
Appendix A Proof of Theorem 4.1
Our proof of regret bounds for Strategic ULCB is very similar to the proof for
the regret bounds of Optimistic ULCB [Bai and Jin, 2020]. The key difference is
that we need to show that the tighter confidence bounds maintained by Strate-
gic ULCB still constrain the exploitability of the evaluation policies µ̃k and ν̃k
(Lemma A.2), and that these confidence bounds still converge under our explo-
ration policies. We also directly bound the L1 error of the transition model,
which leads to a somewhat simpler proof, and helps us better understand the
nature of the confidence sets that Strategic ULCB implicitly maintains.

Lemma A.1. For a given K ≥ 3 and δ > 0, define βt as

βt = H

√
2 [|S| ln(KH|S||A||B|/δ)]

t
(1)

then with probability at least 1− δ, for all k ∈ [K], h ∈ H, s ∈ Sh, a ∈ Ah,s and
b ∈ Bh,s, and for all V ∈ [0, H]|S|, we have∣∣∣P̂ kh (s, a, b)>V − P (s, a, b)>V

∣∣∣ ≤ βt (2)

for t = Nk
h (s, a, b).

Proof. When Nk
h (s, a, b) = 0, Equation 2 holds trivially as βt =∞. Otherwise,

we can apply the well known bound on the L1 error of an empirical distribution
due to Weissman et al. [2003] to show that

Pr
{
‖P̂ kh (s, a, b)− P (s, a, b)‖1 ≥ ε

}
≤ (2|S| − 2) exp{−Nk

h (s, a, b)
ε

2
} (3)

Note that, for all V ∈ [0, H]|S|

|P̂ kh (s, a, b)>V − P (s, a, b)>V | ≤ H‖P̂ kh (s, a, b) − P (s, a, b)‖1 (4)

and so for t = Nk
h (s, a, b) and βt defined according to Equation 1 we have

Pr
{
∃V, |P̂ kh (s, a, b)>V − P (s, a, b)>V | ≥ βt

}
≤ δ

KH|S||A||B|
(5)

Taking the union bound over k, h, s, a and b yields the desired result.

For games with deterministic transitions, P̂ kh (s, a, b) = P (s, a, b) whenever
Nk
h (s, a, b) > 0, and so Equation 2 will hold even for βt = 0, which is the value

we use for our experiments in deterministic games. We can now show that our
confidence bounds V̄ kh and

¯
V kh not only constrain the value of the game at each

state, but also bound the exploitability of our evaluation policies µ̃k and ν̃k.
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Lemma A.2. When Strategic-ULCB is run with βt as defined in Equation 1,
the for all k ∈ [K], h ∈ H and s ∈ Sh, we have

V̄ kh (s) ≥ sup
µ
V µ,ν

k

h (s) (6)

¯
V kh (s) ≤ inf

ν
V µ

k,ν
h (s) (7)

with probability at least 1− δ.

Proof. For each k ∈ [K] we prove this by induction on h. We will only show
the proof for the upper bound, as the proof for the lower bound is symmetric.
Assume that for some h ∈ [H] we have, for all s ∈ Sh

V̄ kh+1(s) ≥ sup
µ
V µ,ν

k

h+1 (s) (8)

By Lemma A.1, Equation 2 will hold simultaneously for all k, h, s, a and b with
probability at least 1− δ, and so when Nk

h (s, a, b) > 0, we have

Q̄kh(s, a, b) = R̂kh(s, a, b) + P̂ kh (s, a, b)V̄ kh+1 + βt (9)

≥ R(s, a, b) + P̂ kh (s, a, b)V̄ kh+1 (10)

≥ R(s, a, b) + P (s, a, b) sup
µ
V µ,ν

k

h+1 (11)

= sup
µ
Qµ,ν

k

h (s, a, b) (12)

where the t = Nk
h (s, a, b), and the first inequality also uses the fact that

R̂kh(s, a, b) = R(s, a, b) when Nk
h (s, a, b) > 0. When Nk

h (s, a, b) = 0, Equa-
tion 9 holds trivially, as Q̄kh(s, a, b) = H. By the definition of V̄ kh+1(s), we then
have

V̄ kh+1(s)− sup
µ
V µ,ν

k

h (s) = µkh(s)>Q̄kh(s, ·, ·)ν̃kh(s) (13)

− max
a∈Ah,s

sup
µ
Qµ,ν

k

h (s, a, ·)ν̃kh(s) (14)

≥ µkh(s)>Q̄kh(s, ·, ·)ν̃kh(s) (15)

− max
a∈Ah,s

sup
µ
Qkh(s, a, ·)ν̃kh(s) (16)

