Appendix A Proof of Theorem 4.1

Our proof of regret bounds for Strategic ULCB is very similar to the proof for the regret bounds of Optimistic ULCB [Bai and Jin, 2020]. The key difference is that we need to show that the tighter confidence bounds maintained by Strategic ULCB still constrain the exploitability of the evaluation policies $\tilde{\mu}^k$ and $\tilde{\nu}^k$ (Lemma A.2), and that these confidence bounds still converge under our exploration policies. We also directly bound the L_1 error of the transition model, which leads to a somewhat simpler proof, and helps us better understand the nature of the confidence sets that Strategic ULCB implicitly maintains.

Lemma A.1. For a given $K \geq 3$ and $\delta > 0$, define β_t as

$$\beta_t = H \sqrt{\frac{2\left[|S|\ln(KH|S||A||B|/\delta)\right]}{t}} \tag{1}$$

then with probability at least $1-\delta$, for all $k \in [K]$, $h \in H$, $s \in S_h$, $a \in A_{h,s}$ and $b \in B_{h,s}$, and for all $V \in [0, H]^{|S|}$, we have

$$\left|\hat{P}_{h}^{k}(s,a,b)^{\top}V - P(s,a,b)^{\top}V\right| \leq \beta_{t}$$

$$(2)$$

for $t = N_h^k(s, a, b)$.

Proof. When $N_h^k(s, a, b) = 0$, Equation 2 holds trivially as $\beta_t = \infty$. Otherwise, we can apply the well known bound on the L_1 error of an empirical distribution due to Weissman et al. [2003] to show that

$$\Pr\left\{\|\hat{P}_{h}^{k}(s,a,b) - P(s,a,b)\|_{1} \ge \epsilon\right\} \le (2^{|S|} - 2)\exp\{-N_{h}^{k}(s,a,b)\frac{\epsilon}{2}\} (3)$$

Note that, for all $V \in [0, H]^{|S|}$

$$|\hat{P}_{h}^{k}(s,a,b)^{\top}V - P(s,a,b)^{\top}V| \leq H \|\hat{P}_{h}^{k}(s,a,b) - P(s,a,b)\|_{1}$$
(4)

and so for $t = N_h^k(s, a, b)$ and β_t defined according to Equation 1 we have

$$\Pr\left\{\exists V, |\hat{P}_{h}^{k}(s, a, b)^{\top}V - P(s, a, b)^{\top}V| \ge \beta_{t}\right\} \leq \frac{\delta}{KH|S||A||B|}$$
(5)

Taking the union bound over k, h, s, a and b yields the desired result.

For games with deterministic transitions, $\hat{P}_{h}^{k}(s, a, b) = P(s, a, b)$ whenever $N_{h}^{k}(s, a, b) > 0$, and so Equation 2 will hold even for $\beta_{t} = 0$, which is the value we use for our experiments in deterministic games. We can now show that our confidence bounds \bar{V}_{h}^{k} and V_{h}^{k} not only constrain the value of the game at each state, but also bound the exploitability of our evaluation policies $\tilde{\mu}^{k}$ and $\tilde{\nu}^{k}$.

Lemma A.2. When Strategic-ULCB is run with β_t as defined in Equation 1, the for all $k \in [K]$, $h \in H$ and $s \in S_h$, we have

$$\bar{V}_h^k(s) \ge \sup_{\mu} V_h^{\mu,\nu^k}(s) \tag{6}$$

$$\underline{V}_{h}^{k}(s) \leq \inf_{\nu} V_{h}^{\mu^{k},\nu}(s) \tag{7}$$

with probability at least $1 - \delta$.

Proof. For each $k \in [K]$ we prove this by induction on h. We will only show the proof for the upper bound, as the proof for the lower bound is symmetric. Assume that for some $h \in [H]$ we have, for all $s \in S_h$

$$\bar{V}_{h+1}^k(s) \ge \sup_{\mu} V_{h+1}^{\mu,\nu^k}(s) \tag{8}$$

By Lemma A.1, Equation 2 will hold simultaneously for all k, h, s, a and b with probability at least $1 - \delta$, and so when $N_h^k(s, a, b) > 0$, we have

$$\bar{Q}_{h}^{k}(s,a,b) = \hat{R}_{h}^{k}(s,a,b) + \hat{P}_{h}^{k}(s,a,b)\bar{V}_{h+1}^{k} + \beta_{t}$$
(9)

$$\geq R(s,a,b) + \hat{P}_{h}^{k}(s,a,b)\bar{V}_{h+1}^{k}$$
(10)

$$\geq R(s,a,b) + P(s,a,b) \sup_{\mu} V_{h+1}^{\mu,\nu^{\kappa}}$$
(11)

$$= \sup_{\mu} Q_{h}^{\mu,\nu^{k}}(s,a,b)$$
(12)

