small positive parameter δ (chosen by
us). When P̂(vi|pa(vi)) = 0 for some vi and some setting of parents pa(vi), we update,

P̂(Vi|pa(vi))← P̂(Vi|pa(vi)) + δ

for all values of Vi, and then re-normalize to make it a probability distribution again. Marginal P̂mix(V = v)
is calculated using relative frequency of the occurence of V = v in the samples inside Bmix. These estimated
distributions are then used as inputs in Algorithm 1 (Appendix D). We use another small positive parameter ε
as input to Algorithm 1 (Appendix D) which prunes each recovered set of intervention tuples computed during
the algorithm, by only keeping mixing coefficients greater that ε. It’s easy to see that the time complexity of
Algorithm 1 (Appendix D), including the estimation of probabilities from samples is:(

Nkd
maxM

ε

)O(1)

Here N is number of nodes in the causal graph G, d is the maximum in-degree of any node in G, kmax is maximum
number of values that any node in G can take and M is the number of samples present in B and Bmix.

Remark. Since our algorithm’s run-time depends on ε, we need to carefully select it’s value. Setting it too small

could increase the run time whereas setting it too big could lead to wrongfully pruning intervention targets (with

significant mixing proportions) present in the mixture.

E ADDITIONAL SIMULATIONS

E.1 EFFECT OF GRAPH SIZE

Figure 1 (Appendix E) shows the variation of performance of Algorithm 1 (Appendix D) keeping the number
of samples fixed at ∼ 106. We observe that recall decreases and root-mean-squared error in mixing coefficient
increases very quickly as the number of nodes increases in the graph. Even though this is expected since error is
accumulated as we successively add nodes and find new intervention targets, such performance for a very large
sample size indicates bad dependence of sample complexity on the number of nodes. Improving this needs more
exploration and is left for future work.

E.2 EFFECT OF GRAPH TYPE

In Figure 2 (Appendix E), we demonstrate performance of Algorithm 1 (Appendix D) for CBNs generated
from two different family of random graphs (Erdös-Rényi (ER) and Scale-Free (SF)). We observe no significant

Algorithm 1: DISENTANGLE-FINITE
input :V , Causal Graph G, P̂(V), P̂mix(V), ε
output : Set of intervention tuples T

1. When |V | = 1, setup the linear system in Equation 1 (say Ax = b) using the estimated distributions.
Similar to the technique described in Lemma 4.1, set one variable to 0 at a time giving solution (π1, . . . , πk)
corresponding to targets (t1, . . . , tk) as described in Section 4.1. For every variable that is set to 0, create a
set T = {(ti, πi) : i ∈ [k]} containing the solution. For every such T , iterate through the tuples (ti, πi) in it.
If some πi < 0, set πi ← 0. Compute the score r(T) = ‖Aπ − b‖2, where π = (π1, . . . , πk). Next, select T
with the smallest value of r(T). For this selected T , check if 1−

∑k
i=1 πi < ε. If yes, renormalize

πi ← πi/(
∑k

i=1 πi). If no, add the tuple (t0, 1−
∑k

i=1 πi) to T . Only keep the tuples with strictly positive
mixing coefficients i.e. T ← {(ti, πi) ∈ T : πi > 0}. return T .

2. Let V1 ≺ . . . ≺ VN+1 denote a topological order in G. Marginalize on VN+1 to create access to P̂mix(VN)
and P̂(VN) where VN = (V1, . . . , VN). Construct GN = G \ {VN+1}. Recursively call this algorithm with
inputs GN , P̂(VN), P̂mix(VN), and obtain a set of intervention tuples S = {(s1, µ1), . . . , (sq, µq)}. Let
s1, . . . , sq be ordered such that i ≤ j implies that sj 6⊆ si. For all i ∈ [N], by inspecting sj , identify v̄i ∈ CVi

such that v̄i /∈ sj for any j ∈ [q]. Define s−j = {v̄i : Vi /∈ Sj}. Let CVN+1 = {v1, . . . , vk}. For each i ∈ [q] and
l ∈ [k], create setting vi,l = si ∪ s−i ∪ {vl}.

