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Abstract

We propose a similarity measure for sparsely
sampled time course data in the form of a log-
likelihood ratio of Gaussian processes (GP). The
proposed GP similarity is similar to a Bayes fac-
tor and provides enhanced robustness to noise in
sparse time series, such as those found in various
biological settings, e.g., gene transcriptomics. We
show that the GP measure is equivalent to the Eu-
clidean distance when the noise variance in the GP
is negligible compared to the noise variance of the
signal. Our numerical experiments on both syn-
thetic and real data show improved performance of
the GP similarity when used in conjunction with
two distance-based clustering methods.

1 INTRODUCTION

Time course data are used widely for the empirical study of
dynamical processes in many areas of research in the natural
and social sciences [Keogh and Kasetty, 2003]. Tradition-
ally, much research has been devoted to the characterisation
of time series in relation to the originating dynamical pro-
cess from different viewpoints, from the deterministic to
the stochastic [Brillinger, 1981, Barahona and Poon, 1996,
Chatfield, 2003].

More recently, time series have also been considered from
the perspective of data science. One of the key questions in
many applications is to assess the (dis-)similarity between
time courses, with a view to perform time series classifica-
tion or clustering [Liao, 2005, Son and Baek, 2008, Górecki,
2014, Peach et al., 2019, Fulcher and Jones, 2014]. A sim-
ple way to deal with finite, discretely-sampled time courses
is to treat them as vectors [Yao et al., 2005, Hedeker and
Gibbons, 2006], i.e., a time series sampled at t time points
{yi(tk) := yik}tk=1 is described by a t-dimensional vec-
tor yi with coordinates yik. A simple dissimilarity measure

between two time series yi and yj is then given by the
Euclidean (`2) distance:

d2(yi,yj) =

√√√√ t∑
k=1

(yik − yjk)2 = ‖yi − yj‖. (1)

Although the Euclidean distance is widely used due to its
simplicity, in some applications, one may be more interested
in the trend of how the data changes across time rather
than the absolute differences. To capture this, a frequently
used dissimilarity measure is based on Pearson’s correlation
coefficient, ryiyj

:

dcorr(yi,yj) = 1− ryiyj

= 1−
∑t

k=1(yik − yi)(yjk − yi)√∑t
k=1(yik − yi)2

√∑t
k=1(yjk − yj)2

,

where yi and yj are the means of each time series. Note that
these two common measures are point-to-point matching,
and insensitive to the re-ordering of the time points and the
spacing between the sampling times. Hence these measures
cannot capture information associated with the time indices,
which can be important in applications.

To remedy the limitations of point-wise measures, alter-
native measures of dissimilarity in time series have been
proposed, including Dynamic Time Warping (DTW) [Keogh
and Ratanamahatana, 2005] and the Edit Distance on Real
Sequences (EDR) [Chen et al., 2005]. These methods can
cope with uneven sampling and use information from the
time indices, yet they can be algorithmically complex and
are not well suited for applications with a large number
of short, sparsely sampled time courses. Examples of this
type of data are common in home price, marketing or
e-commerce data in economics and finance [Fan et al.,
2011], longitudinal electronic healthcare records [Perotte
and Hripcsak, 2013], genomics and proteomics data in life
science [Ndukum et al., 2011, Kayano et al., 2016], and
functional magnetic resonance imaging [Smith, 2012]. For
instance, in cellular biology, ‘omics’ experiments measure
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the expression level of large numbers of genes, proteins or
metabolites in cells over time. Such datasets contain tens
of thousands of time courses (i.e., the number of genes or
proteins) but the length of each time course is very short
(5-15 time points) due to the high cost of experiments. Fur-
thermore, the time samplings are usually uneven since exper-
iments are designed to capture trends in cellular evolution
and responses to stimuli. These constraints are typical of
many biological experimental settings.

