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A DERIVATION OF ELBO

A central task in the application of probabilistic models is the evaluation of the posterior distribution of the latent variables
given the observed (visible) data variables. For many models of practical interest, it will be infeasible to evaluate the posterior
distribution since the dimensionality of the latent space is too high to work with directly or because the posterior distribution
has a highly complex form for which expectations are not analytically tractable. This is the case in our approach. Therefore,
we resort to the approximation techniques called variational inference or variational Bayes to estimate M (c) and M (p).
Similar with Beal et al. [2003], we can decompose the log marginal probability log p(Y ) as

log p(Y ) = log

∫
p(Y |M (p))p(M (p))dM (p) (1)

≥
∑
i

Eq(M(p))

[
log p(Yi|M (p))

]
−KL(q(M (p))||p(M (p))),

where KL(q(x)||p(x)) =
∫
q(x) log q(x)

p(x)dx is the Kullback-Leibler divergence (KLD), which measures the similarity

between distribution q and p. We treat the parents M (p) as a hidden variable with prior p(M (p)), and q(M (p)) is its
variational posterior distribution. As M (p) is a mixture model, to simplify the log-likelihood log p(Yi|M (p)), we introduce a
hidden assignment variable Zi, where Zi = j if Yi and its associated child model M (c)

i are assigned to M (p)
j . Next, we

obtain a lower bound on the log-likelihood log p(Yi|M (p)),

log p(Yi|M (p)) = log
∑
j

p(Yi, Zi = j|M (p)) (2)

≥
∑
j

ẑij
[

log p(Yi|M (p)
j ) + logω

(p)
j − log ẑij

]
,

where ω(p)
j = p(Zi = j|ω(p)) and we denote the variational distribution zij = q(Zi = j) and ẑij = E[zij ]. Note that one

child in our model only has one parent but one parent has several children, as shown in Fig. 2. Given the assignment Zi = j,
the generative process of the data Yi is:

1. Sample a child model M (c)
i ∼ p(M (c)

i |M
(p)
j );

2. Sample (i.i.d.) data sequences yin ∼M
(c)
i , n = 1, ..., Ni.

Thus, we define the likelihood p(Yi|M (p)
j ) as the marginalization over the corresponding child model M (c)

i , and obtain its
lower bound,

log p(Yi|M (p)
j ) = log

∫
p(Yi,M

(c)
i |M

(p)
j )dM

(c)
i (3)

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:<huilan2-c@my.cityu.edu.hk>?Subject=Your UAI 2021 paper


≥ E
q(M

(c)
i )

[
log p(Yi|M (c)

i ) + log p(M
(c)
i |M

(p)
j )− log q(M

(c)
i )
]
,

where q(M (c)
i ) is the variational posterior distribution of child M (c)

i . Finally, combining (1), (2), and (3), we obtain the our
objective function (lower bound),

L(M (p),M (c)) =
∑
i

E
q(M

(c)
i )

[
log p(Yi|M (c)

i )
]

+
∑
i

∑
j

ẑijEq(M(c)
i )

E
q(M

(p)
j )

[
log p(M

(c)
i |M

(p)
j )

]
+
∑
i

∑
j

ẑijEq(ω(p))

[
logω

(p)
j

]
+ Eω(p) log p(ω(p)) +

∑
j

E
q(M

(p)
j )

[
log p(M

(p)
j )

]
−
∑
i

∑
j

ẑij log ẑij

−
∑
i

E
q(M

(c)
i )

[
log q(M

(c)
i )
]
−
∑
j

E
q(M

(p)
j )

[
log q(M

(p)
j )

]
− Eq(ω(p))

[
log q(ω(p))

]
. (4)

where ẑi,j = Eq(Z)[zij ]. Since log p(Y ) ≥ L(M (p),M (c)), we find the best child models M (c)
∗ and the best parent models

M
(p)
∗ through {

M
(p)
∗ ,M

(c)
∗

}
= arg max
M(p),M(c)

L(M (p),M (c)).

B VARIATIONAL DISTRIBUTION OF φ

In this section, we give the specific L(φ̂i,j). The term involved φ̂i,j in our objective function (4) is
E
q(M

(c)
i )

E
q(M

(p)
j )

[
log p(M

(c)
i |M

(p)
j )

]
, i.e.,

L(φ̂i,j) ∝ E
M

(c)
i

E
M

(p)
j

log p(M
(c)
i |M

(p)
j ),

we derive E
q(M

(c)
i )

E
q(M

(p)
j )

[
log p(M

(c)
i |M

(p)
j )

]
first and then give L(φ̂i,j).

