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1 ABSOLUTE ACCURACY RATES ON
UCI DATASETS

In Tab. 1, we report the absolute accuracy rates of kernel
regression over random gradient features extracted from the
fully connected architectures (e.g., vanilla ReLU networks,
ResNets and DenseNets) with three layers and widths 10,
100 and 500 and of kernel regression over the width limit
kernel. As can be seen, the various models achieve compa-
rable results on all dataset.

2 VALIDATING THE DUALITY
PRINCIPLE

To validate Thm. 2, we estimated the second and fourth
moments of the per-layer Jacobian ‖Jk‖2 and the squared
norm of the output of the corresponding reduced architec-
ture ‖f(k)(x;w)‖2 for ResNet architectures (with m = 2,
αl = 0.3) with a varying number of layers. The results
were obtained from the simulated results of 200 indepen-
dent runs per depth, where the value for k is random for each
depth. As can be seen in Fig. 1, the mean of both ‖Jk‖22
and ‖f(k)(x;w)‖22 closely match, while the fourth moment
E[‖Jk‖42] is upper and lower bounded by the corresponding
moments of the output, as predicted in Thm. 2.

*Equal contribution

(a) (b)

Figure 1: The second (a) and fourth (b) moments, in log
scale, of the per layer Jacobian norm ‖Jk‖2 and the squared
norm of the output of the corresponding reduced architecture
‖f(k)(x;w)‖2.
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Vanilla network ResNet DenseNet

Dataset 10 100 500 limit 10 100 500 limit 10 100 500 limit
Abalone 0.51 0.54 0.53 0.54 0.60 0.55 0.55 0.56 0.51 0.52 0.53 0.54

Adult 0.74 0.73 0.76 0.78 0.73 0.72 0.76 0.76 0.76 0.75 0.76 0.74
Bank 0.86 0.85 0.87 0.88 0.87 0.84 0.87 0.88 0.86 0.85 0.88 0.87
Car 0.75 0.81 0.88 0.90 0.76 0.81 0.87 0.89 0.74 0.83 0.88 0.89

Cardiotocography_10clases 0.67 0.73 0.77 0.80 0.70 0.73 0.78 0.78 0.68 0.72 0.77 0.78
Chess_krvk 0.25 0.28 0.36 0.39 0.28 0.29 0.35 0.38 0.28 0.31 0.36 0.38

Chess_krvkp 0.85 0.96 0.97 0.97 0.89 0.96 0.97 0.97 0.87 0.95 0.97 0.97
Connect 4 0.66 0.68 0.73 0.74 0.67 0.68 0.72 0.74 0.68 0.68 0.73 0.74
Contrac 0.46 0.44 0.48 0.48 0.47 0.44 0.49 0.50 0.48 0.43 0.49 0.50

Hill-Valley 0.52 0.57 0.59 0.61 0.53 0.57 0.60 0.57 0.47 0.57 0.63 0.57
Image-Segmentation 0.69 0.75 0.75 0.75 0.72 0.75 0.75 0.75 0.70 0.75 0.75 0.75

Led-Display 0.65 0.68 0.68 0.67 0.65 0.68 0.69 0.65 0.65 0.68 0.68 0.60
Letter 0.56 0.74 0.79 0.80 0.61 0.74 0.80 0.81 0.56 0.73 0.79 0.81
Magic 0.78 0.72 0.80 0.81 0.81 0.73 0.78 0.82 0.80 0.75 0.79 0.82

Molec-biol-splice 0.56 0.74 0.79 0.80 0.62 0.73 0.78 0.77 0.79 0.61 0.68 0.78
Mushroom 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.98 1.0 1.0 1.0

Nursery 0.79 0.87 0.92 0.92 0.84 0.86 0.91 0.93 0.80 0.88 0.92 0.93
Oocytes_merluccius_nucleus_4d 0.75 0.74 0.77 0.79 0.78 0.75 0.77 0.77 0.75 0.72 0.76 0.77

Oocytes_merluccius_states_2f 0.87 0.90 0.92 0.92 0.89 0.90 0.92 0.91 0.88 0.90 0.91 0.91
Optical 0.84 0.97 0.98 0.98 0.91 0.97 0.98 0.98 0.87 0.98 0.97 0.98
Ozone 0.94 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.97

Page_blocks 0.90 0.95 0.95 0.96 0.95 0.95 0.96 0.96 0.95 0.94 0.95 0.96
Pendigits 0.92 0.98 0.98 0.99 0.95 0.98 0.99 0.99 0.93 0.98 0.99 0.99

Plants_margin 0.46 0.68 0.76 0.77 0.54 0.70 0.80 0.77 0.48 0.63 0.74 0.77
Plants_texture 0.57 0.75 0.79 0.80 0.63 0.76 0.80 0.79 0.56 0.73 0.77 0.80
Plants_shape 0.42 0.47 0.52 0.55 0.42 0.50 0.54 0.53 0.38 0.44 0.49 0.53

Ringnorm 0.66 0.66 0.71 0.72 0.69 0.64 0.70 0.73 0.67 0.67 0.71 0.72
Semeion 0.70 0.90 0.93 0.93 0.80 0.92 0.93 0.93 0.72 0.81 0.92 0.92

Spambase 0.82 0.89 0.91 0.92 0.85 0.90 0.91 0.88 0.86 0.89 0.90 0.88
Statlog_german_credit 0.61 0.71 0.73 0.74 0.65 0.70 0.72 0.74 0.64 0.71 0.73 0.74

Statlog_image 0.90 0.93 0.95 0.95 0.91 0.93 0.95 0.95 0.90 0.93 0.95 0.95
Statlog_landsat 0.82 0.84 0.86 0.87 0.83 0.85 0.86 0.87 0.83 0.84 0.86 0.86
Statlog_shuttle 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.99 0.98 0.98 0.98 0.98

Steel_plates 0.66 0.70 0.74 0.75 0.70 0.70 0.73 0.74 0.66 0.70 0.73 0.75
Thyroid 0.92 0.93 0.95 0.95 0.94 0.94 0.95 0.95 0.94 0.94 0.95 0.95
Titanic 0.54 0.57 0.58 0.70 0.60 0.55 0.61 0.54 0.71 0.67 0.53 0.47