In this paper, we introduce a similarity measure for time
course data based on Gaussian processes (GPs) [Rasmussen
and Williams, 2006], which is applicable to sparse, inho-
mogeneously sampled, high-dimensional datasets. To retain
information from the sampling times in the data, we model
the time courses as continuous functions using GPs, and
define a similarity measure in the form of a log-likelihood
ratio between GP models. The GP similarity is computation-
ally simple and suitable for high-dimensional datasets with
a large number of short time courses. We also show that the
GP similarity measure is equivalent to the Euclidean dis-
tance when the noise variance in the GP model is negligible
compared to the signal variance. We apply the GP similarity
measure as the basis for distance-based clustering methods
in both synthetic and real time course data, and show im-
proved robustness to measurement noise and to sampling
inhomogeneity.

2 RELATED WORK

As a non-parametric model, GP is a flexible and efficient
tool for time-dependent data modelling. Using the fact that
a GP defines a reproducing kernel Hilbert space (RKHS),
Lu et al. [2008] proposed a RKHS-based distance for time
series defined as the Bregman divergence between the two
posterior GPs. This distance has a closed form: it is the
squared norm of the posterior mean functions in the RKHS
induced by the GP. However, the Bregman divergence does
not reflect the uncertainty of the data, since it only depends
on the posterior mean function. Hence the Bregman diver-
gence can perform poorly in the presence of noise in the
data, as we show below.

GPs have been previously applied to time series of gene
expression to detect differentially expressed genes [Stegle
et al., 2010, Kalaitzis and Lawrence, 2011] and to infer
the dynamics of transcriptional regulation [Lawrence et al.,
2007, Gao et al., 2008]. In Kalaitzis and Lawrence [2011],
the fitted GP model for each gene is compared to a noise
model in order to rank the time courses and find differen-
tially expressed genes. Here, we use the construction of GPs
differently, and show that the likelihood ratio between two
GP models provides a robust similarity measure for time
courses. In the next section, we will introduce the GP model
for time course data.

3 GAUSSIAN PROCESS MODEL FOR
TIME COURSE DATA

A Gaussian process is a collection of random variables over
the index set X such that any finite collection of the random
variables follows a multivariate normal distribution [Ras-
mussen and Williams, 2006]. Therefore, a Gaussian process,
denoted GP(m(x), k(x, x′)), is characterised by the mean
function m(x) and the covariance function k(x, x′), where
x, x′ ∈ X . Here we will consider time-dependent variables;
hence the index set is the positive real line describing time:
X = R+.

We will model the underlying true signal as a Gaussian
process over time:

f(x) ∼ GP (m(x), k(x, x′)) . (2)

For simplicity, we take the mean function to be zero
(m(x) = 0) and we use the squared exponential covari-
ance function

k(x, x′) = σ2
f exp

(
−‖x− x

′‖2

2`2

)
=: σ2

f G(x, x
′) (3)

where ` is a characteristic length-scale, σ2
f is the signal

variance and we use G(x, x′) to denote the Gaussian kernel.
The observations of the time-dependent variable are then
noisy samples of the GP:

y = f(x) + ε, (4)

where the additive noise ε is Gaussian with zero mean and
variance σ2

n.

Let us consider a time-dependent variable y given by (4)
sampled at t time points X = [x1, . . . , xt]

T and let us
compile the observations into a t-dimensional vector y =
[y1, . . . , yt]

T . Under our assumptions, the covariance func-
tion of the noisy observations y is given by:

ky(xp, xq) = σ2
f G(xp, xq) + σ2

n δpq, (5)

where δpq is the Kronecker delta. Equivalently, the t × t
covariance matrix of the observations y is:

Ky = σ2
f G+ σ2

n I = K + σ2
n I, (6)

where G is the Gaussian kernel matrix with elements
Gpq = G(xp, xq), I is the identity matrix of dimension
t, and K is the covariance matrix for the noiseless samples
with elements Kpq = k(xp, xq).

The three hyperparameters of the Gaussian process are there-
fore θ = (`, σf , σn), and can be learnt from the data (X,y)
by maximising

θ∗ = argmax
θ

log p(y|X,θ), (7)
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where, in this case, the log-marginal likelihood has the ex-
plicit form:

log p(y|X,θ) = −1

2

(
yTK−1y y + log detKy + t log 2π

)
,

(8)

with detKy denoting the determinant of Ky. This expres-
sion can be maximised using gradient-based methods [Ras-
mussen and Williams, 2006].

