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1 PROOFS

We first present another hardness result about the computa-
tion of expected kernels besides Theorem 2.2}

Theorem 1.1. There exist representations of distributions
p and q that are smooth and compatible, yet computing the
expected kernel of a simple kernel k that is the Kronecker
delta is already #P-hard.

Proof. (an alternative proof to the one in Section ) Con-
sider the case when the positive definite kernel k is a Kro-
necker delta function defined as k(x,x’) = 1 if and only if
x = x’. Moreover, assume that the probabilistic circuit p is
smooth and decomposable, and that ¢ = p. Then computing
the expected kernel is equivalent to computing the power of
a probabilistic circuit p, that is, My(p,q) = >, P*(x)
with X being the domain of variables X. Vergari et al.
[2021] proves that the task of computing Y, p*(x) is
#P-hard even when the PC p is smooth and decomposable,
which concludes our proof. O

Propositiond.d] Let p,, and g, be two compatible proba-
bilistic circuits over variables X whose output units n and
m are sum units, denoted by p(X) = 3=, ci0(n) Oipi(X)
and ¢ (X) = 3~ cin(m) 0745 (X) respectively. Let k; be a
kernel circuit with its output unit being a sum unit /, denoted
by ki(X) = 3" .cint) Veke(X). Then it holds that
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Proof. My, (pn, gm) can be expanded as
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Propositiond.5| Let p,, and ¢, be two compatible proba-
bilistic circuits over variables X whose output units n and m
are product units, denoted by p,,(X) = pp, (XL)pne (XR)
and ¢, (X) = ¢m (XL)gmg (XRr). Let k be a kernel cir-
cuit that is kernel-compatible with the circuit pair p,, and
qm With its output unit being a product unit denoted by
E(X,X'") = kL (XL, X[ )kr(XR, XR). Then it holds that

Mk (p'na Qm) = MkL (p’nu QML) . MkR (pnm QMR)-

Proof. My(pn, ¢m) can be expanded as
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Corollary[d.6} Following the assumptions in Theorem[4.3]
the squared maximum mean discrepancy MMD[H, p, q] in
RKHS H associated with kernel k as defined in |Gretton
et al.|[2012] can be tractably computed.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).



Proof. This is an immediate result following Theorem [4.3|
by rewriting MMD as defined in |Gretton et al.|[2012] in the
form of a linear combination of expected kernels, that is,
MMD*[H,p,q) = My(p,p) + My(q,q) — 2Mi(p,q). O

Corollary[d.7, Following the assumptions in Theorem[4.3]
if the probabilistic circuit p further satisfies determin-
ism, the kernelized discrete Stein discrepancy (KDSD)
D?(q || p) = Exx~glkp(x,x')] in the RKHS associ-
ated with kernel k£ as defined in|Yang et al.|[2018]] can be
tractably computed.

Before showing the proof for Corollary we first give
definitions that are necessary for defining KDSD as follows
to be self-contained.

Definition 1.2 (Cyclic permutation). For a finite set X and

D = |X|, a cyclic permutation = : X — X is a bijective
function such that for some ordering a1, as, -+ ,ap of the
elements in X, =a; = a(j+1) mod p» V@ = 1,2,-+-, D.

Definition 1.3 (Partial difference operator). For any func-
tion f : X — R with D = |X|, the partial difference
operator is defined as

with —X = (Xy,---,-X;, -+ ,Xp). Moreover,
the difference operator is defined as A*f(X) =
(AT f(X), -+, AL f(X)). Similarly, let — be the inverse
permutation of —, and A denote the difference operator
defined with respect to —, i.e.,

A f(X) = f(X) = f(m:i X),i=1,---,D.

Definition 1.4 (Difference score function). The (difference)
score function is defined as sp(X) = Ap(p)(())()
X with D =| X

dimension being

on domain

, a vector-valued function with its i-th

xy .o QX)L
5p,i(X) = 7p(X) 1

i=1,2,---,D.
3

Given the above definitions, the discrete Stein discrepancy
between two distributions p and q is defined as

D(q H p) ‘= sup Ex~q(X) [ﬁf(x)}v “4)
fer

where f : X — RP is a test function, belonging to some
function space H and 7, is the so-called Stein difference
operator, which is defined as

Tof = sp(x)fT — Af(x). Q)

If the function space H is an reproducing kernel Hilbert
space (RKHS) on X equipped with a kernel function &(-, -),

then a kernelized discrete Stein discrepancy (KDSD) is de-
fined and admits a closed-form representation as

S(q || p) :=D*(q || p) = Exxmglbp(x,X)].  (6)
Here, the kernel function k,, is defined as
kp(x, %) = 8,(x) T k(x, %) 8, (x') — 8, (x) T A k(x, %)
— A¥k(x, %) T8, (x') + tr(ASF k(x, X)),

where the difference operator A* is as in Definition|[I.3] The
superscript x specifies the variables that it operates on.

Proof. [Corollary By the definition of difference score
functions, the close form of KDSD can be further rewritten
as follows.

