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Abstract

On playing video games, different players usually
have their own playstyles. Recently, there have
been great improvements for the video game AIs
on the playing strength. However, past researches
for analyzing the behaviors of players still used
heuristic rules or the behavior features with the
game-environment support, thus being exhausted
for the developers to define the features of dis-
criminating various playstyles. In this paper, we
propose the first metric for video game playstyles
directly from the game observations and actions,
without any prior specification on the playstyle
in the target game. Our proposed method is built
upon a novel scheme of learning discrete repre-
sentations that can map game observations into
latent discrete states, such that playstyles can be
exhibited from these discrete states. Namely, we
measure the playstyle distance based on game ob-
servations aligned to the same states. We demon-
strate high playstyle accuracy of our metric in ex-
periments on some video game platforms, includ-
ing TORCS, RGSK, and seven Atari games, and
for different agents including rule-based AI bots,
learning-based AI bots, and human players.

1 INTRODUCTION

Generally, players of a video game would demonstrate dif-
ferent playstyles [Tychsen and Canossa, 2008, Pirker et al.,
2016] to enrich playing experiences. Take a racing game
as an example: different players usually have their own
preferences on the track positions or the strategies of using
accelerations. Basically, the playstyle can be captured by
the characteristic of the sets of playing behaviors, where the
playing behavior is represented by the pair of game obser-
vation (i.e., screens) and its corresponding action taken by

the player.

Although it is known that the player modelling has been a
common domain in studying the behaviors of players [Yan-
nakakis et al., 2013], the playstyle which we are interested
here is able to deliver the intention or preferences of agents
or players. If we can directly measure playstyles rather than
just capturing some playing behaviors, it becomes useful to
develop AI bots for following various playstyles, such as
mimicking human players’ styles. Therefore, how to mea-
sure playstyles becomes important with great potential to
both the video game and the AI communities.

Recently, with the rapid growth of deep reinforcement learn-
ing (DRL) techniques, the trained AI bots not only achieve
super-human performance in several complicated games,
e.g., DotA2 [OpenAI, 2018] and StartCraft II [Vinyals et al.,
2019], but also attempt to discover new playstyles during
their training procedure [Baker et al., 2020]. However, it is
hard to have proper metrics to measure the diversity among
the playing polices of different AI bots, hence being difficult
for game developers to define a specific playstyle or even
enrich the playstyles in a new video game. To the best of
our knowledge, the existing works for the player behaviors
still mainly consider the heuristic rules or study behavior
features based on the explicit game-environment support
[Tychsen and Canossa, 2008, Pirker et al., 2016, Bontchev
and Georgieva, 2018, Yannakakis et al., 2013, Drachen et al.,
2012], where they are limited to some pre-defined playstyles.
So, it is hard to support a general playstyle metric in the
above way. It hence becomes more expected to have a gen-
eral metric to measure playstyles without any prior knowl-
edge about styles or game specifications.

The issue of designing a general metric for playstyles is
actually nontrivial in the sense that different combinations
of playing behaviors may lead to too many different game
results to make it hard to identify playstyles. In the past,
researches related to playstyles were studied on some ap-
plications, such as the categorization of driving behaviors
in the driver assistance systems [Brombacher et al., 2017,
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Shouno, 2018]. Some of these researches discovered differ-
ent driving behaviors by using discrete representations of
the states from sensor signals (derived by Hidden Markov
Models (HMMs) [Takano et al., 2008]), and then did clus-
tering for driving styles afterwards. Many works followed
to utilize these representations to perform analysis of the
time-series data of driving [Taniguchi et al., 2012, 2015,
2016]. As an extension of the analysis of driving behaviors,
Shouno [2018] propose a metric for evaluating the similarity
between driving styles based on the patterns derived from
the t-distributed stochastic neighbor embedding (t-SNE) of
image observations.

In addition to analyzing driving behaviors, another possi-
ble solution for evaluating the similarity between playstyles
from observations is to estimate the distance between distri-
butions of image observations (i.e., game screens) produced
during the game playing, via the metric such as Fréchet
Inception Distance [Heusel et al., 2017]. Nevertheless, the
above solution does not take actions into account. Besides,
some playstyles depend on random events in a game, which
does not exist in common image distribution comparisons.
Therefore, there exists a significant demand for the metric
capable of directly predicting playstyles from the rich infor-
mation composed of the observation-action pairs. This is an
issue to be addressed in this paper.