4 SIMILARITY MEASURE FOR TIME
COURSE DATA BASED ON GAUSSIAN
PROCESS

Let us consider a sparse time course dataset consisting of N
short time courses sampled at t time points: yi ∈ Rt, i =
1, . . . , N . The dataset is referred to as sparse, due to the
fact that the number of time courses is much larger than
the length of each time course (N � t). Although the GP
model does not require all the time series to be measured
synchronously, for simplicity, we first introduce the similar-
ity measure for the case where all time courses are sampled
at the same time points X = [x1, . . . , xt]

T . We discuss the
asynchronous case later.

Each of the time courses yi is assumed to correspond to a
noisy observation of a Gaussian process (4) with the same
hyperparameters θ, which can be inferred by maximising the
sum of the log marginal likelihoods of the time courses [Ras-
mussen and Williams, 2006]:

θ∗ = argmax
θ

N∑
i=1

log p(yi|X,θ). (9)

By inferring the hyperparameters θ∗, we obtain a non-
parametric probabilistic model for the observed time
courses, which we can use to define a GP-based similar-
ity measure, as follows.

4.1 LIKELIHOOD RATIO AS A SIMPLE GP
SIMILARITY MEASURE

Using the fact that the GP is a distribution of continuous
functions over time, a similarity measure between two ob-
served time courses yi and yj can be obtained by comparing
two different possibilities as to how yi and yj could have
been generated.

The first possibility is that the two time samples yi and yj

are observations from two different functions sampled from
the GP. In this case, the joint likelihood of yi and yj is just
the product of the likelihoods of two time courses:

pdiff(yi,yj |θ∗) = p(yi|X,θ∗) p(yj |X,θ∗). (10)

Using (8), it is easy to see that the log-likelihood can be
rewritten as:

log pdiff(yi,yj |θ∗) = log p(yi|X,θ∗) + log p(yj |X,θ∗)

= −1

2

[
yT
i yT

j

] [Ky 0
0 Ky

]−1 [
yi

yj

]
− 1

2
log det

[
Ky 0
0 Ky

]
− t log 2π. (11)

The second possibility is that yi and yj are observations
from the same function sampled from the GP. In this case,
the joint likelihood of yi and yj can be computed by con-
sidering the two time courses {X,yi} and {X,yj} to be
replicate samples of one function :

psame(yi,yj |θ∗) = p

([
yi

yj

] ∣∣∣∣ [XX
]
,θ∗
)
, (12)

and the log-likelihood is then given by:

log psame(yi,yj |θ∗) = log p

([
yi

yj

] ∣∣∣∣ [XX
]
,θ∗
)

= −1

2

[
yT
i yT

j

] [Ky K
K Ky

]−1 [
yi

yj

]
− 1

2
log det

[
Ky K
K Ky

]
− t log 2π,

(13)

where we have used the fact that the additive noise ε in (4)
is uncorrelated between the two time courses.

The likelihood (12) will be high if the two time courses are
similar to each other (as in Fig. 1a), and will be small if
the two time courses have different profiles (as in Fig. 1b).
Hence for time courses with different profiles, the likeli-
hood (10) explains better the data. The log of the ratio of the
two likelihoods (12)–(10) (i.e., the difference between the
log-likelihoods) is thus an indicator of the level of similarity
between two time courses. This leads to our definition of
the GP similarity measure between yi and yj as:

s(yi,yj) = log
psame(yi,yj |θ∗)
pdiff(yi,yj |θ∗)

(14)

and it follows that:

s(yi,yj) = log psame(yi,yj |θ∗)− log pdiff(yi,yj |θ∗)

=
1

2

[
yT
i yT

j

]([Ky 0
0 Ky

]−1
−
[
Ky K
K Ky

]−1)[
yi

yj

]
− 1

2
log

detQ

detKy
, (15)

where Q is the Schur complement:

Q = Ky −KK−1y K. (16)

Note that the likelihood ratio (14) has the same form as the
Bayes factor [Kass and Raftery, 1995] in Bayesian model
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(a) Two time courses with similar patterns and the corre-
sponding GP.
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(b) Two time courses with different patterns and the corre-
sponding GP.