Twonorm 0.90 0.95 0.96 0.96 0.93 0.93 0.96 0.96 0.90 0.95 0.96 0.97
Waveform 0.75 0.74 0.80 0.81 0.77 0.73 0.80 0.81 0.74 0.75 0.81 0.81

Wall_following 0.71 0.79 0.83 0.84 0.73 0.80 0.83 0.83 0.71 0.78 0.82 0.80
Waveform_Noise 0.62 0.77 0.81 0.81 0.70 0.75 0.80 0.82 0.67 0.74 0.81 0.83
Wine_quality_red 0.53 0.55 0.58 0.59 0.54 0.54 0.58 0.60 0.54 0.56 0.59 0.60

Wine_quality_white 0.48 0.47 0.51 0.52 0.48 0.46 0.50 0.52 0.48 0.48 0.51 0.52
Yeast 0.49 0.45 0.50 0.50 0.51 0.45 0.49 0.50 0.50 0.46 0.50 0.51

Table 1: Results of kernel regression over random gradient features on UCI for architectures with 3 layers and widths 10,
100 and 500. The results are compared with the performance of the width limit kernels associated with each architecture.



3 USEFUL LEMMAS

Lemma 1. Let f(x;w) be a neural network (e.g., vanilla ReLU, ResNet, DenseNet) with N parameters. Let g(x;w) be a
pre-activation neuron within f(x;w). Let x 6= 0 be an arbitrary input. Then, the set {w | g(x;w) = 0} is of measure zero.

Proof. We prove the claim by induction on the depth of g(x;w). We denote by v ∈ RN1 the subset of w of weights involved
in the computation of g(x;w) and by u ∈ RN2 the rest of the weights. For simplicity, we will denote g(x; v) := g(x;w).

Base case: Assume g(x;w) is a neuron in the first hidden layer of f(x;w). Then, g(x;w) = 〈v, x〉, where v is a vector of
weights, subset to w. We notice that since x 6= 0, the zero set {w | g(x;w) = 0} = {u | 〈u, x〉 = 0} × RN2 is of dimension
N − 1. Therefore, {w | g(x;w) = 0} is of measure zero.

Induction hypothesis: Assume that for any neuron g(x;w) in the k’th layer, the set {w | g(x;w) = 0} is of measure 0.

Induction step: Let neuron g(x;w) in the (k + 1)’th layer. Then, we have:

g(x;w) = 〈v̂, ĝ(x; v \ v̂)〉 (1)

where v̂ are the weights of the specific neuron g(x;w), ĝ(x; v \ v̂) is a concatenation of the neurons that serve as inputs to
g(x;w) in the network f(x;w) and v \ v̂ denotes the set of weights involved in the computation of these neurons.

Let ĝ1(x; v \ v̂) be the first coordinate of ĝ(x; v \ v̂).

{v | g(x; v) = 0} ⊂{v | ĝ1(x; v \ v̂) 6= 0, g(x; v) = 0} ∪ {v | ĝ1(x; v \ v̂) = 0, g(x; v) = 0}
⊂{v | ĝ1(x; v \ v̂) 6= 0, g(x; v) = 0} ∪ R× {v \ v̂1 | ĝ1(x; v \ v̂) = 0}

(2)

We would like to prove that each set in this union is of measure zero. This will conclude the proof, since a union of measure
zero sets is measure zero as well. We note that by the induction hypothesis, the set {v \ v̂1 | ĝ1(x; v \ v̂) = 0} is of
measure zero. In particular, R× {v \ v̂1 | ĝ1(x; v \ v̂) = 0} is of measure zero. On the other hand, for any v \ v̂, such that,
ĝ1(x; v \ v̂) 6= 0, we have:

v̂1 = −
∑k
i=2 v̂i · ĝi(x; v \ v̂)

ĝ1(x; v \ v̂)
(3)

where k is the dimension of ĝ(x; v \ v̂). We notice that since the left hand side of Eq. 3 is a continuous function, the
set {v | ĝ1(x; v \ v̂) 6= 0, g(x; v) = 0} can be represented as a graph of a continuous function, where v̂1 satisfies Eq. 3.
Therefore, it is of measure zero. Hence, {w | g(x;w) = 0} is of measure zero as well.

Lemma 2. Let f(x;w) be a neural network (e.g., vanilla ReLU network, ResNet or DenseNet). Let x be a non-zero vector.

Then, the set
{
w | Jk = ∂fk(x;w)

∂Wk

}
is of measure 1.

Proof. It holds that:

Jk =
∂fk(x;w)

∂Wk
+
∂f ck(x;w)

∂Wk
(4)



We would like to prove that the set of w, such that, ∂f
c
k(x;w)
∂Wk = 1 is of measure 1.

First, we consider that the set of weights wγ,l within the expression f ck(x;w) =
∑
γ∈S\Sk

cγzγ
∏|γ|
l=1 wγ,l is disjoint to the

set of weights wki,j in Wk, since the complement f ck(x;w) sums over the paths γ that skip Wk. We note that zγ is a binary
function that indicates whether the neurons along the path γ are activated or not. Therefore, for any γ ∈ S \ Sk, we have:
∂zγ
∂Wk = 0 for every w, such that, the pre-activations of each neuron along the path γ are non-zero (otherwise, the gradient
is undefined). By Lem. 1, the complement of this set (i.e., all w, such that, the pre-activation of at least one neuron along
the path γ is zero) is of measure zero. Therefore, we conclude that ∂zγ

∂Wk = 0 holds almost surely. Since this is true for all
γ ∈ S \ Sk, we conclude that ∂f

c
k(x;w)
∂Wk = 0 almost surely.

Lemma 3. Let f(x;w) be a neural network (e.g., vanilla ReLU network, ResNet or DenseNet). Let x be a non-zero vector.
Then,

E[‖Jk‖p2] = E

[∥∥∥∥∂fk(x;w)

∂Wk

∥∥∥∥p
2

]
(5)

Proof. By Lem. 2, the set
{
w | Jk = ∂fk(x;w)

∂Wk

}
is of measure 1. Therefore, since w is distributed according to a continuous

distribution, we have the desired equation: E[‖Jk‖p2] = E
[∥∥∂fk(x;w)/∂Wk

∥∥p
2

]
.

