Appendix A Proof of Theorem 4.1

Our proof of regret bounds for Strategic ULCB is very similar to the proof for
the regret bounds of Optimistic ULCB [Bai and Jin, 2020]. The key difference is
that we need to show that the tighter confidence bounds maintained by Strate-
gic ULCB still constrain the exploitability of the evaluation policies fi* and *
(Lemma A.2), and that these confidence bounds still converge under our explo-
ration policies. We also directly bound the L; error of the transition model,
which leads to a somewhat simpler proof, and helps us better understand the
nature of the confidence sets that Strategic ULCB implicitly maintains.

Lemma A.1. For a given K > 3 and § > 0, define B; as

5 = H\/2 [I5] 1H(KHJSIIAHBI/5)]

(1)

then with probability at least 1 — 6, for allk € [K], h € H, s € Sy, a € Ap s and
b€ By, and for all V € [0, HIS!, we have

| P (s,0,0)TV = P(s,a,0) V| < 5 @)

for t = N[ (s,a,b).

Proof. When N[ (s,a,b) = 0, Equation 2 holds trivially as 8; = co. Otherwise,
we can apply the well known bound on the L; error of an empirical distribution
due to Weissman et al. [2003] to show that

Pr{|IPi(s.a,0) = Ps,a.b)li 2 e} < (25 = 2)exp{-Nj(s,a.0)5} (3)
Note that, for all V € [0, H]!®!

|Pf(s,a,b)"V — P(s,a,0)"V| < H|PF(s,a,b) — P(s,a,b)|1 (4)
and so for t = N, ,’f (s,a,b) and B; defined according to Equation 1 we have

o

PT{HV, |Pf(s,a,b)"V — P(s,a,b) V| Zﬁt} < KH|S|[A||B]| (5)

Taking the union bound over k, h, s, a and b yields the desired result. O

For games with deterministic transitions, Pf(s,a,b) = P(s,a,b) whenever
NF(s,a,b) > 0, and so Equation 2 will hold even for 3; = 0, which is the value
we use for our experiments in deterministic games. We can now show that our
confidence bounds V¥ and V}¥ not only constrain the value of the game at each
state, but also bound the exploitability of our evaluation policies fi* and o*.



Lemma A.2. When Strategic-ULCB is run with By as defined in Equation 1,
the for all k € [K], h € H and s € Sy, we have

ViE(s) 2 sup Vi (s) (6)
Vik(s) < imf Vi (s) ™)

with probability at least 1 — 4.

Proof. For each k € [K] we prove this by induction on h. We will only show
the proof for the upper bound, as the proof for the lower bound is symmetric.
Assume that for some h € [H] we have, for all s € S,

Vo (s) > sup Vi 8
h+1(3) Zsup V1 (s) (8)
“w

By Lemma A.1, Equation 2 will hold simultaneously for all &, h, s, a and b with
probability at least 1 — 4, and so when N[ (s,a,b) > 0, we have

Qﬁ(&a,b) = RZ(S,Gab) +P}]:(Sva7b)‘7}f+l +Bt (9)
> R(s,a,b) + P (s, a, bV, (10)
> R(s,a,b) + P(s,a,b)sup Vh”jrlik (11)
m
= sup Q}*" (s,a,b) (12)
n

where the t = N[(s,a,b), and the first inequality also uses the fact that
RE(s,a,b) = R(s,a,b) when Nf(s,a,b) > 0. When Nf(s,a,b) = 0, Equa-
tion 9 holds trivially, as Q% (s,a,b) = H. By the definition of thﬂ(s), we then
have

Vhials) — sup Vi (s) = ik (s)TQE (s, -, )7 (s) (13)
~ max sup QU (s,a,-)7K(s) (14)
> up(s)TQF (s, )T (s) (15)
~ nax sup Qji (s, a, )7 (s) (16)
=0 (17)

which proves the inductive step. The first inequality follows directly from Equa-
tion 9, while the second inequality follows from the fact that (uf(s), 7F(s)) for a
Nash equilibrium of the matrix game defined by Q% (s, -, ), and so ¥ (s) is a best-
response to 7¥ (s) under Q% (s, -, -). Finally, we can see that Equation 8 holds triv-
ially for h = H+1, where we implicitly assume that V,(s) = sup,, Vh“’”,c (s) =0,
which concludes the proof. O



Lemma A.2 will be sufficient to prove Theorem 4.1 and bound the NashConv
regret of the evaluation policies i* and #*. The remainder of the proof will
closely follow the proof for Optimistic ULCB given by Bai and Jin [2020], with
slight modifications to account for the presence of separate exploration and
evaluation policies.