In this paper, we propose a novel metric to predict the video
game playstyles based on observations and actions of game
episodes without any prior knowledge about style specifica-
tions. Our proposed method, inspired by the above driving
styles, is built upon a novel scheme of learning discrete rep-
resentations, called hierarchical state discretization (HSD)
in this paper, which can map game observations into latent
discrete states, such that playstyles can be exhibited from
these discrete states. Discrete representation is reviewed in
Section 2, and HSD is described in Section 4. Namely, we
measure the playstyle distance based on game observations
aligned to the same states as presented in Section 3. Then,
we predict playstyles based on the playstyle distance. In
our experiments described in Section 5, we demonstrate
high playstyle accuracy of our proposed metric on three
video game platforms, including TORCS [Wymann et al.,
2014], RGSK1, and seven Atari games [Bellemare et al.,
2013], and for different agents including rule-based AI bots,
learning-based AI bots, and human players. Finally, we
make concluding remarks in Section 6.

2 BACKGROUND

The playstyle is closely related to the mapping from the
states of the game environment (i.e., the visual observations
or game screens in a video game) to the actions taken by the

1https://assetstore.unity.com/packages/
templates/racing-game-starter-kit-22615

agent/player (which actually being analogous to the policy).
Hence, the metric of playstyle intuitively would like to com-
pare if two agents intend to take similar actions with respect
to (nearly) the same states. However, when the observa-
tion space is high-dimensional or continuous, it is typically
hard to find the same observations across different game
recordings as the basis for further comparing the actions. In
order to deal with such a problem, we introduce a method
that learns the discrete representations of the observation
space, such that the probability of having the same states
across recordings significantly increases. A naive solution
for reducing the observation space could be from the simple
downsampling strategy, for instance, downsampling a given
game screen into an image with a much smaller resolution.
However, even when we have a low-resolution image af-
ter performing downsampling, e.g., 8×8 image size, with
assuming there are only 16 possible intensity values for
each pixel, the state space will end up with the size of 1664,
which is still too large to be feasible for our performing the
further metric computation. Another well-known solution
for obtaining discrete representations comes from the Vector
Quantised-Variational AutoEncoder (VQ-VAE), proposed
by [van den Oord et al., 2017], where a well-configured VQ-
VAE model can extract latent discrete states with contextual
information in video games, in which it fits the needs for
our playstyle metric.

A typical VQ-VAE model has three components: encoder,
decoder, and the embedding space, as shown in Figure 1.
In a VQ-VAE model, the encoder first projects the im-
age observation o to a latent feature map ze. Then, the
nearest neighbor method with respect to K shared tensors
E = {e1, · · · , eK} is used to turn ze into a discrete repre-
sentation s, that is, we replace each cell zie of the ze feature
map with its nearest neighbor in E by the following equa-
tion.

q(s = k|o) =

1 for ki = argmin
j
||zie(o)− ej ||2,

0 otherwise.
(1)

Basically, the discrete state s is a ordered group of indexes
to the elements in E, in which s can be easily recovered
back to the continuous form zq by creating a feature map
(having same size as ze) with its cells coming from the
corresponding tensors in E of each index in s. Finally, the
decoder attempts to reconstruct the observation o from the
restored latent code zq . Derived from VQ-VAE, we develop
a novel extension to further reduce the latent discrete space
for enabling the computation of our playstyle metric in
Section 4.

3 PLAYSTYLE METRIC

This section presents our definition for playstyle metrics.
In Section 3.1, we describe the terminology of the playing
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Figure 1: Illustration of VQ-VAE architecture [van den Oord et al., 2017]

dataset and playstyle. Then, we define the playstyle distance
in Section 3.2 and discuss its properties in Section 3.3.