4 PROOFS OF THE MAIN RESULTS

We make use of the following propositions and definitions to aid in the proofs of Thms. 1 and 2.

Proposition 1. Given a random vector w = [w1...wn] such that each component is identically and symmetrically distributed
i.i.d random variable with moments E[wm1 ] = cm (e.g., c0 = 1, c1 = 0), a set of non negative integers m1, ...,ml, such that,∑l
i=1mi is even, and a random binary variable z ∈ {0, 1}, such that, p(z | w) = 1− p(z | −w), then it holds that:

E

[
l∏
i=1

wmii z

]
=

∏l
i=1 cmi

2
(6)

Proof. We have:
l∏
i=1

cmi =

∫
w

l∏
i=1

wmii p(w) dw

=

∫
w|z=1

l∏
i=1

wmii p(w) dw +

∫
w|z=0

l∏
i=1

wmii p(w) dw

=

∫
w|z=1

l∏
i=1

wmii p(w) dw +

∫
w|z=1

l∏
i=1

(−wi)mip(w) dw

=

∫
w

l∏
i=1

wmii z · p(w) dw +

∫
w

l∏
i=1

(−wi)miz · p(w) dw

(7)

Since
∑l
i=1mi is even, it follows that:∫

w

l∏
i=1

(−wi)miz · p(w) dw =

∫
w

l∏
i=1

wmii z · p(w) dw (8)

Therefore,
l∏
i=1

cmi = 2

∫
w

l∏
i=1

wmii z · p(w) dw (9)

Put differently, ∏l
i=1 cmi

2
=

∫
w

l∏
i=1

wmii z · p(w) dw = E

[
l∏
i=1

wmii z

]
(10)



Proposition 2. Given a random vector w = [w1, ..., wn], such that,its components are i.i.d symmetrically distributed
random variable with moments E[wmi ] = cm (c0 = 1, c1 = 0), two sets of non negative integers m1, ...,ml, n1, ..., nl,
such that,

∑l
i=1mi ,

∑l
i=1 ni are even, ∀ i ∈ [l] : mi ≥ ni, and a random binary variable z ∈ {0, 1}, such that

p(z | w) = 1− p(z | −w), then it holds that:

E

[
1

wnii

l∏
i=1

wmii z

]
=

∏l
i=1 cmi−ni

2
(11)

Proof. Follows immediately from Prop. 1 since
∑
i(mi − ni) is even.

Definition 1 (ResNet path parametrization). Let f(x;w) be a ResNet with two layer residual branches (m = 2). A path
from input to output γ in f , defines a product of weights along the path denoted by:

Pγ =

L+1∏
l=0

pγ,l (12)

where:

pγ,l =


1 l /∈ γ
w1
γ,lzγ,lw

2
γ,l l ∈ γ, 0 < l ≤ L

wγ,l l = {0, L+ 1}
(13)

Here, w1
γ,l, w

2
γ,l are weights associated with residual branch l, wγ,0, wγ,L+1 belong to the first and last linear projection

matrices W 0,WL+1, and zγ,l is the binary activation variable relevant for weight w1
γ,l. (Note that zγ,l depends on w1

γ,l,
but not on w2

γ,l ). l /∈ γ indicates if layer l is skipped.

Definition 2 (DenseNet path parametrization). Let f(x;w) be a DenseNet. A path γ from input in to output in f , defines a
product of weights along the path denoted by:

Pγ =

L+1∏
l=0

pγ,l (14)

where:

pγ,l =


1 l /∈ γ
wγ,lzγ,l l ∈ γ, 0 < l ≤ L
wγ,l l = {0, L+ 1}

(15)

Here,wγ,l is a weight associated with layer l,wγ,0, wγ,L+1 belong to the first and last linear projection matricesW 0,WL+1,
and zγ,l is the binary activation variable relevant for weight wγ,l. The notation l /∈ γ indicates that the layer l is skipped.

Similarly, we denote z(k)γ,l , p(k)γ,l and P (k)
γ to be the same quantities as zγ,l, pγ,l and Pγ for the network f(k) instead of f .

Proposition 3. Let f(x;w) be a ResNet/DenseNet/ANN. For any set of even m paths from input to output {γi}mi=1, it holds
that:

E

[
m∏
i=1

Pγi

]
=

{∏L+1
l=0

(
E
[∏m

i=1 pγi,l |
∑l−1
h=0 ‖qh‖2 > 0

])
f(x;w) is DenseNet∏L+1

l=0

(
E
[∏m

i=1 pγi,l | ‖yl−1‖2 > 0
])

f(x;w) is ResNet or ANN
(16)

Proof. We prove the claim for DenseNets. The extension to ANNs and ResNets is trivial, and requires no further arguments.
We have that:

E

[
m∏
i=1

Pγi

]
= E

[
L+1∏
l=0

(
m∏
i=1

pγi,l

)]
(17)



From the linearity of the last layer, it follows that:

E

[
m∏
i=1

Pγi

]
= E

[
L∏
l=0

(
m∏
i=1

pγi,l

)]
· E

[
m∏
i=1

pγi,L+1

]

= E

[
L∏
l=0

(
m∏
i=1

pγi,l

)]
· E

[
m∏
i=1

wγi,L+1

] (18)

We denote by {wL+1
u }su=1 the set of s ≤ m unique weights in {wγi,L+1}mi=1, with corresponding multiplicities {mL+1

u }su=1,
such that,

∑s
u=1m

L+1
u = m. It follows that:

E

[
m∏
i=1

Pγi

]
= E

[
L∏
l=0

(
m∏
i=1

pγi,l

)]
· E

[∏
u

(
wL+1
u

)mL+1
u

]

= E

[
L∏
l=0

(
m∏
i=1

pγi,l

)]
·
∏
u

cmL+1
u

(19)

where cmL+1
u

is the mL+1
u ’th moment of a normal distribution.