Proof of Theorem 4.1. We begin with the definition of the NashConv regret
Regret(K) = Zsup Vl“"’k(sl) — inf V{Lk"’(sl) (18)
k=1 H v

for any k € [K] and h € [H], we have

sup V}f’”k (s¥) —inf fok’”(sﬁ) (19)
“ v

< Vik(sp) — Vi (sy) (20)
= ,LLZ(SZ)TQ’I?L(SZa ; )D;’:(Sﬁ) - ﬁZ(SZ)TQﬁ(Sﬁ, " )Vflj(slli) (21)
< g (sp) T QE(sky - v () — wi (sk) QR (sk. - )wi (sy) (22)
= i (s) T [QR(sE, ) — QF(sk, )] v (sh) (23)

where the first inequality follows from Lemma A.2, while the second follow from
the fact that fi* and * are best responses, and so changing to the optimistic
strategies p* and v* can only increase the width of the confidence interval. We
can decompose the last term as

TG INAC DR OACABIZACY (24)
= [@h — Q3] (sh,ah. b}) + &, (25)
P}]f(shaahabk) [fo+1—yhk+1]++25}l§+§§ (26)
(27)
(28)

—

P(Sh7ah7bl}i) [th 7th] +45}k£+§ikz,
= Vi1 — Yff+1] (sh1) + G + 485 + &
where B = B, for t = Nf(s,a,b). The terms £ and ¢ are defined as
g}ki - Ea,bwuﬁ(s’}i),v}’f(s’fb) [Qﬁ - Qlfa] (Slfw a, b) ( )
G = Banp(shat by [V = Vi) (5) (31)
- [V}f-i-l - th+1] (5§+1) (32)
(33)

Here £F and ¢F are not i.i.d., but the sequences of their partial sums over k and



h are martingales, and so by the Azuma-Hoeffding inequality

k=1h=1
K H 1
DD < [2KH I g (35)
k=1h=1
we then have
K
k
Zsup VY (s1) —inf VI ¥ (s1) (36)
k=1 *#
K —
SDBACHENAES) (37)
k=1
K H
< Z Z [485, + & + ¢ (38)
k=1h=1
For 3} we have
K H N/ (s,a,b) 1
YAy Y Y Y 2 v (39)
k=1 h=1 h=1s€eSy aeAtheBh s =
< VKHZ[SAB (40)
by the Cauchy-Schwarz inequality, where
C = V2H?|S|In(K H|S||A|| B /3) (41)
finally, this gives us
Z 485 + & + ¢ (42)
< 4\/2K H%|S|2|A||B|In(K H|S||A||B| /) + 24/2KH?3 ln% (43)
< 62K H'|S|?|A|| B| In(K H|S||A|| B /) (44)
which completes the proof. O

Appendix B Proof of Theorem 4.2

We prove Theorem 4.2 for the max-player’s exploration strategy p* only, as the
proof for the min-player’s strategy is symmetric. We first show that the upper
bounds V}¥ and QF can always be achieved for some game in Dy,.



Lemma B.1. At each episode k, there exists a game G € Dy such that the
upper confidence bounds V* and QZ computed by Strategic-ULCB for By = 0
satisfy

Vi¥(s) = supinf V) (s) (45)
wov ’
QF (s, a,b) = supinf Q%" (s, a,b) (46)
wov ’

for all h € [H] and s € Sy, and a € A s or b € By 5.

Proof. We prove this by induction on h. Assume that for some k > 1, h in[H],
there exists a game G € Dy such that

th+1 (s) = sup irl}f Vg,’Z+1 (s) (47)
n

for all s € Sp41. For each s € S}, a € Ap s, and b € By, g, if (h, s,a,b) € Hy,
then since G € D* we will have Rf(s,a,b) = Rgn(s,a,b) = Ru(s,a,b) and
If’}’f(s,a,b) = Pg p(s,a,b) = Py(s,a,b), and so

QE(S, a, b) = RG,h(Sa a, b) =+ PG,h(Sa a, b)TVCIJC,h+1 (48)
= supinf Q%" (s, a,b) (49)
w oY ’

On the other hand, if (h,s,a,b) ¢ H;, then we have Qf(s,a,b) = H. In this
case, there exists a game G’ € D* that is equivalent to G for all A’ > h, but for
which Pgr p(s,a,b,s*) = 1, and Rp(s,a,b) = H, where s* is our hypothetical
absorbing state with reward 0 for all actions and time steps. Because transition
distributions can be selected independently of one another for each s, a and b,
there exists G’ € Dy, such that Pgs p(s,a,b,8*) = 1, and Ry (s,a,b) = H for all
s € Sh, a € Aps, and b € By, 5 where (h,s,a,b) ¢ (;, such that Q¥ (s,a,b) =
sup,, inf, Q¢ (s, a,b). We then have that

Vi (s) = pi (s) " QR (s, )75 (s) (50)
= supinf Qh(s,,) (51)
= supinf Qg,yh(s, ) (52)

“w v

Noting that Equation 47 holds trivially for h = H, where we implicitly assume
that V£, =V}, =0, this proves the lemma for all h € H. O

To show that Strategic ULCB is strategically efficient for the max-player
exploration policy, we need to show that, for some game G € Dy, u* is the max
player component of a Nash equilibrium of G.