3.1 REPRESENTATIONS OF PLAYSTYLES

In this subsection, we present the representation of the
playstyles. An agent plays a set of game episodes, which
are recorded as game recordings and collected as playing
datasets for playstyle evaluation. In reality, an agent may
play in several different styles in these game episodes. For
example, an agent tends to drive at the speed of 60 in a
segment of a game episode but at the speed of 90 in some
other segment. However, for simplicity of analysis, in this
paper, we assume that an agent always plays in a single
playstyle in a set of game recordings, which are collected as
a playing dataset; that is, a playing dataset represents one
playstyle. So, some datasets collected from a single agent
are supposed to have the same playstyle or have a high simi-
larity in playstyle. For example, let an AI-bot tend to play
at the speed of 60. Thus, all datasets collected from the bot
should have high similarity.

A playstyle metric is to measure the similarity of two
playstyles. In this paper, we measure the playstyle distance
between two datasets (representing two playstyles), which
will be described in the next subsection instead. If these two
playstyles have a small playstyle distance, we say that the
two corresponding playstyles tend to have high similarity.

3.2 PLAYSTYLE DISTANCE

Our metric aims to measure how close two playing datasets
A and B are. A dataset, say A, is a set of pairs of observa-
tions and their corresponding actions in the action space A .
Let OA denotes its observation set, a set of observations.2

For an observation o, an action a ∈ A is associated with
o to indicate how the agent acts to o. If the action space is

2An observation is usually represented by a tensor in the way of
how a player observes the game, e.g., consecutive 4 images of the
game screen is a common observation in the video games [Mnih
et al., 2015].

discrete (e.g., the keyboard inputs), we can use the categori-
cal distribution for modeling the action distribution. If the
action space is continuous (e.g., inputs from a scroll wheel),
we turn to use the multivariate normal distribution. In our
metric, an observation o is mapped to a discrete state s via
a mapping function φ from an observation set O to a set of
states S. In this paper, a mapping function based on state
discretization is described in Section 4.

In order to compare the action distributions between two
datasets, say A and B, we first derive the intersection Sφ of
the discrete states from OA and OB respectively, where

Sφ(A,B) = φ(OA) ∩ φ(OB). (2)

Given a state s ∈ Sφ and its corresponding action distribu-
tions πA and πB from A and B respectively, define a policy
distance on s as

dφ(A,B|s) =W2(πA, πB |s), (3)

where 2-Wasserstein distance (W2) [Kantorovich, 1939,
Vaserstein, 1969] is used to calculate the distance between
distributions in this paper, as it is widely used in the metric of
generative models, e.g., FID [Heusel et al., 2017]. The idea
of using this way is to compare actions on those observations
mapped to the same states only.

This paper presents two methods to calculate the playstyle
distance between two datasets A and B with the mapping
function φ. The first is to average the distance uniformly
over all the intersected states as

dφ(A,B) =

∑
s∈Sφ(A,B) dφ(A,B|s)
|Sφ(A,B)|

, (4)

where every state s in Sφ(A,B) has the same importance for
the playstyle metric. Obviously, it is symmetric in the sense
of dφ(A,B) = dφ(B,A). The second is to calculate the
expected distance according to the observation distribution
of OA and OB over Sφ, defined as

dφ(A,B) =
dφ(A|B)

2
+
dφ(B|A)

2
, (5)

where

dφ(X|Y ) = Eo∼OY ,φ(o)∈Sφ(X,Y )[dφ(X,Y |φ(o))]. (6)
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This method is symmetric too, but the expected distance
weighs more for those with high observation occurrences
in the game playing. To distinguish both methods, let us
illustrate the following case for two states: first, many ob-
servation occurrences on both A and B, say nA observation
occurrences in A and nB observation occurrences in B, are
mapped to a state, say s1 ∈ Sφ; second, only one observa-
tion occurrence on each of A and B are mapped to a set,
say s2 ∈ Sφ. In this case, the policy distance for s1 weighs
nA times more for dφ(A|B) (respectively nB times more
for dφ(B|A)) in the second method than the first, while the
policy distance for s1 weighs one for both methods. An ex-
ample in more detail is given in the appendix. For the above
two, if Sφ = ∅, the playstyle distance is set to undefined
which will be further described in the section for experi-
ments, as there is no common states across two playing
datasets to measure their playstyle similarity. For simplicity
of discussion, the rest of this paper are based on the second
only, since the experiment results described in the appendix
shows the second performs better than the first.