Since the computations done by all considered architectures form a Markov chain, such that, the output of any layer depends
only on the set Rl−1 of weights in the previous layers, we have that:

E

[
L∏
l=0

(
m∏
i=1

pγi,l

)]
= E

[
L−1∏
l=0

(
m∏
i=1

pγi,l

)
E

[
m∏
i=1

pγi,L

∣∣∣∣∣RL−1
]]

(20)

And also,

E

[
m∏
i=1

pγi,L

∣∣∣∣∣RL−1
]

= E

[
m∏
i=1

pγi,L

∣∣∣∣∣RL−1
]

= E

[
m∏
i=1

pγi,L

∣∣∣∣∣q0, ..., qL−1
]

(21)

We note that the pre-activations yL conditioned on q0, ..., qL−1 are distributed according to zero mean i.i.d Gaussian
variables. In addition, the coordinates of qL = 2φ(yL) are i.i.d distributed. We denote by {zu}su=1 the set of unique activation
variables in the set {zγi,L}mi=1. For each zu, we denote by {wLu,v} the set of unique weights in {wγi,L} multiplying zu, with
corresponding multiplicities mL

u,v, such that,
∑
u,vm

L
u,v = m, and

∑
vm

L
u,v = mL+1

u . Note that, from the symmetry of
the normal distribution, it holds that odd moments vanish, and so we only need to consider even mL+1

u for all u. From the
independence of the set {zu}, the expectation takes a factorized form:

E

[
m∏
i=1

pγi,L

∣∣∣∣∣q0...qL−1
]

= 1

[
L−1∑
l=0

‖ql‖2 > 0

]
· E

[
m∏
i=1

pγi,L | q0, ..., qL−1
]

= 1

[
L−1∑
l=0

‖ql‖2 > 0

]
·
s∏

u=1

E

[
zu
∏
v

(wLu,v)
mLu,v

∣∣∣∣∣q0, ..., qL−1
] (22)

Using Prop. 1:
s∏

u=1

E

[
zu
∏
v

(wLu,v)
mLu,v

∣∣∣∣∣q0...qL−1
]

=1

[
L−1∑
l=0

‖ql‖2 > 0

]
·
s∏

u=1

(∏
v cmLu,v

2

)

=1

[
L−1∑
l=0

‖ql‖2 > 0

]
· E

[
m∏
i=1

pγi,L

∣∣∣∣∣
L−1∑
l=0

‖ql‖2 > 0

] (23)

It then follows:

E

[
L∏
l=0

(

m∏
i=1

pγi,l)

]
= E

[
1

[
L−1∑
l=0

‖ql‖2 > 0

]
·
L−1∏
l=0

(
m∏
i=1

pγi,l

)]
·
s∏

u=1

(∏
v cmLu,v

2

)

= E

[
L−1∏
l=0

(
m∏
i=1

pγi,l

)]
· E

[
m∏
i=1

pγi,L

∣∣∣∣∣
L−1∑
l=0

‖ql‖2 > 0

] (24)



Recursively applying the above completes the proof.

Theorem 1. Let f(x;w) be a ResNet/DenseNet. Then, for any non-negative even integer m, we have:

∀ k : Ew
[
(f(k)(x;w))m

]
= Ew [(fk(x;w))m] (25)

Proof. We present the proof using the DenseNet path parameterization. Extending to ResNet parameterization is trivial and
requires no additional arguments. We aim to show that for any even integer m > 0, and ∀ k = {lk, hk}:

E
[
(f(k)(x;w))m

]
= E [(fk(x;w))m] (26)

The output fk(x;w) can be expressed in the following manner:

fk(x;w) =
∑
γ∈Sk

cγ

L+1∏
l=0

pγ,l (27)

Since the output f(k)(x;w) is composed of products of weights and activations along the same paths γ ∈ Sk as fk (with
different activation variables), we only need to prove the following: for any weight matrix Wk, and a set of m paths
γ1, ..., γm ∈ Sk, it holds that:

E

[
m∏
i=1

Pγi

]
= E

[
m∏
i=1

P
(k)
γi

]
(28)

Using Prop. 3:
L+1∏
l=0

(
E

[
m∏
i=1

pγi,l

∣∣∣∣∣
l−1∑
h=1

‖qh‖2 > 0

])
=

L+1∏
l=0

(
E

[
m∏
i=1

pkγi,l

∣∣∣∣∣
l−1∑
h=1

‖qh(k)‖2 > 0

])
(29)

Note that for both the full and reduced architectures, flipping the sign of all the weights in layer l will flip the ensuing
activation variables (except for a set of measure zero defined by

∑lk−1
l=0 W lk,lql = 0, which does not affect the expectation.

And so, using Prop. 1 along with Eq. 23:

E

[
m∏
i=1

pγi,l

∣∣∣∣∣
l−1∑
h=1

‖qh‖2 > 0

]
= E

[
m∏
i=1

pkγi,l

∣∣∣∣∣
l−1∑
h=1

‖qh(k)‖2 > 0

]
(30)

completing the proof.

Theorem 2. Let f(x;w) be a ResNet/DenseNet. Then, we have for all k:

1. Ew
[
‖Jk‖22

]
= Ew

[
(f(k)(x;w))2

]
.

2.
Ew
[
(f(k)(x;w))4

]
3 ≤ Ew

[
‖Jk‖42

]
≤ Ew

[
(f(k)(x;w))4

]
.

Proof. We present the proof using the DenseNet path parameterization. Extending to ResNet parameterization is trivial and
requires no additional arguments. Neglecting scaling coefficients for notational simplicity, let k = (lk, hk) be an index of a
weight matrix Wk in f(x;w), by Lem. 3, we have:

E
[
‖Jk‖22

]
= E

[∥∥∥∥∂fk(x;w)

∂Wk

∥∥∥∥2
2

]
=
∑
i,j

E


 ∑
γ∈S s.t: wk

i,j∈γ

1

wk
i,j

Pγ

2
 (31)

where γ s.t: wk
i,j ∈ γ denotes a path that includes the weight wk

i,j . From Prop. 3, the expectation is factorized as follows:

E

[∥∥∥∥∂fk(x;w)

∂Wk

∥∥∥∥2
2

]

=
∑
i,j

∑
γ∈S s.t: wk

i,j∈γ

E

( 1

wk
i,j

pγ,lk

)2 ∣∣∣∣∣
lk−1∑
h=0

‖qh‖2 > 0

 ·∏
l 6=lk

E

[
(pγ,lk)

2

∣∣∣∣∣
l−1∑
h=0

‖qh‖2 > 0

] (32)



Using Props. 1 and 2, for all γ ∈ S, such that, wk
i,j ∈ γ, we have:

E

( 1

wk
i,j

pγ,lk

)2 ∣∣∣∣∣
lk−1∑
h=0

‖qh‖2 > 0


=E

(wk
i,jzγ,lk

wk
i,j

)2 ∣∣∣∣∣
lk−1∑
h=0

‖qh‖2 > 0

 = 1/2 = E

[
(pγ,lk)2

∣∣∣∣∣
lk−1∑
h=0

‖qh‖2 > 0

] (33)

Inserting into Eq. 32, and using Thm. 1 proves the first claim.

