
Tractable Computation of Expected Kernels (Supplementary material)

Wenzhe Li*1 Zhe Zeng∗2 Antonio Vergari2 Guy Van den Broeck2

1Tsinghua University
2University of California, Los Angeles

scott.wenzhe.li@gmail.com, {zhezeng, aver, guyvdb}@cs.ucla.edu

1 PROOFS

We first present another hardness result about the computa-
tion of expected kernels besides Theorem 2.2.

Theorem 1.1. There exist representations of distributions
p and q that are smooth and compatible, yet computing the
expected kernel of a simple kernel k that is the Kronecker
delta is already #P-hard.

Proof. (an alternative proof to the one in Section 4) Con-
sider the case when the positive definite kernel k is a Kro-
necker delta function defined as k(x,x′) = 1 if and only if
x = x′. Moreover, assume that the probabilistic circuit p is
smooth and decomposable, and that q = p. Then computing
the expected kernel is equivalent to computing the power of
a probabilistic circuit p, that is, Mk(p, q) =

∑
x∈X p

2(x)
with X being the domain of variables X. Vergari et al.
[2021] proves that the task of computing

∑
x∈X p

2(x) is
#P-hard even when the PC p is smooth and decomposable,
which concludes our proof.

Proposition 4.4 Let pn and qm be two compatible proba-
bilistic circuits over variables X whose output units n and
m are sum units, denoted by pn(X) =

∑
i∈in(n) θipi(X)

and qm(X) =
∑

j∈in(m) δjqj(X) respectively. Let kl be a
kernel circuit with its output unit being a sum unit l, denoted
by kl(X) =

∑
c∈in(l) γckc(X). Then it holds that

Mkl
(pn, qm) =

∑
i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γcMkc(pi, qj).

(1)

*Authors contributed equally. This research was performed
while W.L. was visiting UCLA remotely.

Proof. Mkl
(pn, qm) can be expanded as

Mkl
(pn, qm)

=
∑
x

∑
x′

pn(x)qm(x′)kl(x,x
′)

=
∑
x

∑
x′

∑
i∈in(n)

θipi(x)
∑

j∈in(m)

δjqj(x
′)
∑

c∈in(l)

γckc(x,x
′)

=
∑

i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γcMkc
(pi, qj).

Proposition 4.5 Let pn and qm be two compatible proba-
bilistic circuits over variables X whose output units n andm
are product units, denoted by pn(X) = pnL

(XL)pnR
(XR)

and qm(X) = qmL
(XL)qmR

(XR). Let k be a kernel cir-
cuit that is kernel-compatible with the circuit pair pn and
qm with its output unit being a product unit denoted by
k(X,X′) = kL(XL,X

′
L)kR(XR,X

′
R). Then it holds that

Mk(pn, qm) = MkL
(pnL

, qmL
) ·MkR

(pnR
, qmR

).

Proof. Mk(pn, qm) can be expanded as

Mk(pn, qm)

=
∑
x

∑
x′

pn(x)qm(x′)k(x,x′)

=
∑
x

∑
x′

pmL
(xL)pmR

(xR)qnL
(xL)qnR

(xR)kL(xL,x
′
L)kR(xR,x

′
R)

= MkL
(pnL

, qmL
) ·MkR

(pnR
, qmR

).

Corollary 4.6. Following the assumptions in Theorem 4.3,
the squared maximum mean discrepancy MMD [H, p, q] in
RKHS H associated with kernel k as defined in Gretton
et al. [2012] can be tractably computed.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

Proof. This is an immediate result following Theorem 4.3
by rewriting MMD as defined in Gretton et al. [2012] in the
form of a linear combination of expected kernels, that is,
MMD2[H, p, q] = Mk(p, p) +Mk(q, q)− 2Mk(p, q).

Corollary 4.7. Following the assumptions in Theorem 4.3,
if the probabilistic circuit p further satisfies determin-
ism, the kernelized discrete Stein discrepancy (KDSD)
D2(q ‖ p) = Ex,x′∼q[kp(x,x′)] in the RKHS associ-
ated with kernel k as defined in Yang et al. [2018] can be
tractably computed.

Before showing the proof for Corollary 4.7, we first give
definitions that are necessary for defining KDSD as follows
to be self-contained.

Definition 1.2 (Cyclic permutation). For a finite set X and
D = |X |, a cyclic permutation ¬ : X → X is a bijective
function such that for some ordering a1, a2, · · · , aD of the
elements in X , ¬ai = a(i+1) mod D, ∀i = 1, 2, · · · , D.