In practical implementation, we add an additional condition
to Sφ with a threshold t to discard the rarely visited states
that tends to be unstable during the metric computation.
With the threshold t, we use the following, instead of Sφ.

S′φ(A,B, t) = {s|s ∈ Sφ(A,B), Fφ(s,A) ≥ t, Fφ(s,B) ≥ t},
where Fφ(s,X) = |{o|o ∈ OX , φ(o) ∈ {s}}|.

(7)

3.3 DISCUSSION

As motivated previously in Section 1, prior works on model-
ing player behaviors usually require domain-specific knowl-
edge to extract relevant features or define target behaviors,
which is hard to be generalized to other video games. Our
playstyle metric in the previous subsection addresses the
following two issues. The first one is generality. In our met-
ric, we have no assumption on the targeting playstyle label,
except for states and actions. In other word, the metric is
capable of differentiating several playstyles in a game from
various playing datasets, such that the metric does not need
any predefined or specific features to the targeted playstyles,
such as the playing speeds, or positions for racing cars.

The second one is consistency. As described in the previous
subsections, two datasets with the same playstyle (or from
the same agent) tends to have small playstyle distance in
comparison to those with different playstyles, in terms of the
metric. While playstyle similarity or distance is subjective
in some sense, we assume that there exists an ideal or oracle
metric to measure playstyle distance. A metric of estimating
playstyle distance d∗(A,B) is said to be consistent to an
ideal similarity metric, if the following is satisfied.

Consistency Given any three playing datasets A, B and
C, the similarity between A and C is higher than that

between B and C in terms of the oracle metric, if and
only if d∗(A,C) < d∗(B,C).

In this paper, we argue that the expected playstyle distance
in (6) in our metric distinguishes the distance relatively after
a sufficient large number of samples. Namely, we argue
that the following property is satisfied for any three playing
datasets A, B and C, where the similarity between A and
C is higher than that between B and C.

Argument Given a sufficient large number of samples, the
expected playstyle distance in (6) satisfies the follow-
ing: dφ(A|C) < dφ(B|C) and dφ(C|A) < dφ(C|B).

The argument dφ(A|C) < dφ(B|C) implies that the ex-
pected distance from C to A is closer than that from C
to B according to C’s observation distribution. Next, the
argument dφ(C|A) < dφ(C|B) is similar, but in a differ-
ent aspect where the observation distribution is reversed,
namely, the targeting datasets A and B use their own ob-
servation distribution to calculate the expected distance to
C. We can consider the targeting datasets A and B have
consensus on the relation of distance value. With these ar-
guments, we derive that after a sufficient large number of
samples the playstyle distance given in (6) is consistent as
follows.

dφ(A,C) = dφ(A|C)/2 + dφ(C|A)/2
< dφ(B|C)/2 + dφ(C|B)/2

= dφ(B,C)

(8)

4 HIERARCHICAL STATE
DISCRETIZATION

As described in Section 3.2, we need a proper discrete state
mapping function φ to find the intersection states between
playing datasets. Thus, we develop a novel discrete represen-
tation learning method for enabling our proposed playstyle
metric in the high dimensional observation space. To start
with, we first provide the description on the design of our
discrete representation learning in Subsection 4.1. Next, we
introduce the gradient copy trick in VQ-VAE in Subsec-
tion 4.2. Finally, the training procedure of our model is
defined in Subsection 4.3.

4.1 ARCHITECTURE DESIGN

A well-configured VQ-VAE model is able to extract the
contextual information from raw observations in the video
games [van den Oord et al., 2017]; however, the size of state
space in a typical VQ-VAE model could be still too large
for our playstyle metric computation. To better control the
size of state space, while keeping the capacity of the latent
representation during the model optimization, we propose
a multi-hierarchy stacked structure of the VQ-VAE model,
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named as Hierarchical State Discretization (HSD), where
its model architecture is shown in Figure 2.