Next we would like to prove the second claim. By Lem. 1, we have:

E
[
‖Jk‖42

]
=E

[∥∥∥∥∂fk(x;w)

∂Wk

∥∥∥∥2
2

·
∥∥∥∥∂fk(x;w)

∂Wk

∥∥∥∥2
2

]

=
∑
i,j

∑
i′,j′

E


 ∑
γ s.t wk

i,j∈γ

1

wk
i,j

Pγ

2
 ∑
γ s.t wk

i′,j′∈γ

1

wk
i′,j′

Pγ


2

=
∑

i,i′,j,j′

E

 1

(wk
i,j)

2(wk
i′,j′)

2

∑
γ1,γ2 s.t wk

i,j∈γ1,γ2

∑
γ3,γ4 s.t wk

i′,j′∈γ
3,γ4

Pγ1Pγ2Pγ3Pγ4


(34)

By applying Prop. 3, the expectation is factorized as follows:

E
[
‖Jk‖42

]
=

∑
i,i′,j,j′

γ1,γ2 s.t wk
i,j∈γ

1,γ2

γ3,γ4 s.t wk
i′,j′∈γ

3,γ4

E

[ ∏4
h=1 pγh,lk

(wk
i,j)

2(wk
i′,j′)

2

∣∣∣∣∣
lk−1∑
h=0

‖qh‖ > 0

]
·
∏
l 6=lk

E

[
4∏

h=1

pγh,l

∣∣∣∣∣
l−1∑
h=0

‖qh‖ > 0

] (35)

Using Props. 1 and 2, for all γ1, γ2, such that, wki,j ∈ γ1 and wk
i′,j′ ∈ γ2, we have:

E

[ ∏4
h=1 pγh,k

(wk
i,j)

2(wk
i′,j′)

2

∣∣∣∣∣
lk−1∑
h=0

‖qh‖2 > 0

]

=E

[
(wk

i,j)
2(wk

i′,j′)
2zγ1,kzγ2,k

(wk
i,j)

2(wk
i′,j′)

2

∣∣∣∣∣
k−1∑
h=0

‖qh‖2 > 0

]

=

{
1/2 wk

i,j ≡ wk
i′,j′

1/4 otherwise

=


1
3E

[∏4
h=1 pγh,k

∣∣∣∣∣∑lk−1
h=0 ‖qh‖2 > 0

]
wk
i,j ≡ wk

i′,j′

E

[∏4
h=1 pγh,k

∣∣∣∣∣∑lk−1
h=0 ‖qh‖2 > 0

]
otherwise

(36)

Inserting into Eq. 35 proves the second claim.

We use the following proposition to aid in the proofs of Thms. 3 and 4.

Proposition 4. Let f(x;w) be a vanilla fully connected ReLU network, with intermediate outputs given by:

∀ 0 ≤ l ≤ L : yl =
√

2φ

(
1

√
nl−1

W lyl−1
)

(37)



where the weight matrices W l ∈ Rnl×nl−1 are normally distributed. Then, the following holds at initialization:

E
[
‖yl‖22

]
=

nl
nl−1

E
[
‖yl−1‖22

]
E
[
‖yl‖42

]
=
nl(nl + 5)

n2l−1
E
[
‖yl−1‖42

] (38)

Proof. Absorbing the scale
√

2
nl−1

into the weights, we denote by Zl the diagonal matrix holding in its diagonal the

activation variables zlj for unit j in layer l, and so we have:

yl = ZlW lyl−1 (39)

Conditioning on Rl−1 = {W 1, ...,W l−1} and taking expectation:

E
[
‖yl‖22 | Rl−1

]
= yl−1

>
E
[
W l>ZlW l

]
yl−1

=

nl∑
j=1

nl−1∑
i1,i2=1

yl−1i1
yl−1i2

E
[
wli1,jw

l
i2,jz

l
j | Rl−1

] (40)

From Prop. 1, it follows that:

E
[
‖yl‖22

]
= E

[
E
[
‖yl‖22 | Rl−1

]]
=

nL
nL−1

E
[
‖yl−1‖22

]
(41)

Similarly:

E
[
‖yl‖42 | Rl−1

]
= E

[(
yl−1

>
W l>ZlW lyl−1

)2 ∣∣∣Rl−1]
=

∑
j1,j2,i1,i2,i3,i4

4∏
t=1

yl−1it
· E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2z

l
j1z

l
j2 | R

l−1] (42)

From Prop. 1, and the independence of the activation variables conditioned on Rl−1:

∑
j1,j2,i1,i2,i3,i4

4∏
t=1

yl−1it
· E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2z

l
j1z

l
j2 |R

l−1]
=

∑
j1,j2,i1,i2,i3,i4

4∏
t=1

yl−1it
· E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2z

l
j1z

l
j2 |R

l−1]
·
(
1j1=j2,i1=i2=i3=i4 + 1j1=j2,i1=i2,i3=i4,i1 6=i3

+ 1j1=j2,i1=i3,i2=i1,i2 6=i3 + 1j1=j2,i1=i4,i2=i3,i1 6=i2 + 1j1 6=j2,i1=i2,i3=i4

)
(43)

and so:

E
[
‖yl‖42

]
=

6nl
n2l−1

∑
i

E
[
(yl−1i )4

]
+

6nl
n2l−1

∑
i1 6=i2

E
[
(yl−1i1

)2(yl−1i2
)2
]

+
nl(nl − 1)

n2l−1

∑
i1,i2

E
[
(yl−1i1

)2(yl−1i2
)2
]

=
nl(nl + 5)

n2l−1
E
[
‖yl−1‖42

]
(44)

proving the claim.