Figure 1: Two examples with two time courses that have:
(a) similar and (b) dissimilar profiles. In each case, we show
the time courses and the mean and confidence interval of the
Gaussian process (12) obtained according to the likelihood
in (12).

selection. From this perspective, our measure can be un-
derstood as the comparison between two models in two
ways: on one hand, s(yi,yj) compares modelling two time
courses with one single function of the GP versus modelling
them with two independent functions of the GP; alterna-
tively, it is easy to see that our measure (14) can be rewritten
as

s(yi,yj) = log p(yj |yi, X,θ
∗)− log p(yj |X,θ∗)

= log p(yi|yj , X,θ
∗)− log p(yi|X,θ∗)

which is the difference between the log-likelihood of yj

based on the posterior GP given yi compared to the prior
GP without yi being given. Hence the measure quantifies
the improvement in the prediction of yj that can be drawn
by knowing yi. The measure is symmetric, so the same
applies by exchanging yj for yi.

4.2 EUCLIDEAN DISTANCE AS A LIMIT OF THE
GP LOG-LIKELIHOOD RATIO

It can be shown that the Euclidean distance (1) stems natu-
rally from the GP similarity (14) in the limit when the noise
variance σ2

n is much smaller than the signal variance σ2
f .

To see this, recall the Neumann series [Stewart, 1998]

K−1y = (K + σ2
nI)
−1 = K−1

∞∑
m=0

(−1)m
(
σ2
nK
−1)m .

Noting that the Gaussian kernel matrixG is positive definite,
we have that

if σ2
n/σ

2
f → 0 =⇒ ‖σ2

nK
−1‖ = (σ2

n/σ
2
f ) ‖G−1‖ → 0,

For small σ2
n/σ

2
f , we thus take the first two terms of the

expansion to O
(
‖σ2

nK
−1‖2

)
:

KK−1y = K−1y K ' I − σ2
nK
−1, (17)

and the Schur complement (16) is approximated as:

Q ' Ky − (I − σ2
nK
−1)K = 2σ2

n

(
I − 1

2
σ2
nK
−1
)
,

Q−1 ' 1

2σ2
n

(
I +

1

2
σ2
nK
−1
)
.

To approximate the GP similarity measure (15), we use
block matrix inversion:[
Ky 0
0 Ky

]−1
−
[
Ky K
K Ky

]−1
=

[
−K−1y KQ−1KK−1y Q−1KK−1y

K−1y KQ−1 −K−1y KQ−1KK−1y

]
' 1

2σ2
n

[
−(I − 3σ2

nK
−1/2) I − σ2

nK
−1/2

I − σ2
nK
−1/2 −(I − 3σ2

nK
−1/2)

]
=
−1
2σ2

n

([
1 −1
−1 1

]
⊗ I − 1

2

[
3 −1
−1 3

]
⊗
(
σ2
nK
−1)).

and we approximate the determinant:

detQ = detKy det
(
I − (KK−1y )2

)
' detKy det

(
2σ2

nK
−1) ,

whence we obtain:

s(yi,yj) '

−1
4σ2

n

[
yT
i yT

j

]([ 1 −1
−1 1

]
⊗ I − σ2

n

2σ2
f

[
3 −1
−1 3

]
⊗G−1

)[
yi

yj

]

− 1

2
log det

(
2
σ2
n

σ2
f

G−1

)
.