Definition 1.3 (Partial difference operator). For any func-
tion f : X → R with D = |X |, the partial difference
operator is defined as

∆∗i f(X) := f(X)− f(¬iX),∀i = 1, · · · , D, (2)

with ¬iX := (X1, · · · ,¬Xi, · · · , XD). Moreover,
the difference operator is defined as ∆∗f(X) :=
(∆∗1f(X), · · · ,∆∗Df(X)). Similarly, let � be the inverse
permutation of ¬, and ∆ denote the difference operator
defined with respect to �, i.e.,

∆if(X) := f(X)− f(�i X), i = 1, · · · , D.

Definition 1.4 (Difference score function). The (difference)
score function is defined as sp(X) := ∆∗p(X)

p(X) on domain
X with D =| X |, a vector-valued function with its i-th
dimension being

sp,i(X) :=
∆∗i p(X)

p(X)
= 1− p(¬iX)

p(X)
, i = 1, 2, · · · , D.

(3)

Given the above definitions, the discrete Stein discrepancy
between two distributions p and q is defined as

D(q ‖ p) := sup
f∈H

Ex∼q(X)[Tpf(x)], (4)

where f : X → RD is a test function, belonging to some
function space H and Tp is the so-called Stein difference
operator, which is defined as

Tpf = sp(x)f> −∆f(x). (5)

If the function space H is an reproducing kernel Hilbert
space (RKHS) on X equipped with a kernel function k(·, ·),

then a kernelized discrete Stein discrepancy (KDSD) is de-
fined and admits a closed-form representation as

S(q ‖ p) := D2(q ‖ p) = Ex,x′∼q[kp(x,x′)]. (6)

Here, the kernel function kp is defined as

kp(x,x′) = sp(x)>k(x,x′)sp(x′)− sp(x)>∆x′k(x,x′)

−∆xk(x,x′)>sp(x′) + tr(∆x,x′k(x,x′)),

where the difference operator ∆x is as in Definition 1.3. The
superscript x specifies the variables that it operates on.

Proof. [Corollary 4.7] By the definition of difference score
functions, the close form of KDSD can be further rewritten
as follows.

Ex,x′∼q[kp(x,x′)]

=

D∑
i=1

Ex,x′∼q[
p(¬ix)p(¬ix′)
p(x)p(x′)

k(x,x′)− p(¬ix)

p(x)
k(x,¬ix′)

− p(¬ix′)
p(x′)

k(¬ix,x′) + k(¬ix,¬ix′)]

=

D∑
i=1

[Mk(q
p̃i
p
, q
p̃i
p

)−Mk(q
p̃i
p
, q̃i)

−Mk(q̃i, q
p̃i
p

) +Mk(q̃i, q̃i)]

(7)

where D denotes the cardinality of the domain of variables
X, the probablity p̃i(X) := p(¬iX) and the probablity
q̃i(X) := q(¬iX). Notice that the cyclic permutation ¬i
operates on individual variable and the resulting PC p̃i and
q̃i retains the same structure properties as PCs p and q re-
spectively. To prove that KDSD can be tratably computed, it
suffices to prove that the expected kernel terms in Equation 7
can be tractably computed.

For a deterministic and structured-decomposable PC p, since
PC p̃i retains the same structure, then resulting ratio p̃i/p is
again a smooth circuit compatible with p by Vergari et al.
[2021]. Moreover, since PC p and q are compatible, the
circuit p̃i/p is compatible with PC q. Thus, the resulting
product q p̃i

p is a circuit that is smooth and compatible with
both p and q by Theorem B.2 and thus compatible with
q̃i. By similar arguments, we can verify that all the circuit
pair in the expected kernel terms in Equation 7 satisfy the
assumptions in Theorem 4.3 and thus they are amenable to
the tractable computation we propose in Algorithm 1, which
finishes our proof.

Proposition (convergence of Categorical BBIS). Let
f(x) be a test function. Assume that f − Ep[f] ∈ Hp, with

Hp being the RKHS associated with the kernel function kp,
and

∑
i wi = 1, then it holds that∣∣∣∣∣

N∑
n=1

wnf(xn)− Epf

∣∣∣∣∣ ≤ Cf

√
S({x(n), wn} ‖ p),

where Cf :=‖ f − Epf ‖Hp . Moreover, the convergence
rate is O(N−1/2).

Proof. Let f̂(x) := f(x)− Epf , then it holds that∣∣∣∣∣
N∑

n=1

wnf(x(n))− Epf

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

wnf̂(x(n))

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

wn〈f̂ , kp(·,x(n))〉

∣∣∣∣∣
=

∣∣∣∣∣〈f̂ ,
N∑

n=1

wnkp(·,x(n))〉Hp

∣∣∣∣∣
≤‖ f̂ ‖Hp

· ‖
N∑

n=1

wnkp(·,x(n)) ‖Hp

=‖ f̂ ‖Hp
·
√
S({x(n), wn} ‖ p).