Proposition 5. For a vanilla fully connected linear network, with intermediate outputs given by:

∀ 0 ≤ l ≤ L : yl =
1

√
nl−1

W lyl−1 (45)

where the weight matrices W l ∈ Rnl×nl−1 are normally distributed, the following holds at initialization:

E
[
‖yl‖22

]
=

nl
nl−1

E
[
‖yl−1‖22

]
E
[
‖yl‖42

]
=
nl(nl + 2)

n2l−1
E
[
‖yl−1‖42

] (46)

Proof. The proof follows immediately from the derivation of Prop. 4, and will be omitted for brevity.

Proposition 6. Let f(x;w) be a vanilla fully connected linear network, with intermediate outputs given by:

∀ 0 ≤ l ≤ L : yl(x) =
1

√
nl−1

W lyl−1(x) (47)

where the weight matrices W l ∈ Rnl×nl−1 are normally distributed. Then, the following holds at initialization:

E
[
(yl(x′))> · yl(x)

]
=

nl
nl−1

E
[
(yl−1(x′))> · yl−1(x)

]
E
[
(yl(x′)>yl(x))2

]
=

1

n
E
[
((yl−1(x′))>yl−1(x))2

]
+ E

[
‖yl−1(x′)‖2‖yl−1(x)‖2

]
E
[
‖yl(x′)‖2‖yl(x)‖2

]
= E

[
((yl−1(x′))>yl−1(x))2

]
+

1

n
E
[
‖yl−1(x′)‖2‖yl−1(x)‖2

]
.

(48)

Proof. Absorbing the scale
√

1
nl−1

into the weights, we can write instead:

yl(x) = W lyl−1(x) (49)

Conditioning on Rl−1 = {W 1, ...,W l−1} and taking expectation:

E
[
(yl(x′))> · yl(x) | Rl−1

]
= yl−1(x′)

>
E
[
W l>W l

]
yl−1(x)

=

nl∑
j=1

nl−1∑
i1,i2=1

yl−1i1
(x′)yl−1i2

(x)E
[
wli1,jw

l
i2,j | R

l−1] (50)

From Prop. 1, it follows that:

E
[
(yl(x′))> · yl(x)

]
= E

[
E
[
(yl(x′))> · yl(x) | Rl−1

]]
=

nL
nL−1

E
[
yl−1(x′)> · yl−1(x)

]
(51)

Similarly:

E
[
((yl(x′))> · yl(x))2 | Rl−1

]
= E

[(
yl−1(x′)

>
W l>W lyl−1(x)

)2 ∣∣∣Rl−1]
=

∑
j1,j2,i1,i2,i3,i4

yl−1i1
(x′) · yl−1i2

(x′) · yl−1i3
(x) · yl−1i4

(x) · E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2 | R

l−1]
(52)

We denote: Qli1,...,i4 := yli1(x′) · yli2(x′) · yli3(x) · yli4(x). From Prop. 1, and the independence of the activation variables
conditioned on Rl−1: ∑

j1,j2,i1,i2,i3,i4

Qli1,...,i4 · E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2 |R

l−1]
=

∑
j1,j2,i1,i2,i3,i4

Qli1,...,i4 · E
[
wli1,j1w

l
i2,j1w

l
i3,j2w

l
i4,j2 |R

l−1]
·
(
1j1=j2,i1=i2=i3=i4 + 1j1=j2,i1=i2,i3=i4,i1 6=i3

+ 1j1=j2,i1=i3,i2=i1,i2 6=i3 + 1j1=j2,i1=i4,i2=i3,i1 6=i2 + 1j1 6=j2,i1=i2,i3=i4

)
(53)



After some quick calculations we have:

E
[
(yl(x′)>yl(x))2

]
=

1

n
E
[
((yl−1(x′))>yl−1(x))2

]
+ E

[
‖yl−1(x′)‖2‖yl−1(x)‖2

]
. (54)

proving the claim.

Theorem 3. Let f(x;w) be a depth L, constant width ResNet with residual branches of depth m (with n′0, nl, nl,h = n for
all l ∈ [L] and h ∈ [m]), with positive initialization constants {αl}Ll=1. Then, there exists a constant C > 0 such that:

max

[
1,

∑
u α

2
lu∑

u,v αluαlv
· ξ

]
≤ η(n,L) ≤ ξ (55)

where:

ξ = exp

[
5m

n
+
C

n

L∑
l=1

αl
1 + αl

]
· (1 +O(1/n)) (56)

Proof. Using the result of Thm. 2, and using Cauchy–Schwartz inequality, an upper bound to η can be derived:

η =
E[K(x, x)2]

K̊RL (x, x)2

=

∑
u,v E[‖Ju‖22 · ‖Jv‖22]

K̊RL (x, x)2

≤
∑

u,v

√
E[‖Ju‖42] · E[‖Jv‖22]

K̊RL (x, x)2

≤

∑
u,v

√
E[‖f(u)(x;w)‖42] · E[‖f(v)(x;w)‖22]

K̊RL (x, x)2

(57)

The lower bound is similarly derived using Thm. 2:

η ≥
∑

k E[‖Jk‖42]

K̊RL (x, x)2
≥ 1

3
·
∑

k E[‖f(k)(x;w)‖42]

K̊RL (x, x)2
(58)

The asymptotic behaviour of η is therefore governed by the propagation of the fourth moment E[‖yl(k)‖
4
2] through the model.

In the following proof, for the sake of notation simplicity, we omit the notation k = (lk, hk) in yl(k), and assume that yl

stands for the reduced network yl(k). The recursive formula for the intermediate outputs of the reduced network are given by:

yl =

{
yl−1 +

√
αly

l−1,m 0 < l ≤ L, l 6= lk√
αly

l−1,m l = lk
(59)

where:

yl−1,h =


√

1
nW

l,hql−1,h−1 1 < h ≤ m√
1
nW

l,hyl−1 h = 1
(60)

with ql−1,h =
√

2φ(yl−1,h).