Here ⊗ denotes the Kronecker product and G is the Gaus-
sian kernel matrix in (6). The approximation of the GP
similarity measure (15) to first order is then :

s(yi,yj) '
−1
4σ2

n

(
‖yi − yj‖2 +O

(
σ2
n

σ2
f

∥∥G−1∥∥)) .
(18)
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Therefore, if σ2
n/σ

2
f → 0 (i.e., when the variance of the

noise is much smaller than the signal variance), the dissim-
ilarity measure −s(yi,yj) is equivalent to the Euclidean
distance ‖yi − yj‖2. On the other hand, when the variance
of noise is not negligible, the proposed measure includes
higher order terms in the expansion that add corrections to
the Euclidean distance. Note that this relationship holds not
only for the Gaussian kernel G(x, x′) but for any positive
definite kernel.

4.3 ASYNCHRONOUS TIME COURSES

Although, for simplicity of exposition, we have concentrated
on the case of synchronous time sampling, the GP similarity
measure is equally applicable to non-synchronous samples.
In our derivations above, synchronous time points are only
necessary to obtain the formal limit to the Euclidean distance
in Eq. 18.

To see the applicability to non-synchronous samples, note
that the likelihoods in Eq. 13 and Eq. 11 do not require the
time courses to have the same time points. We can therefore
consider N time courses denoted by yi = [yi,1, · · · , yi,ti ]
of length ti, sampled at (potentially) distinct time points
Xi = [xi,1, · · · , xi,ti ] (i = 1, . . . , N ). In this case, we can
similarly model the time courses with GP and learn the
hyperparameters by maximising

θ∗ = argmax
θ

N∑
i=1

log p(yi|Xi,θ), (19)

and it is then easy to write the two log-likelihoods:

log pdiff(yi,yj |θ∗) = log p(yi|Xi,θ
∗) + log p(yj |Xj ,θ

∗)

= −1

2

[
yT
i yT

j

] [Kyi 0
0 Kyj

]−1 [
yi

yj

]
− 1

2
log det

[
Kyi

0
0 Kyj

]
− 1

2
(ti + tj) log 2π,

(20)

log psame(yi,yj |θ∗) = log p

([
yi

yj

] ∣∣∣∣ [Xi

Xj

]
,θ∗
)

= −1

2

[
yT
i yT

j

] [Kyi Kij

KT
ij Kyj

]−1 [
yi

yj

]
− 1

2
log det

[
Kyi

Kij

KT
ij Kyj

]
− 1

2
(ti + tj) log 2π.

(21)

where Kyi
and Kyj

are the covariance matrices of yi and
yj with sizes ti × ti and tj × tj , respectively; and Kij is
the cross-covariance matrix between yi and yj with size
ti × tj . The GP similarity between the two time courses
can again be computed as the difference between the two
log-likelihoods (20) and (21).

4.4 COMPUTATIONAL COMPLEXITY

In terms of computational complexity, fitting a GP model
with N time courses of length t takes O(t3 + Nt2) time.
Computing pairwise similarities takes O(tN2) time. Since
we deal with high-dimensional short time courses (N � t),
the total time for GP similarity would be approximately
O(tN2), which is the same as for the Euclidean distance.

Extra computational time is needed for the asynchronised
time courses, where all the time courses have a different
covariance matrix. It results in a computational time of
O(Nt3) for model fitting and O(N2t3) for computing the
pairwise GP similarity if all the time courses are of average
length t. This might be a limitation to applications with
large N and t.

5 NUMERICAL EXPERIMENTS

To test the applicability of the proposed GP similarity mea-
sure, we have run numerical experiments on synthetic and
real sparse time course data. Our results show that the simi-
larity s(yi,yj) is more robust to observational noise than
the Euclidean distance when used as the basis to cluster
time courses using two standard clustering algorithms (hi-
erarchical and spectral clustering). We also compare the
performance of the GP similarity against the Bregman di-
vergence and Dynamic Time Warping.