B.1 E
q(M

(c)
i )

E
q(M

(p)
j )

log p(M
(c)
i |M

(p)
j )

E
q(M

(c)
i )

E
q(M

(p)
j )

log p(M
(c)
i |M

(p)
j ) ≥ E

q(M
(c)
i )

E
q(M

(p)
j )

Eq(φi,j)

[
log p(M

(c)
i |φ

i,j ,M
(p)
j ) + log p(φi,j)− log q(φi,j)

]
= Eq(π(c),i)Eq(π(p),j)Eq(φi,j)

[
log p(π(c),i|α(c)

0 , φi,j , π(p),j)
]

+
∑
k

E
q(a

(c),i
k )

Eq(A(p),j)Eq(φi,j)

[
log p(a

(c),i
k |ε(c)0 , φi,j , A(p),j)

]
+
∑
k

∑
l

Eq(φi,j)

[
φi,jk,l
]
E
q(µ

(c),i
k ,Λ

(c),i
k )

E
q(µ

(p),j
l ,Λ

(p),j
l )

[
logN (µ

(c),i
k |µ(p),j

l , (β
(c)
0 Λ

(c),i
k )−1)

]
+
∑
k

∑
l

Eq(φi,j)

[
φi,jk,l
]
E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

[
logW(Λ

(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )
]
. (5)

Consider the first line in the RHS of (5), we simplify the normalization terms in two Dirichlet distributions. Firstly, φi,jk,l is a
binary variable and

∑
l φ

i,j
k,l = 1. Thus,

log Γ(α
(c)
0

∑
l

φi,jk,lπ
(p),j
l ) ≤

∑
l

φi,jk,l log Γ(α
(c)
0 π

(p),j
l ), (6)

since log Γ is convex. Moreover, we assume
∑
k φ

i,j
k,l ≥ 1, which means at least one state in M (c)

i is assigned to the l-th

state in M (p)
j . Since log Γ(ρ · a) ≥ ρ · log Γ(a), if a ≥ 1, ρ ≥ 1 1, we have

log Γ(α
(c)
0

∑
k

∑
l

φi,jk,lπ
(p),j
l ) ≥

∑
k

∑
l

φi,jk,lπ
(p),j
l log Γ(α

(c)
0 ), (7)

1Let f(a) = log Γ(ρa) − ρ log Γ(a), f ′(a) = ρ(ψ(ρa) − ψ(a)) ≥ 0, thus f(a) is a monotonic increasing function and f(a) ≥
f(1) = 0.



and α(c)
0 ≥ 1. Combining (6) and (7), firstly we obtain a lower bound on the normalization term logC(α̃i,j) for Dir(π(c),i),

and secondly, we bring φi,jk,l out of the log-gamma function. The normalization term logC(ε̃i,jk ) for prior on a(c),i
k is similar.

Next, for each term in the RHS of (5), we have,

1.

Eq(π(c),i)Eq(π(p),j)Eq(φi,j)

[
log p(π(c),i|α(c)

0 , φi,j , π(p),j)
]

= Eq(π(c),i)Eq(π(p),j)Eq(φi,j)

[
logC(α̃(c)) +

∑
k

(∑
l

α
(c)
0 φi,jk,lπ

(p),j
l − 1

)
log π

(c),i
k

]
≥
∑
k

∑
l

φ̂i,jk,lπ̂
(p),j
l log Γ(α

(c)
0 )−

∑
k

∑
l

φ̂i,jk,lE
[

log Γ(π
(p),j
l α

(c)
0 )
]

+
∑
k

(
α

(c)
0

∑
l

φ̂i,jk,lπ̂
(p),j
l − 1

)
log π̃

(c),i
k .

2. ∑
k

E
q(a

(c),i
k )

Eq(A(p),j)Eq(φi,j)

[
log p(a

(c),i
k |ε(c)0 , φi,j , A(p),j)

]
≥
∑
k

∑
k′

[∑
l

∑
l′

φ̂i,jk,lφ̂
i,j
k′,l′ â

(p),j
l,l′

]
log Γ(ε

(c)
0 )−

∑
k

∑
k′

[∑
l

∑
l′

φ̂i,jk,lφ̂
i,j
k′,l′

]
E log Γ(a

(p),j
l,l′ ε

(c)
0 )

+
∑
k

∑
k′

[
ε
(c)
0

∑
l

∑
l′

φ̂i,jk,lφ̂
i,j
k′,l′ â

(p),j
l,l′ − 1

]
log ã

(c),i
k,k′ .