Using the results of Props. 4 and 5, for layer L, we have:

E
[
‖yL‖22

]
=E
[
‖yL−1‖22

]
+
αL
n

E
[
yL−1,m−1

>
WL,m>WL,myL−1,m−1

]
=E
[
‖yL−1‖22

]
+ αLE

[
‖yL−1,m−1‖22

]
=E
[
‖yL−1‖22

]
· (1 + αL)

=E
[
‖ylk‖22

] L∏
l=lk+1

(1 + αl)

=E
[
‖ylk−1‖22

]
αlk

L∏
l=lk+1

(1 + αl)

=αlkE[‖y0‖42]

L∏
l=1
l 6=lk

(1 + αl)

(61)

For the fourth moment, using the results of Props. 4 and 5 (taking into account that odd powers will vanish in expectation), it
holds:

E
[
‖yL‖42

]
=E
[
‖yL−1‖42

]
+ α2

LE
[
‖yL−1,m‖42

]
+ 4αLE

[(
yL−1,m

>
yL−1

)2]
+ 2αLE

[
‖yL−1,m‖22 · ‖yL−1‖22

] (62)

Next, we analyze each term separately:

E
[
‖yL−1,m‖42

]
= E

[
E[‖yL−1,m‖42 | RL−1]

]
(63)

Using the results of Props. 4 and 5:

E
[
‖yL−1,m‖42 | RL−1

]
= (1 + 2/n) · (1 + 5/n)

m−1 · ‖yL−1‖42
≈ (1 + 5/n)

m · ‖yL−1‖42
(64)

In addition,

E

[(
yL−1,m−1

>
yL−1

)2]
=

1

n

∑
j1,j2,i1,i2

E
[
yL−1,m−1i1

yL−1,m−1i2
yL−1j1

yL−1j2
wL,mi1,j1

wL,mi2,j2

]
=

1

n
E
[
‖yL−1,m−1‖22 · ‖yL−1‖22

]
=

1

n
E
[
‖yL−1‖42

]
(65)

and also,
E
[
‖yL−1,m‖22 · ‖yL−1‖22

]
= E

[
‖yL−1‖42

]
(66)

Plugging it all into Eq. 62, by recursion, we have:

E
[
‖yL‖42

]
≈ E

[
‖ylk‖42

]
·

L∏
l=lk+1

βl (67)

where,
βl := 1 + 2αl (1 + 2/n) + α2

l (1 + 5/n)
m (68)

In the reduced architecture, the transformation from layer lk − 1 to layer lk is given by an m layer fully connected network,
with a linear layer on top, we can use the results from the vanilla case, and assigning ‖y0‖42 = 1:

E
[
‖yL‖42

]
= α2

lk
(1 + 2/n) · (1 + 5/n)

m−1
L∏
l 6=lk

βl

≈ α2
lk

(1 + 5/n)
m

L∏
l 6=lk

βl

(69)



Denoting ρ = (1 + 5/n)
m
2 , and using the following:

βl ≈ (1 + αlρ)
2 (70)

It follows that:
E[K(x, x)2] /

∑
u,v

√
E[‖yL(u)‖

4
2]E[‖yL(v)‖2]

≈ (1 + 5/n)
m
∑
u,v

αluαlv

√√√√√
 L∏
l 6=lu

βl

 L∏
l 6=lv

βl


= (1 + 5/n)

m
∑
u,v

αluαlv

∏
l 6=lu

(1 + ραl)

 ·
∏
l 6=lv

(1 + ραl)


(71)

where u = (lu, hu) and v = (lv, hv).

Similarly, we have:

E[K(x, x)2] '
∑
k

E[‖Jk‖42] ≈ (1 + 5/n)
m ·
∑
u

α2
lu

L∏
l 6=lu

βl = (1 + 5/n)
m ·
∑
u

α2
lu

L∏
l 6=lu

(1 + ραl)
2 (72)

Using Eq. 61, we have that:

E[K(x, x)]2 =
∑
u,v

αluαlv

∏
l 6=lu

(1 + αl)

 ·
∏
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(1 + αl)

 (73)

This yields that:
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)
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)2
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m ·

(
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(
1 +
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))2

≈ exp

[
5m

n
+
C

n

L∑
l=1

αl
1 + αl

]
(1 +O(1/n))

(74)

For the lower bound, we have:

E[K(x, x)2]

E[K(x, x)]2
' (1 + 5/n)

m ·

∑
u α

2
lu

(∏L
l 6=lu(1 + ραl)

)2
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)(∏
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)
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2
lu∑
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exp

[
5m

n
+
C

n

L∑
l=1

αl
1 + αl

]
(1 +O(1/n))

(75)

Since E[K(x, x)2] > E[K(x, x)]2, the lower bound is given by:

E[K(x, x)2]

E[K(x, x)]2
'max

[
1,

∑
u α

2
lu∑

u,v αluαlv
exp

[
5m

n
+
C
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l=1
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]
(1 +O(1/n))

]
(76)



Theorem 4. Let f(x;w) be a constant width DenseNet (with n′0, nl = n for all l ∈ [L]), with initialization constant α > 0.
Then, there exist constants C1, C2 > 0, such that:

max

[
1,

C1

L log(L)2
· ξ
]
≤ η(n,L) ≤ ξ (77)

where:
ξ = exp [C2/n] · (1 +O(1/n)) (78)

Proof. In the following proof, for the sake of notation simplicity, we omit the notation k = (lk, hk) in yl(k), and assume that
yl stands for the reduced network yl(k). The recursive formula for the intermediate outputs of the reduced network are given
by:

yl =


√

α
nl

∑l−1
h=kW

l,hqh lk < l ≤ L√
α
nl

∑l−1
h=0W

l,hqh 1 ≤ l < lk√
α
nlk

W lk,hk−1qlk−1 l = lk

(79)

with qh =
√

2φ(yh). We define, µl := E
[
‖ql‖22

]
. It follows that:

µL = E
[
‖qL‖22

]
=

2α

Ln
E

[(
L−1∑
l=lk

ql
>
WL,l

)
ZL

(
L−1∑
l=lk

ql
>
WL,l

)]
=
α

L

L−1∑
l=lk

µl (80)

where Zl is a diagonal matrix holding in its diagonal the activation variables zlj for unit j in layer l.