We further prove the convergence rate of the estimation
error by using the importance weights as reference weights.
Let v∗n = 1

np(x
(n))/q(x(n)). Then S({x(n), v∗n} ‖ p) is

a degenerate V-statistics [Liu and Lee, 2017] and it holds
that S({x(n), v∗n} ‖ p) = O(N−1). Moreover, we have that∑N

n=1 v
∗
n = 1 + O(N−1/2), which we denote by Z, i.e.,

Z =
∑N

n=1 v
∗
n. Let w∗n = v∗n/Z, then it holds that

S({x(n), w∗n} ‖ p) =
S({x(n), v∗n} ‖ p)

Z2
= O(N−1).

Therefore,∣∣∣∣∣
N∑

n=1

wnf(x(n))− Epf

∣∣∣∣∣ ≤‖ f̂ ‖Hp
·
√

S({x(n), wn} ‖ p)

≤‖ f̂ ‖Hp
·
√

S({x(n), w∗n} ‖ p)

= O(N−1/2).

Proposition 5.5. Let p(Xc | xs) be a PC that encodes
a conditional distribution over variables Xc conditioned
on Xs = xs, and k be a KC. If the PC p(Xc | xs) and
p(Xc | xs

′) are compatible and k is kernel-compatible with
the PC pair for any xs, xs

′, then the conditional kernel
function kp,s as defined in Proposition 5.4 can be tractably
computed.

Proof. From Proposition 5.4, kp,s can be written as

kp,s =

D∑
i=1

Exc∼p(Xc|xs),x′c∼p(Xc|x′s)[kp,i(x,x
′)],

where kp,i can be expanded as follows.

kp,i(x,x
′) =

p(¬ix)p(¬ix′)
p(x)p(x′)

k(x,x′)− p(¬ix)

p(x)
k(x,¬ix′)

− p(¬ix′)
p(x′)

k(¬ix,x′) + k(¬ix,¬ix′).

for any i ∈ c, given that none of the variables in Xs is
flipped in the above formulation, kernel kp,i can be further
written as

kp,i(x,x
′) =

p(¬ixc | xs)p(¬ix′c | x′s)
p(xc | xs)p(x′c | x′s)

k(x,x′)

− p(¬ixc | xs)

p(xc | xs)
k(x,¬ix′)

− p(¬ix′c | x′s)
p(x′c | x′s)

k(¬ix,x′)

+ k(¬ix,¬ix′).

By substituting kp,i into the expected kernel in the expecta-
tion of kp,i with respect to the conditional distributions can
be simplified to be a constant zero, that is,

Exc∼p(Xc|xs),x′c∼p(X′c|x′s)[kp,i(x,x
′)] = 0.

Thus, kp,s can be expanded as

kp,s(x,x
′) = Exc∼p(Xc|xs),x′c∼p(Xc|x′s)[

∑
i∈s

kp,i(x,x
′)]

=
∑
i∈s

[
p(¬ixs)p(¬ix′s)
p(xs)p(x′s)

·Mk(·,·)(p(· | ¬ixs), p(· | ¬ix′s))

− p(¬ixs)

p(xs)
·Mk(·,¬i·)(p(· | ¬ixs), p(· | x′s))

− p(¬ix′s)
p(x′s)

·Mk(¬i·,·)(p(· | xs), p(· | ¬ix′s))

+Mk(¬i·,¬i·)(p(· | xs), p(· | x′s))].

As Theorem 4.3 has shown that Mk(p, q) can be computed
exactly in time linear in the size of each PC, kp,s(x,x′) can
also be computed exactly in time O(|p1||p2||k|), where p1

and p2 denote circuits that represent the conditional prob-
ability distribution given the index set, i.e., p(· | xs) or
p(· | ¬ixs).

2 ALGORITHMS

Algorithm 1 summarizes how to perform the BBIS scheme
we propose for Categorical distributions, and generate a set
of weighted samples.

Algorithm 1 CATEGORICALBBIS(p, q, k, n)
Input: target distributions p over variables X, a black-box
mechanism q, a kernel function k and number of samples n
Output: weighted samples {(x(i), w∗i)}ni=1

1: Sample {x(i)}ni=1 from q
2: for i = 1, . . . , n do
3: for j = 1, . . . , n do
4: [Kp]ij = kp(x(i),x(j)) . cf. Section 5.2
5: w∗ = arg minw

{
w>Kpw

∣∣∑n
i=1 wi = 1, wi ≥ 0

}
6: return {(x(i), w∗i)}ni=1

	Proofs
	Algorithms