= 0 (17)

which proves the inductive step. The first inequality follows directly from Equa-
tion 9, while the second inequality follows from the fact that (µkh(s), ν̃kh(s)) for a
Nash equilibrium of the matrix game defined by Q̄kh(s, ·, ·), and so µkh(s) is a best-
response to ν̃kh(s) under Q̄kh(s, ·, ·). Finally, we can see that Equation 8 holds triv-
ially for h = H+1, where we implicitly assume that V̄ kh (s) = supµ V

µ,νk

h (s) = 0,
which concludes the proof.
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Lemma A.2 will be sufficient to prove Theorem 4.1 and bound the NashConv
regret of the evaluation policies µ̃k and ν̃k. The remainder of the proof will
closely follow the proof for Optimistic ULCB given by Bai and Jin [2020], with
slight modifications to account for the presence of separate exploration and
evaluation policies.

Proof of Theorem 4.1. We begin with the definition of the NashConv regret

Regret(K) =

K∑
k=1

sup
µ
V µ,ν

k

1 (s1)− inf
ν
V µ

k,ν
1 (s1) (18)

for any k ∈ [K] and h ∈ [H], we have

sup
µ
V µ,ν

k

h (skh)− inf
ν
V µ

k,ν
h (skh) (19)

≤ V̄ kh (skh)−
¯
V kh (skh) (20)

= µkh(skh)>Q̄kh(skh, ·, ·)ν̃kh(skh)− µ̃kh(skh)>

¯
Qkh(skh, ·, ·)νkh(skh) (21)

≤ µkh(skh)>Q̄kh(skh, ·, ·)νkh(skh)− µkh(skh)>

¯
Qkh(skh, ·, ·)νkh(skh) (22)

= µkh(skh)>
[
Q̄kh(skh, ·, ·)−

¯
Qkh(skh, ·, ·)

]
νkh(skh) (23)

where the first inequality follows from Lemma A.2, while the second follow from
the fact that µ̃k and ν̃k are best responses, and so changing to the optimistic
strategies µk and νk can only increase the width of the confidence interval. We
can decompose the last term as

µkh(skh)>
[
Q̄kh(skh, ·, ·)−

¯
Qkh(skh, ·, ·)

]
νkh(skh) (24)

=
[
Q̄kh −

¯
Qkh
]

(skh, a
k
h, b

k
h) + ξkh (25)

= P̂ kh (skh, a
k
h, b

k
h)>

[
V̄ kh+1 − ¯

V kh+1

]
+ +2βkh + ξkh (26)

= P (skh, a
k
h, b

k
h)>

[
V̄ kh − ¯

V kh
]

+ 4βkh + ξkh (27)

=
[
V̄ kh+1 − ¯

V kh+1

]
(skh+1) + ζkh + 4βkh + ξkh (28)

where βkh = βt for t = Nk
h (s, a, b). The terms ξkh and ζkh are defined as

ξkh = Ea,b∼µk
h(s

k
h),ν

k
h(s

k
h)

[
Q̄kh −

¯
Qkh
]

(skh, a, b) (29)

−
[
Q̄kh −

¯
Qkh
]

(skh, a
k
h, b

k
h) (30)

ζkh = Es∼P (skh,a
k
h,b

k
h)

[
V̄ kh+1 − ¯

V kh+1

]
(s) (31)

−
[
V̄ kh+1 − ¯

V kh+1

]
(skh+1) (32)

(33)

Here ξkh and ζkh are not i.i.d., but the sequences of their partial sums over k and
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h are martingales, and so by the Azuma-Hoeffding inequality

K∑
k=1

H∑
h=1

ξkh ≤
√

2KH3 ln
1

δ
(34)

K∑
k=1

H∑
h=1

ζkh ≤
√

2KH3 ln
1

δ
(35)

we then have

K∑
k=1

sup
µ
V µ,ν

k

1 (s1)− inf
ν
V µ

k,ν
1 (s1) (36)

≤
K∑
k=1

[
V̄ kh (sk1)−

¯
V k1 (sk1)

]
(37)

≤
K∑
k=1

H∑
h=1

[
4βkh + ξkh + ζkh

]
(38)

For βkh we have

K∑
k=1

H∑
h=1

βkh = C

H∑
h=1

∑
s∈Sh

∑
a∈Ah,s

∑
b∈Bh,s

NK
h (s,a,b)∑
t=1

1√
t

(39)

≤
√
KH2|S||A||B| (40)

by the Cauchy-Schwarz inequality, where

C =
√

2H2|S| ln(KH|S||A||B|/δ) (41)

finally, this gives us

K∑
k=1

H∑
h=1

[
4βkh + ξkh + ζkh

]
(42)

≤ 4
√

2KH4|S|2|A||B| ln(KH|S||A||B|/δ) + 2

√
2KH3 ln

1

δ
(43)

≤ 6
√

2KH4|S|2|A||B| ln(KH|S||A||B|/δ) (44)

which completes the proof.