Next, by telescoping the mean:

µL =
α

L

L−1∑
l=lk

µl =
αµL−1
L

+
L− 1

L
µL−1 = µL−1

(
1 +

α− 1

L

)

= µlk+1

L∏
l=lk+2

(
1 +

α− 1

l

)
=

α

lk + 1
µlk

L∏
l=lk+2

(
1 +

α− 1

l

)

=
α

lk + 1
µ0

L∏
l=1

l 6=lk+1

(
1 +

α− 1

l

)
≈ α

lk + 1

L∏
l=1

(
1 +

α− 1

l

)
(81)

and so:

E[K(x, x)]2 =

(
L∑

lk=1

µL

)2

≈

(
L∑

lk=1

α

lk + 1

)2 L∏
l=1

(
1 +

α− 1

l

)2

≈ α2 log(L)2
L∏
l=1

(
1 +

α− 1

l

)2

(82)

For the fourth moment:

E
[
‖qL‖42

]
=

4α2

n2L2
E

(L−1∑
l=lk

(
ql
>
WL,l

)
ZL

L−1∑
l=lk

(
ql
>
WL,l

))2


=
4α2

n2L2
E

[(
L−1∑
l1=lk

(
ql1
>
WL,l1

)
ZL

L−1∑
l2=lk

(
ql2>WL,l2

) L−1∑
l3=lk

(
ql3
>
WL,l3

)
ZL

L−1∑
l4=lk

(
ql4
>
WL,l4

))] (83)

We denote:
Cl,l′ = E

[
‖ql‖22 · ‖ql

′
‖22
]

(84)



Using the results from the vanilla architecture, we have:

CL,L =
α2(n+ 5)

nL2

L−1∑
l1,l2=lk

Cl1,l2 (85)

From Eq. 85, it also holds that:
L−2∑

l1,l2=lk

Cl1,l2 =
n(L− 1)2

α2(n+ 5)
· CL−1,L−1 (86)

It then follows:

E
[
‖qL‖42

]
=CL,L

=
α2(1 + 5/n)

L2

L−1∑
l1,l2=lk

Cl1l2

=
α2(1 + 5/n)

L2

CL−1,L−1 +

L−2∑
l1,l2=lk

Cl1l2 + 2

L−2∑
l=lk

CL−1,l


=
α2(1 + 5/n)

L2

(
CL−1,L−1 +

(L− 1)2n

α2(n+ 5)
CL−1,L−1 + 2

L−2∑
l=lk

CL−1,l

)
(87)

The following also holds for all l1 > l2 ≥ lk:

Cl1,l2 =
α

nl1
E

[
(

l1−1∑
l=lk

ql>W l1,lZl1)2‖ql2‖22

]
=
α

l1

l1−1∑
l=lk

Cl,l2 (88)

and so:

CL,L =
α2(n+ 5)

nL2

(
CL−1,L−1 +

(L− 1)2n

α2(n+ 5)
CL−1,L−1 +

2α

L− 1

L−2∑
l1=lk

L−2∑
l2=lk

Cl1,l2

)

=
α2(n+ 5)

nL2

(
CL−1,L−1 +

(L− 1)2n

α2(n+ 5)
CL−1,L−1 +

2n(L− 1)

α(n+ 5)
CL−1,L−1

)
=
α2(n+ 5)

nL2
CL−1,L−1

(
1 +

(L− 1)2n

α2(n+ 5)
+

2n(L− 1)

α(n+ 5)

)
= CL−1,L−1

((
1 +

α− 1

L

)2

+
5α2

nL2

)
(89)

Recursively, we have:

CL,L = Clk+1,lk+1

L∏
l=lk+2

((
1 +

α− 1

l

)2

+
5α2

nl2

)
(90)

For the reduced architecture, the transition from qlk to qlk+1 is a vanilla ReLU block, and so using the result from the vanilla
architecture:

CL,L = Clk,lk
α2(n+ 5)

n(lk + 1)2

L∏
l=lk+2

((
1 +

α− 1

l

)2

+
5α2

nl2

)

=
α2(n+ 5)

n(lk + 1)2

∏
l 6=lk+1

((
1 +

α− 1

l

)2

+
5α2

nl2

)

≈ α2(n+ 5)

n(lk + 1)2

L∏
l=1

((
1 +

α− 1

l

)2

+
5α2

nl2

)
(91)



where we assigned C0,0 = 1. It follows:

E[K(x, x)2] /
∑
u,v

√
E
[
‖yL(u)‖

4
2

]
· E
[
‖yL(v)‖

2
2

]

≈

(
L∑

lk=1

1

lk + 1

)2

· α
2(n+ 5)

n
·
L∏
l=1

((
1 +

α− 1

l

)2

+
5α2

nl2

)

≈ log(L)2 · α
2(n+ 5)

n
·
L∏
l=1

((
1 +

α− 1

l

)2

+
5α2

nl2

)
(92)

Similarly, we have:
E[K(x, x)2] '

∑
lk

E[‖Jk‖42]

=

L∑
lk=1

α2(n+ 5)

n(lk + 1)2
·
L∏
l=1

((
1 +

α− 1

l

)2

+
5α2

nl2

)

≈ α2(n+ 5)

nL
·
L∏
l=1

((
1 +

α− 1

l

)2

+
5α2

nl2

) (93)

This yields that:

E[K(x, x)2]

E[K(x, x)]2
/

n+5
n ·

∏L
l=1

((
1 + α−1

l

)2
+ 5α2

nl2

)
∏L
l=1

(
1 + α−1

l

)2
=
n+ 5

n
·
L∏
l=1

(
1 +

5α2

n(l + α− 1)2

)

≈ exp

[
L∑
l=1

5α2

n(l + α− 1)2

]
· (1 +O(1/n))

≈ exp [C/n] · (1 +O(1/n))

(94)

For the lower bound, we have:

E[K(x, x)2]

E[K(x, x)]2
'

n+5
n ·

∏L
l=1

((
1 + α−1

l

)2
+ 5α2

nl2

)
L log(L)2

∏L
l=1

(
1 + α−1

l

)2
≈ 1

L log(L)2
· exp [C/n] · (1 +O(1/n))

(95)

Since E[K(x, x)2] > E[K(x, x)]2, the lower bound is given by:

E[K(x, x)2]

E[K(x, x)]2
' max

[
1,

1

L log(L)2
· exp [C/n] · (1 +O(1/n))

]
(96)
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