B /g [Fp (3, %))

D /
_ ZE&X/NQ[?(WX)P(WX )k(x, x') —
i=1

p(x)p(x’)

,p(_\ixl) x,x’ X, X
p(X/) k(—ix,x") + k(—;x, —;x)]
=Z[Mk(q%,q&) — Mi(q2E, )

- Mmq%) + My (i, Gi)]
@)

where D denotes the cardinality of the domain of variables
X, the probablity p;(X) := p(—;X) and the probablity
G:(X) := q(—;X). Notice that the cyclic permutation —;
operates on individual variable and the resulting PC p; and
@; retains the same structure properties as PCs p and q re-
spectively. To prove that KDSD can be tratably computed, it
suffices to prove that the expected kernel terms in Equation|[7]
can be tractably computed.

For a deterministic and structured-decomposable PC p, since
PC p; retains the same structure, then resulting ratio p; /p is
again a smooth circuit compatible with p by [Vergari et al.
[2021]]. Moreover, since PC p and ¢ are compatible, the
circuit p; /p is compatible with PC g. Thus, the resulting
product ¢ is a circuit that is smooth and compatible with
both p and ¢ by Theorem B.2 and thus compatible with
@;- By similar arguments, we can verify that all the circuit
pair in the expected kernel terms in Equation [7]satisfy the
assumptions in Theorem and thus they are amenable to
the tractable computation we propose in Algorithm [I] which
finishes our proof.

O

Proposition (convergence of Categorical BBIS). Let
f(x) be a test function. Assume that f — E,[f] € H,,, with



H,, being the RKHS associated with the kernel function k,,
and ), w; = 1, then it holds that

< Cf\/S({x("),wn} | ),

N
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n=1

where Cy :=| f —E,f ||3,. Moreover, the convergence
rate is O(N~1/2).

Proof. Let f(x) := f(x) — E, f, then it holds that
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We further prove the convergence rate of the estimation
error by using the importance weights as reference weights.
Let v} = %p(x(”))/q(x(”)). Then S({x™, v’} | p) is
a degenerate V-statistics [Liu and Lee, |2017] and it holds
that S({x(™ v} || p) = O(N~1). Moreover, we have that
25:1 vi =1+ O(N~1?), which we denote by Z, i.e.,
Z =N wr Letw} = v}/Z, then it holds that

S({x™, vs} || p)

S({x",wi} I p) = 72 =O(NT).

Therefore,

N
S wn ™)~ Epf| <I F g, -/SUx™, wa} || p)
n=1

<I| £ s, -/SUx, wp} || p)
= O(N~'/2).

Proposition Let p(X¢ | xs) be a PC that encodes
a conditional distribution over variables X. conditioned
on Xg = Xg, and k be a KC. If the PC p(X. | xs) and
p(Xe | xs") are compatible and & is kernel-compatible with
the PC pair for any xs, X, then the conditional kernel
function k,, s as defined in Proposition [5.4|can be tractably
computed.

Proof. From Proposition ks can be written as

D
kos = D Bxomp(Xeles) xmp(Xel) K (%, X)),

i=1

where £, ; can be expanded as follows.

(% x! :p(_‘ix)p(_‘ixl) . x') — p(—ix) X. %
kp,z( ) ) p(x)p(x’) k( 9 ) p(X) k( y 1 )
p(—ix’)

E(—x,x') + k(—;x, —;x).
0D i x) + Ko=)

for any ¢ € c, given that none of the variables in Xy is
flipped in the above formulation, kernel k), ; can be further
written as

) Cx! ’
kp’i(X,X,) :p( iXc | Xs)p( :Xc |,XS)
p(xe | xs)p(x¢ | x5)
p(_‘ixc | Xs) k
p(Xe | Xs)
Pty [ x0),
p(xe | %)
+ k(ﬁix, ﬁix/).

k(x,x")

(X’ _‘ixl)

(_'iX7 X/)

By substituting £, ; into the expected kernel in the expecta-
tion of k,, ; with respect to the conditional distributions can
be simplified to be a constant zero, that is,
!/
Ercomp(Xelxe) ximp(xe ) [Fp,i (36, X)) = 0.

Thus, k, s can be expanded as
s (36, X) = B (X ) imp(Xelxt) [ Kip,i (36,X)]

i€s

_ Z[p(_‘ixs)p(_‘ixls)

py p(Xs)P(Xé)
N pz()z;j;) Mg (0(- | 2ixs), (- | x5))
- ]m F Mgy (P( | %), p(- | 2i%))

+ Mk(m:-,m:-)(p(' ‘ xs)7p(' | X;))]

As Theorem 4.3| has shown that My, (p, ¢) can be computed
exactly in time linear in the size of each PC, & s(x, x’) can
also be computed exactly in time O(|p1||p2||k|), where p;
and p, denote circuits that represent the conditional prob-
ability distribution given the index set, i.e., p(- | xs) or
p(- | —iXs).

2 ALGORITHMS

Algorithm [I| summarizes how to perform the BBIS scheme
we propose for Categorical distributions, and generate a set
of weighted samples.

My (p(- | —ixs), (- | —ixg))



Algorithm 1 CATEGORICALBBIS(p, q, k, n)
Input: target distributions p over variables X, a black-box
mechanism ¢, a kernel function k£ and number of samples n

n

Output: weighted samples {(x(?), w?)}7_,

w* = argmin,, {w  Kpw | > w; =1, w; >0}

return {(x(", w})},

1: Sample {x(¥}7_, from ¢

2: for i=1,...,ndo

3: for j=1,....,ndo

4: [K,)i; = kp(x®),x19)) > cf. Section|5.2]
5:

6:
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