The convolutional encoder of our HSD in the base hierar-
chy (hierarchy 0, closest to the original observation space)
follows the original design in a VQ-VAE model, while we
add extra fully-connected encoders above the base hierarchy
for controlling the discrete state space. Basically, a fully-
connected encoder (in higher hierarchy other than the base
one) takes the latent representation obtained by the previous
hierarchy as its input and outputs a latent code, which is
then folded to the representation composed of B cells of
1-D feature map and gone through the vector quantization
procedure afterward as VQ-VAE does. The size of the dis-
crete state space during such procedure is KB , where K is
the number of candidate tensors used for quantization in the
embedding space at this hierarchy.

In the base hierarchy, in addition to the typical decoder
taking care of the observations, we have another decoder
related to the policy for encouraging discrete representations
to better capture the information of actions, which is also
quite important for our playstyle metric computation. Every
hierarchy above the base one has a fully-connected decoder
after the vector quantization procedure, which reconstructs
the latent representations in the lower hierarchy. Moreover,
we propose a weighted sum block to combine the latent
representation of hierarchy h and the decoder output of hi-
erarchy h + 1 as the input for the decoder of hierarchy h,
where the coefficients for such weighted sum are αh (sam-
pled from uniform distribution between 0 and 1) and 1−αh
respectively, as shown in Figure 2. Such mechanism of using
weighted sum blocks helps encouraging the decoder of the
base hierarchy to utilize the outputs from all the hierarchies,
thus the model training (i.e. gradients propagated from the
objective in the base hierarchy) can smoothly contribute to
all the subnetworks (i.e. decoders and encoders) in our HSD.
For learning our HSD model, in order to enable the gradient
propagation stopped by the nearest neighbor method of vec-
tor quantization, we follow the gradient copy trick proposed
in VQ-VAE and extend it for our HSD architecture, which
will be detailed in the next subsection.

It is worth noting that, there exists another well-known
hierarchical VQ-VAE, the VQ-VAE-2 framework proposed
by [Razavi et al., 2019], which is however quite different
from our HSD in two perspectives: (1) VQ-VAE-2 is aiming
to generate high-quality images with the autoregressive prior
in the latent representation, while our HSD instead attempts
to discover the intersection states between playing datasets;
(2) VQ-VAE-2 jointly uses the discrete latent maps obtained
from multiple hierarchies to generate the output image, thus
its main purpose is to increase the latent states for producing
delicate image details, while our HSD is proposed to reduce
the number of latent states. Moreover, the architectures of
VQ-VAE-2 and our HSD are distinct from each other.

4.2 GRADIENT COPY TRICK

There are two losses in gradient computation of a VQ-VAE
model: Lrec is the reconstruction error between the observa-
tions o and their corresponding reconstruction o′, and Lvq is
the vector quantization (VQ) loss between the latent repre-
sentation ze and its nearest code zq in the embedding space
(cf. Figure 1). We adopt the Huber function [Huber, 1992]
D for computing the reconstruction error D(o, o′) as well
as the VQ loss D(ze, zq):

Lrec = E[D(o, o′)], Lvq = E[D(ze, zq)] (9)

Let θencoder be the weights of the encoder in a VQ-VAE
model. The gradients of θencoder are computed by the chain
rule as Equation 10 with a gradient copy trick (i.e. the gra-
dients are copied from decoder input zq to encoder output
ze [van den Oord et al., 2017]) to make the backpropagation
going through the nearest neighbor path, where β is a coeffi-
cient to control the updating speed of the embedding vectors,
with a default value set to 0.25 suggested by VQ-VAE.

∇θencoder =
∂Lrec
∂zq

× ∂ze
∂θencoder

+ β × ∂Lvq
∂θencoder

(10)

4.3 TRAINING HSD MODEL

Here we introduce the objective functions for training our
proposed hierarchical state dicretization (HSD) framework.
First, we adopt the same reconstruction loss Lrec as original
VQ-VAE model on the observations. Second, for further
encouraging the features extracted from our HSD is also
aware of the information of policy/action, we add an extra
loss function Lπ defined as follows.