Appendix B Proof of Theorem 4.2
We prove Theorem 4.2 for the max-player’s exploration strategy µk only, as the
proof for the min-player’s strategy is symmetric. We first show that the upper
bounds V̄ kh and Q̄kh can always be achieved for some game in Dk.
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Lemma B.1. At each episode k, there exists a game G ∈ Dk such that the
upper confidence bounds V̄ k and Q̄kh computed by Strategic-ULCB for βt = 0
satisfy

V̄ kh (s) = sup
µ

inf
ν
V µ,νG,h(s) (45)

Q̄kh(s, a, b) = sup
µ

inf
ν
Qµ,νG,h(s, a, b) (46)

for all h ∈ [H] and s ∈ Sh, and a ∈ Ah,s or b ∈ Bh,s.

Proof. We prove this by induction on h. Assume that for some k ≥ 1, h in[H],
there exists a game G ∈ Dk such that

V̄ kh+1(s) = sup
µ

inf
ν
V µ,νG,h+1(s) (47)

for all s ∈ Sh+1. For each s ∈ Sh, a ∈ Ah,s, and b ∈ Bh,s, if (h, s, a, b) ∈ Ht,
then since G ∈ Dk we will have R̂kh(s, a, b) = RG,h(s, a, b) = Rh(s, a, b) and
P̂ kh (s, a, b) = PG,h(s, a, b) = Ph(s, a, b), and so

Q̄kh(s, a, b) = RG,h(s, a, b) + PG,h(s, a, b)>V̄ kG,h+1 (48)

= sup
µ

inf
ν
Qµ,νG,h(s, a, b) (49)

On the other hand, if (h, s, a, b) /∈ Ht, then we have Q̄kh(s, a, b) = H. In this
case, there exists a game G′ ∈ Dk that is equivalent to G for all h′ ≥ h, but for
which PG′,h(s, a, b, s∗) = 1, and Rh(s, a, b) = H, where s∗ is our hypothetical
absorbing state with reward 0 for all actions and time steps. Because transition
distributions can be selected independently of one another for each s, a and b,
there exists G′ ∈ Dk such that PG′,h(s, a, b, s∗) = 1, and Rh(s, a, b) = H for all
s ∈ Sh, a ∈ Ah,s, and b ∈ Bh,s where (h, s, a, b) /∈ 〈t, such that Q̄kh(s, a, b) =
supµ infν Q

µ,ν
G′,h(s, a, b). We then have that

V̄ kh (s) = µkh(s)>Q̄kh(s, ·, ·)ν̃kh(s) (50)

= sup
µ

inf
ν
Q̄kh(s, ·, ·) (51)

= sup
µ

inf
ν
Q̄kG′,h(s, ·, ·) (52)

Noting that Equation 47 holds trivially for h = H, where we implicitly assume
that V̄ kH+1 = V µ,νH+1 = 0, this proves the lemma for all h ∈ H.

To show that Strategic ULCB is strategically efficient for the max-player
exploration policy, we need to show that, for some game G ∈ Dk, µk is the max
player component of a Nash equilibrium of G.

Proof of Theorem 4.2. Let G ∈ Dk be a game for which Equations 45 and 46
hold. By Lemma B.1, such a game always exists. We can prove that µk is a
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max-player component of an equilibrium of G by induction on h. Assume that,
for h ∈ [H] and for all s ∈ Sh

µk ∈ arg max
µ

inf
ν
V µ,νG,h+1(s) (53)

We then have that, for all h ∈ H, s ∈ Sh

µkh(s) ∈ arg max
x

inf
y
x>Q̄kh(s, ·, ·)y (54)

= arg max
x

inf
y
x>
[
sup
µ

inf
ν
Qµ,νG,h(s, ·, ·)

]
y (55)

= arg max
x

x>
[
sup
µ

inf
ν
Qµ,νG,h(s, ·, ·)νh(s)

]
(56)

= arg max
x

x> inf
ν
V µ

k,ν
G,h+1(s) (57)

where the last line implies that

µk ∈ arg max
µ

inf
ν
V µ,νG,h(s) (58)

Noting that Equation 53 is implicitly satisfied for h = H, this concludes the
proof for µk. Repeating this process for νk proves the result.

Appendix C Optimistic Nash-Q Algorithm
Algorithm 1 describes Optimistic Nash-Q algorithm of Bai et al. [2020]. Note

that, in our implementation, the evaluation strategies are taken as the marginals
of the most recent exploration strategy, which is itself a joint distribution over
the actions for both players. Here, the sequences of learning rates αt and ex-
ploration bonuses βt are left as free hyperparameters that can be tuned to a
specific task.