5.1 SYNTHETIC DATA

Our synthetic dataset is obtained by sampling from the three
different time profiles shown in Fig. 2 with additive Gaus-
sian noise. From each of the three time profiles, we generate
50 evenly-sampled time courses of length t = 15 with a
given level of sampling noise. Our task is to cluster the 150
time series into 3 groups in an unsupervised manner. To

0 0.2 0.4 0.6 0.8 1
t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

y=t+0.25t4

y=t-0.25t4

y=t
sampling time points (even)
sampling time points (uneven)

Figure 2: The three functions and the sampling time posi-
tions used to generate the synthetic data. The results of even
sampling are in Fig. 3. The results of uneven sampling are
in Fig. 4.
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do this, we compute the pairwise similarities (or distances)
between the 150 time courses using the GP similarity (14).
From the computed similarity matrix, we then cluster the
samples using two well-known methods: (i) spectral cluster-
ing with kNN graph (k = 7) [Yu and Shi, 2003]; (ii) agglom-
erative hierarchical clustering with average linkage [Rokach
and Maimon, 2005]. We then repeat the numerical exper-
iment 100 times in each case. To evaluate the clustering
performance, we use the normalised mutual information
(NMI) [Vinh et al., 2010] against the known ground truth
(i.e., the three profiles used to generate the data).

We then repeat the same procedure with three popular mea-
sures: the Euclidean distance, the Dynamic Time Warping
(DTW) distance and the Bregman divergence in the RKHS.
Given that the only varying ingredient is the similarity mea-
sure, the clustering performance reflects the quality of the
similarity measure for this purpose.

Proposed Euclidean Bregman DTW Proposed Euclidean Bregman DTW
0

0.2

0.4

0.6

0.8

1

N
M

I

noise=0.08   

Spectral clustering Hierarchical clustering

(a) Noise level = 0.08

Proposed Euclidean Bregman DTW Proposed Euclidean Bregman DTW
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0.2

0.4
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1
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I

noise=0.10

Spectral clustering Hierarchical clustering

(b) Noise level = 0.10

Proposed Euclidean Bregman DTW Proposed Euclidean Bregman DTW
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0.2

0.4

0.6

0.8

1

N
M

I

noise=0.12

Spectral clustering Hierarchical clustering

(c) Noise level = 0.12

Figure 3: Clustering performance (measured as NMI) for
spectral clustering with kNN and hierarchical clustering
based on the proposed GP similarity (14), Euclidean dis-
tance (1), DTW and Bregman divergence in the RKHS
with increasing noise levels from (a)-(c). The sampling time
points are equally spaced between 0 and 1 (see Fig. 2).

Figure 3 shows the clustering quality (0 ≤ NMI ≤ 1) for
evenly sampled time series with increasing levels of sam-
pling noise achieved with both clustering methods and all
four distance/similarity functions. As expected from (18),
both Euclidean and GP similarity give comparable results

for small sampling noise when using spectral clustering.
Note, however, that even for small noise, the performance of
the GP similarity is superior to the Euclidean distance when
using hierarchical clustering (Fig. 3a), a method that is very
sensitive to noisy data. For synchronous time courses, there
is no need for alignment and DTW should give the same
distance as Euclidean. However, DTW performs worse than
the Euclidean distance for the synchronous case, since DTW
might do unnecessary alignments due to the noisy data. The
Bregman divergence does not perform well in this case be-
cause it measures the distance between the two continuous
curves in the RKHS fitted from the time courses data and
does not consider the uncertainty due to noise.

As the observation noise increases, our GP similarity mea-
sure gains further advantage over the Euclidean distance
for both clustering methods (Figs. 3b–3c). The p-values for
a Wilcoxon rank-sum test between the NMI values of Eu-
clidean and GP similarity with spectral clustering for the
noise levels 0.08, 0.10 and 0.12 are 0.043, 2.5e-7 and 7.6e-
16, respectively. The p-values for a Wilcoxon rank-sum test
between the NMI values of Euclidean and GP similarity with
hierarchical clustering for the noise levels 0.08, 0.10 and
0.12 are 1.4e-15, 1.7e-25, and 1.1e-20, respectively. Hence
the GP similarity measure performs significantly better than
the Euclidean distance for clustering with both algorithms.

In general, spectral clustering always performs better than
hierarchical clustering, which is more sensitive to noise, and
the best performance is obtained consistently using spectral
clustering with GP similarity. Note that the performance
obtained with spectral clustering using other metrics can be
achieved at a lower computational cost using hierarchical
clustering with GP similarity.