3. ∑
k

∑
l

Eq(φi,j)

[
φi,jk,l
]
E
q(µ

(c),i
k ,Λ

(c),i
k )

E
q(µ

(p),j
l ,Λ

(p),j
l )

[
logN (µ

(c),i
k |µ(p),j

l , (β
(c)
0 Λ

(c),i
k )−1)

]
=
∑
k

∑
l

φ̂i,jk,lEq(µ(c),i
k ,Λ

(c),i
k )

E
q(µ

(p),j
l ,Λ

(p),j
l )

[D
2

log
β

(c)
0

2π
+

1

2
log |Λ(c),i

k | − β
(c)
0

2
(µ

(c),i
k − µ(p),j

l )TΛ
(c),i
k (µ

(c),i
k − µ(p),j

l )
]

=
∑
k

∑
l

φ̂i,jk,l

{
D

2
log

β
(c)
0

2π
+

1

2
log Λ̃

(c),i
k − β

(c)
0

2

[ D

β
(c),i
k

+ ν
(c),i
k (m

(c),i
k −m(p),j

l )TW
(c),i
k (m

(c),i
k −m(p),j

l )

+
ν

(c),i
k

β
(p),j
l (ν

(p),j
l −D − 1)

Tr((W
(p),j
l )−1W

(c),i
k )

]}

= S(c)D

2
log

β
(c)
0

2π
+

1

2

∑
k

[
log Λ̃

(c),i
k − β(c)

0

D

β
(c),i
k

]
− β

(c)
0

2

∑
k

∑
l

φ̂i,jk,lν
(c),i
k (m

(c),i
k −m(p),j

l )TW
(c),i
k (m

(c),i
k −m(p),j

l )

− β
(c)
0

2

∑
k

∑
l

φ̂i,jk,l
ν

(c),i
k

β
(p),j
l (ν

(p),j
l −D − 1)

Tr
(
(W

(p),j
l )−1W

(c),i
k

)
.

4. ∑
k

E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

∑
l

Eq(φi,j)

[
φi,jk,l
][

logW(Λ
(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )
]

=
∑
k

∑
l

φ̂i,jk,lEq(Λ(c),i
k )

E
q(Λ

(p),j
l )

{
logB(Λ

(p),j
l /ν

(c)
0 , ν

(c)
0 ) +

ν
(c)
0 −D − 1

2
log |Λ(c),i

k | − ν
(c)
0

2
Tr((Λ

(p),j
l )−1Λ

(c),i
k )

}

=
∑
k

∑
l

φ̂i,jk,l

{
− ν

(c)
0

2
log Λ̃

(p),j
l +

ν
(c)
0

2
log |ν(c)

0 | −
[ν(c)

0 D

2
log 2 +

D(D − 1)

4
log π

+

D∑
d=1

log Γ(
ν

(c)
0 + 1− d

2
)
]

+
ν

(c)
0 −D − 1

2
log Λ̃

(c),i
k −

ν
(c)
0 ν

(c),i
k

2(ν
(p),j
l −D − 1)

Tr((W
(p),j
l )−1W

(c),i
k )

}
.

And,

E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

[
logW(Λ

(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )
]



= E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

{
logB(Λ

(p),j
l /ν

(c)
0 , ν

(c)
0 ) +

ν
(c)
0 −D − 1

2
log |Λ(c),i

k | − ν
(c)
0

2
Tr((Λ

(p),j
l )−1Λ

(c),i
k )

}

= −ν
(c)
0

2
log Λ̃

(p),j
l +

ν
(c)
0

2
log |ν(c)

0 | −
[ν(c)

0 D

2
log 2 +

D(D − 1)

4
log π +

D∑
d=1

log Γ(
ν

(c)
0 + 1− d

2
)
]

+
ν

(c)
0 −D − 1

2
log Λ̃

(c),i
k −

ν
(c)
0 ν

(c),i
k

2(ν
(p),j
l −D − 1)

Tr((W
(p),j
l )−1W

(c),i
k ).