Appendix D Strategic Nash-Q Algorithm
Algorithm 2 describes the Strategic Nash-Q algorithm, which applies the

strategically efficient updater rules of Strategic ULCB to the Optimistic Nash-
Q algorithm of Bai et al. [2020]. Here, the sequences of learning rates αt and
exploration bonuses βt are left as free hyperparameters that can be tuned to a
specific task.
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Algorithm 1 The Optimistic Nash-Q algorithm. Optimistic Nash-Q maintains
upper and lower bounds on the optimal Q-function, and selects as its exploration
strategy a Coarse Correlated Equilibrium (CCE) of the corresponding general-
sum game for each state.

Inputs: αt≥0, βt≥0
Initialize: ∀(h, s, a, b), Q̄h(s, a, b), V̄h(s) ← H,

¯
Qh(s, a, b),

¯
Vh(s) ← 0,

Nh(s, a, b)← 0, π1
h(s, a, b)← 1/|Ah,s||Bh,s|.

for episode k = 1, . . . ,K do
observe sk1 .
for step h = 1, . . . ,H do

take action akh ∼ µkh(skh), bkh ∼ νkh(skh).
observe reward rkh, next state s

k
h+1.

Nh(skh, a
k
h, b

k
h)← Nh(skh, a

k
h, b

k
h) + 1

t← Nh(skh, a
k
h, b

k
h)

Q̄h(skh, a
k
h, b

k
h)← min{(1−αt)Q̄h(skh, a

k
h, b

k
h)+αt(r

k
h+V̄ kh+1(skh+1)+βt), H}

¯
Qh(skh, a

k
h, b

k
h)← max{(1−αt)

¯
Qh(skh, a

k
h, b

k
h)+αt(r

k
h+

¯
V kh+1(skh+1)−βt), 0}

πk+1
h (skh)← CCE(Q̄h(skh, ·, ·),−

¯
Qh(skh, ·, ·))

V̄h(skh)←
∑
a∈A,b∈B π

k+1
h (skh, a, b)Q̄h(skh, a, b)

¯
Vh(skh)←

∑
a∈A,b∈B π

k+1
h (skh, a, b)

¯
Qh(skh, a, b)

µ̃k+1
h (skh)←

∑
b∈B π

k+1
h (skh, ·, b)

ν̃k+1
h (skh)←

∑
a∈A π

k+1
h (skh, a, ·)

end for
end for
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Algorithm 2 The Strategic Nash-Q algorithm. Unlike Optimistic Nash-Q,
Strategic Nash-Q computes the max and min-player policies for each state in-
dependently, and updates its value function bounds under the assumption that
the adversary acts pessimistically (optimizing the lower-bound on its expected
return, rather than the upper bound). Like Strategic ULCB, Strategic Nash-Q
maintains separate evaluation policies µ̃k and ν̃k.

Inputs: αt≥0, βt≥0
Initialize: ∀(h, s, a, b), Q̄h(s, a, b) ← H,

¯
Qh(s, a, b) ← 0, Nh(s, a, b) ← 0,

µ1
h(s, a)← 1/|Ah,s|, ν1h(s, a)← 1/|Bh,s|.

for episode k = 1, . . . ,K do
observe sk1 .
for step h = 1, . . . ,H do

take action akh ∼ µkh(skh), bkh ∼ νkh(skh).
observe reward rkh, next state s

k
h+1.

Nh(skh, a
k
h, b

k
h)← Nh(skh, a

k
h, b

k
h) + 1

t← Nh(skh, a
k
h, b

k
h)

Q̄h(skh, a
k
h, b

k
h)← min{(1−αt)Q̄h(skh, a

k
h, b

k
h)+αt(r

k
h+V̄ kh+1(skh+1)+βt), H}

¯
Qh(skh, a

k
h, b

k
h)← max{(1−αt)

¯
Qh(skh, a

k
h, b

k
h)+αt(r

k
h+

¯
V kh+1(skh+1)−βt), 0}

µk+1
h (skh), ν̃k+1

h (skh)← Nash(Q̄h(skh, ·, ·),−Q̄h(skh, ·, ·))
µ̃k+1
h (skh), νk+1

h (skh)← Nash(
¯
Qh(skh, ·, ·),−

¯
Qh(skh, ·, ·))

V̄ kh (s)← µkh(s)>Q̄kh(s, ·, ·)ν̃kh
¯
V kh (s)← µ̃kh(s)>

¯
Qkh(s, ·, ·)νkh

end for
end for
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