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A GAUSSIAN PROCESS REGRESSION

We place a GP prior on f(x), denoted by f ∼ GP(µ,K),
where µ : Ω → R and k : Ω × Ω → R are the mean func-
tion and covariance kernel, respectively. The kernel k(x,x′)
correlates neighboring points, and may contain hyperparam-
eters, such as lengthscales that are learned to improve the
quality of approximation [Rasmussen and Williams, 2006].
For a given Dt = {(xi, yi)}ti=1, we define:
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We assume yi is observed with Gaussian white noise:
yi = f(xi) + εi, where εi ∼ N (0, σ2). Given a GP
prior and data Dt, the resulting posterior distribution for
function values at a location x is the Normal distribution
N (µt(x;Dt), σ2

t (x;Dt)):

µt(x;Dt) = µ(x) + k(x)>(K + σ2It)
−1(y − µ(x)),

σ2
t (x;Dt) = k(x,x)− k(x)>(K + σ2It)

−1k(x),

where It is the t× t identity matrix. We use the Matérn 5/2
kernel in this paper:
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B THEORETICAL RESULTS

If a base policy π̃ is sequentially consistent, rollout in the
MDP setting will perform better in expectation than the base
policy itself The same holds true in the CMDP setting if
c(x) is also deterministic.

We first define a heuristic H as a method to generate deci-
sion rules in epochs {0, . . . , h− 1}, such that the resulting
heuristic policy π generated fromH on state s is defined as

πH(s) = {ππH(s)

0 . . . π
πH(s)

h−1 }

Having defined πH(s), we define sequential consistency for
stochastic MDPs below.

Definition 1 [Goodson et al., 2017]: A heuristic H is se-
quentially consistent if, for every trajectory from any s and
all subsequent s′:

πH(s) = πH(s′),

or in other words, that the decision rules generated from the
heuristic are the same:

{ππH(s)

0 . . . π
πH(s)

h−1 } = {ππH(s′)
0 . . . π

πH(s′)
h−1 }.

This frames sequential consistency in terms of decision rules
instead of as sample trajectories Bertsekas [2017], which
we did in the main text for notational clarity. However, the
intuition of the theorem above is the same as its deterministic
counterpart; a heuristic H is sequentially consistent if it
produces the same subsequent state s′ when started at any
intermediate state of a path that it generates s.

Theorem 1 [Bertsekas, 2005]: In the CMDP setting, a roll-
out policy πroll = ππH(s) using sequentially consistent
heuristic H does no worse than its base policy π̃ in ex-
pectation.

V πroll

h (s0) ≥ V π̃h (s0).

Thus, the value function of a rollout policy is always greater
than the value function of the base policy.

To guarantee sequential consistency of our acquisition func-
tion, we need only consistently break ties if the acquisition
function has multiple maxima.

C ADDITIONAL EXPERIMENT

Most of our HPO experiments were run on the OpenML
w2a dataset. To sanity check our performance’s robustness,
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EI EIpu R2 R4
mean 0.140 0.139 0.137 0.131
std 0.005 0.005 0.004 0.001

Table 1: Rollout performance for horizons 2 and 4 outper-
formed both EI and EIpu. The best method is bolded.

we run the same HPO problem for k-nearest-neighbors with
the OpenML a1a dataset. Rollout performance remained
superior, and we record the mean and standard error in
Table 1.
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