B.2 L(φ̂i,j)

L(φ̂i,j) =
∑
l

∑
k

φ̂i,jk,l

{
π̂

(p),j
l log Γ(α

(c)
0 )− E log Γ(α

(c)
0 π

(p),j
l ) + α

(c)
0 π̂

(p),j
l log π̃

(c),i
k

+ E logN (µ
(c),i
k |µ(p),j

l , (β
(c)
0 Λ

(c),i
k )−1) + E logW(Λ

(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )− logS(p) − log φ̂i,jk,l

}

+
∑
k

∑
k′

φ̂i,jk·

{
A(p),j log Γ(ε

(c)
0 ) + E log Γ(ε

(c)
0 A(p),j) + ε

(c)
0 A(p),j log ã

(p),j
k,k′

}
(φ̂i,jk′·)

T ,

where log π̃
(c),i
k = E[log π

(c),i
k ] and

1. E log Γ(α
(c)
0 π

(p),j
l )

Kim et al. [2013] propose an upper bound for E log Γ(α
(c)
0 π

(p),j
l ), i.e.,

E log Γ(α
(c)
0 π

(p),j
l ) ≤ log Γ(α

(c)
0 π̂

(p),j
l ) + α

(c)
0 (1− π̂(p),j

l )/α̂(p),j + (1− α(c)
0 π̂

(p),j
l )[log π̂

(p),j
l + ψ(α̂(p),j)− ψ(α

(p),j
l )],

(8)

where π̂(p),j
l = E[π

(p),j
l ] and α̂(p),j =

∑
l α

(p),j
l .

2. E logN (µ
(c),i
k |µ(p),j

l , (β
(c)
0 Λ

(c),i
k )−1)

There is

E
q(µ

(c),i
k ,Λ

(c),i
k )

E
q(µ

(p),j
l ,Λ

(p),j
l )

[
logN (µ

(c),i
k |µ(p),j

l , (β
(c)
0 Λ

(c),i
k )−1)

]
= E

q(µ
(c),i
k ,Λ

(c),i
k )

E
q(µ

(p),j
l ,Λ

(p),j
l )

[D
2

log
β

(c)
0

2π
+

1

2
log |Λ(c),i

k | − β
(c)
0

2
(µ

(c),i
k − µ(p),j

l )TΛ
(c),i
k (µ

(c),i
k − µ(p),j

l )
]

=
D

2
log

β
(c)
0

2π
+

1

2
log Λ̃

(c),i
k − β

(c)
0

2

[ D

β
(c),i
k

+ ν
(c),i
k (m

(c),i
k −m(p),j

l )TW
(c),i
k (m

(c),i
k −m(p),j

l )

+
ν

(c),i
k

β
(p),j
l (ν

(p),j
l −D − 1)

Tr((W
(p),j
l )−1W

(c),i
k )

]
,

where log Λ̃
(c),i
k = E[log Λ

(c),i
k ].

3. E logW(Λ
(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )

There is

E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

[
logW(Λ

(c),i
k |Λ(p),j

l /ν
(c)
0 , ν

(c)
0 )
]

= E
q(Λ

(c),i
k )

E
q(Λ

(p),j
l )

{
logB(Λ

(p),j
l /ν

(c)
0 , ν

(c)
0 ) +

ν
(c)
0 −D − 1

2
log |Λ(c),i

k | − ν
(c)
0

2
Tr((Λ

(p),j
l )−1Λ

(c),i
k )

}



= −ν
(c)
0

2
log Λ̃

(p),j
l +

ν
(c)
0

2
log |ν(c)

0 | −
[ν(c)

0 D

2
log 2 +

D(D − 1)

4
log π +

D∑
d=1

log Γ(
ν

(c)
0 + 1− d

2
)
]

+
ν

(c)
0 −D − 1

2
log Λ̃

(c),i
k −

ν
(c)
0 ν

(c),i
k

2(ν
(p),j
l −D − 1)

Tr((W
(p),j
l )−1W

(c),i
k ).

4. E log Γ(ε
(c)
0 A(p),j) is similar to E log Γ(α

(c)
0 π

(p),j
l ).

With the above 1-4, we solve φ̂i,j via an optimization problem with constraints, i.e.,

max L(φ̂i,j) s.t.
∑
l

φ̂i,jk,l = 1,
∑
k

φ̂i,jk,l ≥ 1.

C VARIATIONAL DISTRIBUTIONS FOR PARENT MODELS

In this section, we derive the parameters for variational distributions for parent model, and we consider each parameter in
the following.