3. For each fixed i ∈ [q], evaluate distributions for different vi,l, l ∈ [k], to setup the system of equations (say
Ax = b) described in Equation 5. Similar to the technique described in Lemma 4.7 (which in turn uses
Lemma 4.1), set one variable to 0 at a time giving solution (πsi∪{v1}, . . . , πsi∪{vk}) corresponding to targets
(si ∪ {v1}, . . . , si ∪ {vk}) as described in Section 4.2. For every variable that is set to 0, create a set
T = {(si ∪ {vl}, πsi∪{vl}) : l ∈ [k]} containing the solution. For every such T , iterate through the tuples
(si ∪ {vl}, πsi∪{vl}) in it. If some πsi∪{vl} < 0, set πsi∪{vl} ← 0. Compute the score r(T) = ‖Aπ − b‖2,
where π = (πsi∪{v1}, . . . , πsi∪{vk}). Next, select T with the smallest value of r(T). For this selected T ,
check if µi −

∑k
l=1 πsi∪{vl} < ε. If yes, renormalize πsi∪{vl} ← (µi × πsi∪{vl})/(

∑k
l=1 πsi∪{vl}). If no, add

the tuple (si, µi −
∑k

l=1 πsi∪{vl}) to T . At the end of this process, collect all the intervention tuples thus
obtained (for all i ∈ [q]), in the set T .

4. Find the excluded value of node VN+1, i.e. the value which is not present in any target in T . If no such value
exists, find v ∈ CVN+1 which minimizes

∑q
i=1 πsi∪{v}. For each i ∈ [q], set πsi∪{v} ← 0. For each i ∈ [q],

renormalize the mixing coefficients πsi∪{vl} ← (πsi∪{vl} × µi)/(
∑k

l=1 πsi∪{vl}). Only keep the tuples with
strictly positive mixing coefficients in T i.e. T ← {(s, πs) ∈ T : πs > 0}. return T

difference in performance for these models and make a conjecture that only high level graph parameters (such as
number of nodes, edges, in-degree etc.) might be having an impact on performance and the topology (given these
parameters) might not be that crucial.

F EVALUATION METRICS

Let T denote the actual set of intervention targets and T̂ denote the set of intervention targets computed by
our algorithm. Let πt, π̂s denote mixing coefficients of target t, s in T and T̂ respectively. We use the following
evaluation metrics to evaluate the performance of our algorithm.

1. Recall: Proportion of number of targets in T that were correctly identified in T̂

Recall = |T ∩ T̂ |
|T |

.

2. Root Mean Squared Error: Root-mean-squared error (RMSE) in the mixing coefficients.

RMSE =

√√√√√√√√√√√

∑
t∈T ∩T̂

(πt − π̂t)2+
∑

t∈(T \T̂)

(πt)2

+
∑

t∈(T̂ \T)

(π̂t)2

|T ∪ T̂ |

3. False-Positive RMSE: RMSE in the mixing coefficients of the incorrectly identified targets.

FP-RMSE =

√√√√∑t∈(T̂ \T)(π̂t)
2

|T̂ \ T |

4. False-Negative RMSE: RMSE in the mixing coefficients of targets not identified.

FN-RMSE =

√√√√∑t∈(T \T̂)(πt)
2

|T \ T̂ |

References

Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using python. In Proceedings of the

14th Python in Science Conference (SCIPY 2015). Citeseer, 2015.

Figure 1: Performance of Algorithm 1 (Appendix D) as a function of number of nodes in the graph. The error
bars show the 20% and 80% quantile respectively.

Figure 2: Comparison of performance of Algorithm 1 (Appendix D) for CBNs generated from Erdös-Rényi (ER)
and Scale Free (SF) models.

	Proofs from Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Lemma 4.7

	Non-Necessity of Assumption 3.2
	Worked-Out Examples
	Finite Sample Algorithm
	Additional Simulations
	Effect of Graph Size
	Effect of Graph Type

	Evaluation Metrics