Lπ =

{
E[H(πlabel, πdecoder)] if A is discrete,
E[D(πlabel, πdecoder)] if A is continuous,

(11)
where H stands for the cross entropy, πdecoder and πlabel
are the action prediction produced by the policy decoder of
HSD and the corresponding groundtruth label, respectively.
Last, we revise the vector quantization loss of VQ-VAE to a
hierarchical fashion Lhvq with a hierarchy index h as follows
to better fit our HSD framework:

Lhvq = E[D(zhe , z
h
q )] (12)

As mentioned previously, the decoder in the base hierarchy
(i.e., hierarchy index 0) consists of the observation decoder
and the policy decoder, where their weights are θrec and θπ
respectively. The weights of the encoders, the embedding,
and the decoders with the hierarchy index h are then denoted
as θhenc, θ

h
embed, and θhdec respectively. The gradients of each

component are computed in Equation 13-Equation 14.

∇θhenc =
∂Lrec
∂zhq

× ∂zhe
∂θhenc

+
∂Lπ
∂zhq

× ∂zhe
∂θhenc

+ β ×
∂Lhvq
∂θhenc

(13)
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Figure 2: Architecture of our proposed hierarchical state discretization (HSD) model

Pixel LRD HSD Continuous

25 Styles 4.00 4.00 69.73 time out

5 Speed Styles 20.00 20.00 91.20 27.60

5 Noise Styles 20.00 20.00 81.33 23.20

Table 1: TORCS Playstyle Accuracy (%). Please refer to
Section 5.1 for detailed description.

∇θhembed =
∂Lhvq
∂θhembed

, ∇θhdec =
∂Lrec
∂θdec

+
∂Lπ
∂θdec

,

∇θrec =
∂Lrec
∂θrec

, ∇θπ =
∂Lπ
∂θπ

(14)

where the gradient copy trick is also adopted for the gradient
computation of θhenc .

5 EXPERIMENTS

This subsection evaluates our proposed playstyle metric on
several video game platforms, including TORCS, RGSK,
and seven Atari games. As described in Section 3, we as-
sume that a playing dataset represents one playstyle and
that an agent always plays in a single playstyle in a dataset.
So, in our experiment, let different agents p produce their
own datasets Cp as candidates, whose collection is de-
noted by C = {Cp}. Then, let these agents produce addi-
tional datasets Tp as targets. For Tp, find the most matching
playstyleC among the collection C in the following formula.

C = argmin
C′∈C

dφ(Tp, C
′). (15)

If C is Cp, also played by the agent p, then it is said to be a
correct prediction. Then, the playstyle prediction accuracy

is defined as the ratio of correct predictions over the total
number of trials, namely 100 trials for all Tp in our experi-
ments. The accuracy is used to evaluate the performance of
the playstyle metric.

In Subsection 5.1, we analyze the playstyles of rule-based AI
players in the racing game, TORCS. Then, in Subsection 5.2,
we recruit human players to play the racing game, RGSK,
for evaluating the metric upon the practical playstyles. Fi-
nally, we adopt several learning-based AI players to play
different Atari games in Subsection 5.3 to study the efficacy
of our proposed metric on a wide range of video games.

5.1 TORCS

In this subsection, our experiment is to analyze the
playstyles of the racing game, TORCS [Wymann et al.,
2014], by the rule-based AI agents developed in [Yoshida
et al., 2017], which are able to control the acceleration and
steering angle of the race car to maintain a target speed in
a given default track. Besides, since the randomness in the
single-player mode of TORCS is low, we also inject noises
sampled from a normal distribution into the action values
for generating diverse games.

Now, let us produce playing datasets Cs,n as candidates,
which contains a set of samples, namely 1024 samples in
our experiment, from game episodes played by the above
rule-based agent with the speed s and a noise level n. From
Section 3, each Cs,n represents a playstyle. In this experi-
ment, we use 5 different target speeds (i.e. 60, 65, 70, 75,
and 80) and 5 noise levels (denoted by n1, n2, n3, n4 and
n5) for the action value. For each noise level, the action
noises are sampled from two zero-mean Gaussian distribu-
tion related to the steers and accelerations; and the standard
deviation (of the steers and accelerations respectively) for
5 noise levels are (0.01,0.005), (0.02,0.01), (0.03,0.015),
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(0.04,0.02), and (0.05,0.025). Thus, we produce 25 datasets
as candidates in total. For playstyle prediction, we also pro-
duce the corresponding 25 datasets Ts,n as targets.