We also analyse a second set of 150 synchronous time series
of length t = 15 collected from the same three functions in
Fig. 2 but sampled inhomogeneously in time. The computa-
tional procedure is identical to the case of evenly sampled
series described above. Figure 4 shows that the advantage
of the GP similarity measure against the other distances is
more prominent when the time points are unevenly sampled.
This result highlights the fact that point-to-point similarities
(such as the Euclidean distance) can miss important infor-
mation contained in the long-term trends of the time profiles
if the sampling is concentrated irregularly in particular time
periods.

We next tested the non-synchronous case. We again generate
a set of 150 time series of length t = 15 from the same three
functions in Fig. 2. We then make the asynchronous time
courses by randomly removing 6,7 or 8 time points from
our 15-point time course data (Fig. 5a). In this case, the
Euclidean distance is not defined. The proposed GP simi-
larity achieves substantially better results than the Bregman
divergence and DTW on these examples.

In summary, our numerical experiments on synthetic data
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Figure 4: Clustering performance (measured as NMI) for
spectral clustering with kNN and hierarchical clustering
based on the proposed GP similarity (14), Euclidean dis-
tance (1), DTW and Bregman divergence in the RKHS with
increasing noise levels from (a)-(b). In this case, the time
courses are synchronous but inhomogeneously sampled
between 0 and 1 (see Fig. 2). The GP similarity consis-
tently outperforms the other distances, especially for larger
amounts of noise.

indicate improved performance of the GP similarity mea-
sure (14). As the observational noise decreases, the per-
formance of the GP similarity measure is equivalent to
the Euclidean distance (18). Although the GP similarity
shows enhanced performance for both clustering methods,
the improvement is larger for hierarchical clustering, in the
presence of large amounts of noise, and under uneven time
sampling. As a side comment, we also note that the inclu-
sion of the noise variance σ2

n in the covariance function Ky

makes the GP similarity measure more robust for numerical
computations, as it reduces numerical instability.

5.2 APPLICATION TO GENE EXPRESSION TIME
COURSE DATA

We next tested the GP similarity measure on a real time
course dataset which characterises the gene expressions
during the process of cellular reprogramming where differ-
entiated cells are reverted to stem cells [Di Stefano et al.,
2014b]. In this dataset, gene expression values were mea-
sured at five time points: 0, 2, 4, 6 and 8 days after the
cellular reprogramming started. Two biological replicates
were measured at each time point. The full measurements
include around 40,000 genes. Following standard practice,
we select 1912 genes that are highly variable over time but
have a small variance within biological replicates. We then
follow the same procedure as for the synthetic data above
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(a) asynchronous time course
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(b) NMI results

Figure 5: (a) Three sample time courses with asyncronised
measurements with Noise level = 0.08. (b) Clustering per-
formance (measured as NMI) for spectral clustering with
kNN and hierarchical clustering based on the proposed GP
similarity, DTW and Bregman divergence in the RKHS. The
GP similarity consistently outperforms the other distances
for both clustering methods.

to cluster the 1912 gene expression time courses to extract
groups of genes that have similar time profiles during cellu-
lar reprogramming.

For this dataset, there is no known ‘ground truth’ against
which to compare the obtained clusters. To assess the quality
of the clustering, we use a biological score: a modified
version of the biological homogeneity index (BHI). The
BHI measures within-cluster homogeneity of the genes in
terms of biological knowledge and is given by:

BHI =
1

L

L∑
l=1

1

nl(nl − 1)

∑
i 6=j

i,j∈cluster l

S(i, j),

where L is the number of clusters, nl is the size of cluster
l, and S(i, j) is a biological similarity between gene i and
gene j. In the original BHI [Datta and Datta, 2006], the
similarity between genes is either 0 or 1, which is an indica-
tor function of two genes sharing any Gene Ontology (GO)
terms. In order to better capture the biological information,
we use an information-theoretic semantic gene similarity
based on Gene Ontologies [Resnik, 1999, Lord et al., 2003,
Yu et al., 2010]. For a given clustering, we compute the BHI
of 1000 random clusterings with the same number and size
of clusters. We then use the z-score of the BHI against the
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Table 1: BHI z-scores of the two clustering methods with different number of clusters obtained by analysing the time courses
of 1912 highly variable genes in the stem cell transcriptomic dataset of Refs. [Di Stefano et al., 2014a,b].