C.1 INITIAL PROBABILITY

For initial probability π(p),j , the terms involved its parameter α(p),j in variational distribution is

L(α(p),j) ∝ E log p(π(c),i|α(c)
0 , φi,j , π(p),j) + E log p(π(p),j)− E log q(π(p),j)

≥ log Γ(α
(c)
0 )

∑
l

N j
l π̂

(p),j
l −

∑
l

N j
l E
[

log Γ(π
(p),j
l α

(c)
0 )
]

+ α
(c)
0

∑
l

πjl π̂
(p),j
l +

∑
l

(α
(p)
0 − α(p),j

l ) log π̃
(p),j
l

− log Γ(α̂(p),j) +
∑
l

log Γ(α
(p),j
l ),

where

π̂
(p),j
l = E[π

(p),j
l ] =

α
(p),j
l

α̂
(p),j
l

, α̂
(p),j
l =

∑
l

α
(p),j
l ,

log(π
(p),j
l ) = ψ(α

(p),j
l )− ψ(α̂

(p),j
l ),

N j
l =

∑
i

∑
k

ẑij φ̂
(i,j)(l|k),

πjl =
∑
i

∑
k

ẑij φ̂
i,j
k,l log π̃

(c),i
k ,

and combining the inequality in Equ (8), we obtain L(α(p),j). Solving the optimization problem

max L(α(p),j), s.t. α
(p),j
l ≥ 1,

to solve α(p),j .

C.2 TRANSITION MATRIX

For transition matrix A(p),j , the terms involved its parameter ε(p),j in variational distribution is

L(ε(p),j) ∝
∑
i

ẑijE logP (A(c),i|ε(c)0 , φi,j , A(p),j) + E log p(A(p),j)− E log q(A(p),j) ≥
∑
l

L(ε
(p),j
l ),

and

L(ε
(p),j
l ) =

∑
l′

[
N

(j)
l,l′ â

(p),j
l,l′ log Γ(ε

(c)
0 )−N (j)

l,l′E log Γ(ε
(c)
0 a

(p),j
l,l′ ) + ε

(c)
0 β

(j)
l,l′ â

(p),j
l,l′

]
− log Γ(ε̂

(p),j
l )



+
∑
l′

log Γ(ε
(p),j
l,l′ )−

∑
l′

(ε
(p),j
l,l′ − ε

(c)
0 ) log ã

(p),j
l,l′ , (9)

where

â
(p),j
l,l′ = E[a

(p),j
l,l′ ] =

ε
(p),j
l,l′

ε̂
(p),j
l

, ε̂
(p),j
l =

∑
l′

ε
(p),j
l,l′ ,

log ã
(p),j
l,l′ = ψ(ε

(p),j
l,l′ )− ψ(ε̂

(p),j
l ),

N
(j)
l,l′ =

∑
i

ẑij
∑
k

∑
k′

φ̂i,jk,lφ̂
i,j
k′,l′ ,

β
(j)
l,l′ =

∑
i

ẑij
∑
k

∑
k′

φ̂i,jk,lφ̂
i,j
k′,l′ log ã

(c),i
k,k′ ,

and combining the inequality in Equ (8), we obtain L(ε
(p),j
l ). Solving the optimization problem

max L(ε
(p),j
l ), s.t. ε(p),jl > 0,

to compute ε(p),jl .

C.3 GAUSSIAN EMISSION DENSITY

The terms in objective function (4) involve m(p),j
l , β(p),j

l , W (p),j
l , and ν(p),j

l are

L(m
(p),j
l , β

(p),j
l ,W

(p),j
l , ν

(p),j
l )

=
∑
i

ẑijEq(M(c)
i )

E
q(M

(p)
j )

[
log p(M

(c)
i |M

(p)
j )

]
+ E

q(M
(p)
j )

[
log p(M

(p)
j )

]
− E

q(M
(p)
j )

[
log q(M

(p)
j )

]
= L(m

(p),j
l ) + L(β

(p),j
l ) + L(W

(p),j
l ) + L(ν

(p),j
l )

1. L(m
(p),j
l )

L(m
(p),j
l ) =

∑
i

ẑij
∑
k

φ̂i,jk,l
[
− β

(c)
0

2
ν

(c),i
k (m
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k −m(p),j

l )T ·W (c),i
k (m
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k −m(p),j

l )
]

− β
(p)
0

2
ν

(p),j
l (m

(p),j
l −m(r)

0 )TW
(p),j
l (m

(p),j
l −m(r)

0 ).

Take the derivation of L(m
(p),j
l ) w.r.t. m(p),j

l and set to zero, we can obtain a closed-form solution of m(p),j
l .

m
(p),j
l =

[
β

(c)
0

∑
i

ẑij
∑
k

φ̂i,jkl ν
(c),i
k W

(c),i
k + β

(p)
0 ν
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l W
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l

]−1

·
(
β

(c)
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∑
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∑
k

φ̂i,jkl ν
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k W

(c),i
k m

(c),i
k + β

(p)
0 ν

(p),j
l W

(p),j
l m

(p)
0

)
.