In this experiment, we use three different discrete represen-
tations from the training of HSD as described in Section 4,
where the HSD model includes one and only one hierarchy
above the base hierarchy, and the discrete state space is set
to 220. Table 1 shows a playsytle accuracy, 69.73%, aver-
aged from the three HSD representations. This table also
shows the playstyle accuracy for less datasets in the follow-
ing two experiments. First, given a noise level n at random,
consider the five speed datasets, C(s, n), where s are the
above five speeds. Second, similar to the first, given a speed
s at random, consider the five noise datasets, C(s, n), where
n are the above five noise levels. The results shows higher
playstyle accuracy, 91.20% for five speeds, and 81.33% for
five noise levels.

For comparison, we present the following three different
metrics. First, if we still use discrete representation, we con-
sider two metrics with different φ. The first, called Pixel,
straightforwardly uses the raw pixel values of 4 consecutive
screen observations as the states, namely s = φ(o) = o.
The second, called LRD, uses low-resolution downsampling
that resizes the raw screens (of observations) from (64,64)
to (8,8) with bilinear downsampling and also shrinks the
intensity value range from 0-255 to 0-15 by dividing the
intensity value by 16 and discarding the remainder. The last
metric, called Continuous, does not use discrete represen-
tation. It simply follows a common image distance metric
used in generative models, namely, FID [Heusel et al., 2017],
which simply compares the distance of two image datasets
in terms of the classification latent distribution, trained from
ImageNet [Deng et al., 2009] for identifying the similar-
ity between real images and generative images. However,
since the model used for FID is for ImageNet and cannot
directly be used in our game environment, we use the latent
distribution of our HSD model, as those of z1e in Figure 2.

For the three metrics, we experiment in the same way as that
for HSD. Table 1 show that playstyle accuracies for these
methods are obviously much lower than that for HSD. Note
that the performances of Pixel and LRD are low since there
are no intersection states in the experiment. For Continuous,
it runs out of time for the one with 25 styles, we can observe
that HSD clearly outperforms from five speed styles and
noise styles. The metric Continuous does not have high
accuracy since the observation distribution does not reflect
actions which are important in terms of playstyle.

We further study the proper size of state space and the thresh-
old t of our metric in Table 2. It is clear that using a large
threshold tends to lead to high accuracy in noise styles,
which inherently include big randomness. However, the
different thresholds do not make large difference in speed
styles. From the table, we observe that 220 is an appropriate

5 Speed Styles 216 220 224

t = 1 89.33 89.60 91.47

t = 2 89.73 91.20 89.60

t = 4 90.13 90.27 86.67

5 Noise Styles 216 220 224

t = 1 74.13 72.67 73.60

t = 2 78.27 81.33 78.67

t = 4 84.53 85.07 82.40

Table 2: The comparison of using different size of the HSD
state space and threshold in evaluating the playstyle accu-
racy (%) in TORCS. Please refer to Section 5.1 for detailed
description.

Nitro Surface Position Corner

Pixel 16.67 16.67 16.67 16.67

LRD 33.33 16.67 33.17 42.50

HSD 93.11 99.83 99.67 99.56

Table 3: RGSK Playstyle Accuracy (%). Please refer to
Section 5.2 for detailed description.

size of state space since it performs well in most cases. Thus,
in the rest of our experiments we use t = 2 and 220 state
space as a default setting. More comparisons and experiment
details can be found in our appendix.

5.2 RGSK

In this experiment, we further investigate our playstyle met-
ric with human players, based on another racing game,
RGSK, in which its development pack is available on the
Unity Asset Store. For RGSK, we use Unity ML-Agents
Toolkit [Juliani et al., 2018] to sample data, pairs of obser-
vations and actions, from human players. Each of human
players is requested to maintain a consistent playstyle during
game playing, which is sampled as a dataset representing
the playstyle. For example, a player are requested to use the
N2O boosting system, called Nitro in this paper, to accel-
erate the car in his/her own style. In this experiment, six
players, denoted by p1 to p6, are requested to play in their
own playstyles of using Nitro, where six datasets C1 to C6

from the six players are collected respectively as candidates.