No. of clusters
Method Similarity 9 11 13 15 16

Spectral

Proposed 2.505 4.250 1.360 3.368 3.674
Euclidean 1.368 2.067 2.460 2.351 2.919

DTW 2.636 2.087 2.774 2.720 3.182
Bregman 4.229 2.725 2.652 3.617 3.520

Hierarchical

Proposed 1.182 2.384 2.366 1.849 3.353
Euclidean -0.090 0.074 -0.266 -0.215 -0.319

DTW 0.542 0.566 0.499 0.735 0.752
Bregman 1.392 1.303 1.139 1.388 1.508
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(a) Time course of gene Samd14
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(b) Time course of gene Fbin5
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(c) Time course of gene Serpine1

Figure 6: The time courses of three genes (each time course
was measured on two biological replicates). The Euclidean
distances from Samd14 to Fbin5 and Serpine1 are both
5.09. In contrast, the GP dissimilarity (−s(yi,yj)) between
Samd14 and Fbin5 (37.48) is larger than between Samd14
and Serpine1 (25.57), capturing the fact that the time profile
of Serpine1 is more similar to Samd14 than to Fbin5.

random clusterings as a level of significance for the obtained
clustering.

Since the number of clusters is unknown, we compute the
z-score of the BHI for clusterings with different numbers

of clusters (Table 1). Again, we find that spectral clustering
with GP similarity achieves the best performance. On the
other extreme, hierarchical clustering based on Euclidean
distances performs no better than random clustering, an in-
dication that the gene expression data has high levels of
noise σn. As was the case for the synthetic data above, us-
ing GP similarity improves the performance of hierarchical
clustering substantially, almost to a comparable level to the
spectral method (but below). These results underscore the
ability of the GP similarity to deal with noisy data.

To illustrate visually the behaviour of the GP similar-
ity, Figure 6 shows the time courses of three genes
where the GP similarity and Euclidean distance behave
differently. In our chosen examples, the time course
of the Samd14 gene (Fig. 6a) has the same Euclidean
distance to both the Fbin5 gene (Fig. 6b) and the Ser-
pine1 gene (Fig. 6c). On the other hand, according to
our GP similarity, the Serpine1 time course is more
similar to Samd14 than to Fbin5, in accordance with
our visual expectation from the observed time course
profiles. The code and data can be found online in https:
//github.com/barahona-research-group/
BayesFactorSimilarity.

6 CONCLUSION

In this paper, we have proposed a similarity measure for
sparse time course data based on Gaussian processes. Mod-
elling the time courses with a GP, we use the difference
between two log-likelihoods (in the form of a Bayes fac-
tor) as a GP similarity measure. We show that the proposed
measure is equivalent to the Euclidean distance in the limit
where the noise variance in the observations is negligible
compared to the signal variance. The proposed measure is
computationally simple and can be easily extended to the
cases when the time courses are not synchronously observed
at the same time points.

Our numerical experiments show that the proposed measure
has improved robustness to noise when used for data clus-
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tering with different clustering methods. The advantage of
the proposed measure over the Euclidean distance is more
noticeable with hierarchical clustering, under high noise,
and with uneven time sampling.

We note two limitations of the proposed measure. First,
the GP similarity is not a metric. Indeed, s(yi,yi) is not
zero but instead, it gives an estimate of the level of noise
in yi. Second, the high computational cost for the non-
synchronous data may be a limitation if both the length t
and number of time courses N are large. Sparse GP models
can be used to overcome this limitation [Liu et al., 2020].
Although in this study we have only considered a GP over
time as a one-dimensional space, future studies could gener-
alise the GP similarity measure to data that can be modelled
by GPs in a latent space, or on any other smooth manifold,
further enhancing its applicability.
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