2. L(β
(p),j
l )

L(β
(p),j
l ) =

∑
i

ẑij
∑
k

φ̂i,jk,l

[
−

β
(c)
0 ν

(c),i
k

2β
(p),j
l (ν

(p),j
l −D − 1)

· Tr((W
(p),j
l )−1W

(c),i
k )

]
− β

(p)
0 D

2β
(p),j
l

− D

2
log β

(p),j
l .

Take the derivation of L(β
(p),j
l ) w.r.t. β(p),j

l and set to zero, we can obtain a closed-form solution of β(p),j
l .

β
(p),j
l = β

(p)
0 + β

(c)
0

∑
i

ẑij
∑
k

φ̂i,jkl
1

d
Tr
(

(W
(p),j
l )−1ν

(c),i
k W

(c),i
k

ν
(p),j
l −d−1

)
. (10)
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Figure 1: Illustration for individual HMMs learned by VBEM and our method, and LL means the log-likelihood on test data.

3. L(W
(p),j
l )

L(W
(p),j
l ) = −1

2
Tr

(
(W

(p),j
l )−1

(ν
(p),j
l −D − 1)

∑
i

zij
∑
k

φ̂i,jk,l ·
[ β(c)

0

β
(p),j
l

+ ν
(c)
0

]
ν

(c),i
k W

(c),i
k

)
+
ν

(p)
0 −N j

l ν
(c)
0

2
log |W (p),j

l |

− 1

2
ν

(p),j
l Tr

(
W

(p),j
l

[
β

(p)
0 (m

(p),j
l −m(p)

0 )T (m
(p),j
l −m(p)

0 ) + (W
(p)
0 )−1

])
.

Take the derivation of L(W
(p),j
l ) w.r.t. W (p),j

l and set to zero, we get an Algebraic Riccati Equation,

−2cW
(p),j
l +W

(p),j
l RW

(p),j
l −Q = 0, (11)

where

c =
ν
(p)
0 −Nj

l ν
(c)
0

2 ,

R = ν
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l

[
β

(p)
0 (m
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]
,

Q = 1
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0
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l
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(c)
0

)∑
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φ̂i,jk,lν
(c),i
k W

(c),i
k .

(11) with a unique positive definite solution. Thus, solve (11), we get W (p),j
l . In this paper, we use the Matlab ARE solver

(icare) to find the solution of (11).

4. L(ν
(p),j
l )

L(ν
(p),j
l ) =

1

(ν
(p),j
l −D − 1)

Tr
(
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−
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∑
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k W
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k
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ψ(
ν
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2
) +D log 2 + log(|W (p),j

l |)
][N (j)

l ν
(c)
0 + ν

(p),j
l − ν(p)

0

2

]
− ν(p),j

l

[1

2
Tr
(
W

(p),j
l

[
β

(p)
0 (m

(p),j
l −m(p)

0 )T (m
(p),j
l −m(p)

0 ) + (W
(p)
0 )−1

])
− D

2
log 2− 1

2
log |W (p),j

l | − D

2

]
+

D∑
d=1

Γ(
ν

(p),j
l + 1− d

2
).

Solving the optimization problem

max L(ν
(p),j
l ), s.t. ν

(p),j
l ≥ d+ 1,

to solve ν(p),j
l .

In this paper, we use the Global Optimization Toolbox (GlobalSearch combine fmincon solver) in Matlab to solver the
optimization problems.



D ALGEBRAIC RICCATI EQUATION
The Algebraic Riccati Equation (ARE) has been used to study the matrix generalized inverse Gaussian distribution [Fazayeli
and Banerjee, 2016], which is a distribution over symmetric positive semi-definite matrices. We consider the ARE when
learning group model and here give a brief introduction. An ARE with respect to symmetric positive matrix P ∈ Rd×d is

ATP + PA+ PRP +Q = 0, (12)

where A ∈ Rd×d, and Q,R ∈ Sd+, where Sd+ denotes the space of symmetric (d × d) positive semi-definite matrix. The

ARE (12) has a unique positive definite solution if and only if the associated Hamiltonian matrix H =

[
A R
−Q −AT

]
has

no imaginary eigenvalues [Boyd and Barratt, 1991].
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