Table 3 shows that the playstyle accuracy for HSD reaches
93.11%, which is much better than those for Pixel and LRD.
The experiment settings are nearly the same as TORCS,
except for the following differences: a screen is 72×128, in-
stead of 64×64; the action space is discrete with 27 actions,
a combination of three steering directions, three accelera-
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Asterix Breakout MsPacman Pong Qbert Seaquest SpaceInvaders

Pixel 67.10 59.05 70.95 34.20 30.00 14.95 30.35

LRD 92.20 59.85 96.75 94.15 83.70 42.70 56.10

HSD 98.65 93.83 93.85 91.55 94.58 93.87 79.72

Table 4: Atari Playstyle Accuracy (%). Please refer to Section 5.3 for detailed description.

tion levels and three driving direction controls (i.e. driving
forward, backward, and neutrally).

In addition to Nitro, we do experiments for other playstyles,
where the players are requested to play consistently in their
own styles in the following three style dimensions, called
Surface, Position and Corner. For Surface, players are re-
quested to maintain their own playstyles consistently on driv-
ing on either the road surface or the grass surface. For Posi-
tion, players are requested to maintain their own playstyles
consistently on driving the car in the inner or outer of the
track. For Corner, players are requested to maintain their
own playstyles consistently on passing a corner via drifting
or slowing down with a break. Table 3 also includes the
performances of these playstyle dimensions. From the ta-
ble, the playstyle accuracy for HSD reaches above 99% for
these playstyle dimensions, which again shows consistent
outperformance in comparison to those for Pixel and LRD.
The aforementioned experiments also demonstrate the gen-
erality of our metric on different playstyle dimensions, as
our metric does not need any prior knowledge about which
kinds of playstyles to measure.

5.3 ATARI 2600

Finally, we measure the playstyles of learning-based AI
agents for seven Atari games [Bellemare et al., 2013]. These
agents are trained by four available RL algorithms, i.e.
DQN [Mnih et al., 2015], C51 [Bellemare et al., 2017],
Rainbow [Hessel et al., 2018], and IQN [Dabney et al.,
2018]), provided by a deep reinforcement learning frame-
work Dopamine [Castro et al., 2018, Such et al., 2019]. For
each of these algorithms, five models are trained from ini-
tially different random seeds. Thus, there are 20 models in
total serving as 20 agents, each of which is presumed to play
in a unique playstyle.

The experiment measures the playstyle accuracy in a similar
way to those in the previous sections. Namely, 20 agents are
used to generate respectively 20 datasets as candidates. The
experimental settings are similar to those in the previous
subsections, except for the following modifications. Each
screen for observation is 84× 84 grayscale images, and the
action space is discrete.

Table 4 shows the performances of the three playstyle met-
rics, Pixel, LRD and HSD. We observe a phenomenon as

follows. Since observations have low randomness in Atari
games, the intersection of states of Atari games for both
Pixel and LRD are larger than those in the previous subsec-
tions, thus leading to the case that these two metrics have
much better performances than those in the previous sub-
sections (i.e. TORCS and RGSK). Nevertheless, even under
such phenomenon, our playstyle metric HSD remains to
outperform the other two for five games, while performing
slightly lower than LRD but still quite competitive for the
other two games (i.e. MsPacman and Pong).

6 CONCLUSION

We propose a novel playstyle metric for video games to
evaluate playstyle distances and predict playstyles, based
on a novel scheme of learning hierarchical discrete repre-
sentations. To our knowledge, such a metric is the first of
its kind without prior knowledge of the games. Our exper-
iment results shown in Section 5 also demonstrate high
playstyle prediction accuracy of this metric on video game
platforms, including TORCS, RGSK,and seven Atari games.
In fact, our work also leaves some open problems for the
future work. For example, measure the playsytles based on
segments of trajectories, not just pairs of observations and
actions, investigate the transitivity of playstyle distances,
and judge whether an AI acts like a human. Besides, we
make an assumption that each player has a single playstyle
for the simplicity of analysis. It is possible to extend our
metric to a more general case, which contains more than
one playstyle per person/dataset.
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