Proof of Theorem 4.2. Let G € Dy be a game for which Equations 45 and 46
hold. By Lemma B.1, such a game always exists. We can prove that ;¥ is a



max-player component of an equilibrium of G by induction on h. Assume that,
for h € [H] and for all s € S,

pF € arg maxinf VEna(s) (53)
2 v ”

We then have that, for all h € H, s € S},

uh(s) € argmaxinf 2T Qh (s, Yy (54)
x Yy
— argmaxinfz' [sup inf Q%7 (s, )] y (55)
T Y nw v ’
— argmaxx {sup inf Q& (s, -, )Vh(s)} (56)
T n v ’
_ T JTaNY
argmaxx  inf V{0 (s) (57)

x

where the last line implies that

pF € argmaxinf V4 (s) (58)
p v ’

Noting that Equation 53 is implicitly satisfied for A = H, this concludes the
proof for p*. Repeating this process for v* proves the result. O

Appendix C Optimistic Nash-Q Algorithm

Algorithm 1 describes Optimistic Nash-Q algorithm of Bai et al. [2020]. Note
that, in our implementation, the evaluation strategies are taken as the marginals
of the most recent exploration strategy, which is itself a joint distribution over
the actions for both players. Here, the sequences of learning rates «; and ex-
ploration bonuses (; are left as free hyperparameters that can be tuned to a
specific task.

Appendix D Strategic Nash-Q Algorithm

Algorithm 2 describes the Strategic Nash-QQ algorithm, which applies the
strategically efficient updater rules of Strategic ULCB to the Optimistic Nash-
Q algorithm of Bai et al. [2020]. Here, the sequences of learning rates a; and
exploration bonuses (; are left as free hyperparameters that can be tuned to a
specific task.
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Algorithm 1 The Optimistic Nash-Q algorithm. Optimistic Nash-Q maintains
upper and lower bounds on the optimal Q-function, and selects as its exploration
strategy a Coarse Correlated Equilibrium (CCE) of the corresponding general-
sum game for each state.
Inputs: a;>0, Bi>0 - -
Initialize: V(h,s,a,b), Qn(s,a,b),Vi(s) < H, Qu(s,a,b),Vi(s) < O,
Np(s,a,b) « 0, 7}(s,a,b) < 1/|Ap J||Bn..l.
for episode k=1,..., K do
observe s¥.
for step h=1,...,H do
take action af ~ pf(sk), b ~ vF(sk).
observe reward r,’j, next state sﬁ Y1
Ni(sF,ak, bF) < Ny (sF,ak bF) +1
t7<_ Nh(SﬁﬂfiabZ) _ _
Qh(szv afw bi) — min{(l—at)Qh(st, aﬁ, bﬁ)—kat(rﬁ—kv,ﬁl(s’ft+1)—|—ﬂt)7 H}
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M]};l(sﬁ) — ZbeB 77}];1(3]}37' b
~ 1 1
Uy (k) = Yaeamh (sh
end for
end for
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Algorithm 2 The Strategic Nash-Q algorithm. Unlike Optimistic Nash-Q,
Strategic Nash-Q computes the max and min-player policies for each state in-
dependently, and updates its value function bounds under the assumption that
the adversary acts pessimistically (optimizing the lower-bound on its expected
return, rather than the upper bound). Like Strategic ULCB, Strategic Nash-Q
maintains separate evaluation policies ji* and o*.
Inputs: a;>0, Bi>0 -
Initialize: V(h,s,a,b), Qun(s,a,b) < H, Qn(s,a,b) < 0, Ny(s,a,b) < 0,
ph(s,a) < 1jAn.ol, vi(s,a) < 1/|Bn..l.
for episode k=1,..., K do
observe s¥.
for step h=1,...,H do
take action af ~ ,u’,j(sﬁ), b ~ Vf]f(sﬁ)
observe reward rh, next state sh Y1
Nh(sh,ah,bk) — Nh(sh,ah,bh) +1
t < Np(sk, aF bF)
Qh(sh,ai,b )(—mln{(l ay)Qn(s Z ;CL £)+at(rﬁ+vhk+1(5§+1)+/8t)7H}
Qh(shvah»bk) < max{(1— at)@ (s ’ﬁ ﬁ bﬁ)+at(7”}’§+yhk+1(Slﬁﬂ)—ﬁt)a0}
(), 7y T (sg) 4= Nash(Qn(sf, -, ), —Qn(sf, )
;1’;“(3;3) V;'f“(sh) « Nash(Qn(sf;,, ), —Qn(sh, "))
Vh( )<_:uh( )TQh( Sy )Vilj
Yh ( ) A ﬁﬁ(s)TQlﬁ(& K )Vilj
end for
end for