where the $t = N_h^k(s, a, b)$, and the first inequality also uses the fact that $\hat{R}_h^k(s, a, b) = R(s, a, b)$ when $N_h^k(s, a, b) > 0$. When $N_h^k(s, a, b) = 0$, Equation 9 holds trivially, as $\bar{Q}_h^k(s, a, b) = H$. By the definition of $\bar{V}_{h+1}^k(s)$, we then have

$$\bar{V}_{h+1}^k(s) - \sup_{\mu} V_h^{\mu,\nu^k}(s) = \mu_h^k(s)^\top \bar{Q}_h^k(s,\cdot,\cdot) \tilde{\nu}_h^k(s)$$
(13)

$$-\max_{a \in A_{h,s}} \sup_{\mu} Q_h^{\mu,\nu^{\kappa}}(s,a,\cdot)\tilde{\nu}_h^k(s)$$
(14)

$$\geq \mu_h^k(s)^\top \bar{Q}_h^k(s,\cdot,\cdot) \tilde{\nu}_h^k(s) \tag{15}$$

$$-\max_{a\in A_{h,s}}\sup_{\mu}Q_h^k(s,a,\cdot)\tilde{\nu}_h^k(s) \tag{16}$$

$$=0\tag{17}$$

which proves the inductive step. The first inequality follows directly from Equation 9, while the second inequality follows from the fact that $(\mu_h^k(s), \tilde{\nu}_h^k(s))$ for a Nash equilibrium of the matrix game defined by $\bar{Q}_h^k(s, \cdot, \cdot)$, and so $\mu_h^k(s)$ is a best-response to $\tilde{\nu}_h^k(s)$ under $\bar{Q}_h^k(s, \cdot, \cdot)$. Finally, we can see that Equation 8 holds trivially for h = H + 1, where we implicitly assume that $\bar{V}_h^k(s) = \sup_{\mu} V_h^{\mu,\nu^k}(s) = 0$, which concludes the proof.

Lemma A.2 will be sufficient to prove Theorem 4.1 and bound the NashConv regret of the evaluation policies $\tilde{\mu}^k$ and $\tilde{\nu}^k$. The remainder of the proof will closely follow the proof for Optimistic ULCB given by Bai and Jin [2020], with slight modifications to account for the presence of separate exploration and evaluation policies.

Proof of Theorem 4.1. We begin with the definition of the NashConv regret

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \sup_{\mu} V_1^{\mu,\nu^k}(s_1) - \inf_{\nu} V_1^{\mu^k,\nu}(s_1)$$
(18)

for any $k \in [K]$ and $h \in [H]$, we have

$$\sup_{\mu} V_{h}^{\mu,\nu^{k}}(s_{h}^{k}) - \inf_{\nu} V_{h}^{\mu^{k},\nu}(s_{h}^{k})$$
(19)

$$\leq \bar{V}_h^k(s_h^k) - V_h^k(s_h^k) \tag{20}$$

$$=\mu_h^k(s_h^k)^\top \bar{Q}_h^k(s_h^k,\cdot,\cdot)\tilde{\nu}_h^k(s_h^k) - \tilde{\mu}_h^k(s_h^k)^\top \bar{Q}_h^k(s_h^k,\cdot,\cdot)\nu_h^k(s_h^k)$$
(21)

$$\leq \mu_h^k(s_h^k)^\top \bar{Q}_h^k(s_h^k,\cdot,\cdot)\nu_h^k(s_h^k) - \mu_h^k(s_h^k)^\top \underline{Q}_h^k(s_h^k,\cdot,\cdot)\nu_h^k(s_h^k)$$
(22)

$$=\mu_h^k (s_h^k)^\top \left[\bar{Q}_h^k (s_h^k, \cdot, \cdot) - \bar{Q}_h^k (s_h^k, \cdot, \cdot) \right] \nu_h^k (s_h^k)$$
(23)

where the first inequality follows from Lemma A.2, while the second follow from the fact that $\tilde{\mu}^k$ and $\tilde{\nu}^k$ are best responses, and so changing to the optimistic strategies μ^k and ν^k can only increase the width of the confidence interval. We can decompose the last term as

$$\mu_h^k(s_h^k)^\top \left[\bar{Q}_h^k(s_h^k,\cdot,\cdot) - \bar{Q}_h^k(s_h^k,\cdot,\cdot) \right] \nu_h^k(s_h^k) \tag{24}$$

$$= \left[\bar{Q}_{h}^{k} - \bar{Q}_{h}^{k}\right] \left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) + \xi_{h}^{k}$$
(25)

$$= \hat{P}_{h}^{k}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k})^{\top} \left[\bar{V}_{h+1}^{k} - \underline{V}_{h+1}^{k} \right] + 2\beta_{h}^{k} + \xi_{h}^{k}$$
(26)

$$= P(s_h^k, a_h^k, b_h^k)^\top \left[\bar{V}_h^k - \underline{V}_h^k \right] + 4\beta_h^k + \xi_h^k$$
(27)

$$= \left[\bar{V}_{h+1}^{k} - \underline{V}_{h+1}^{k}\right](s_{h+1}^{k}) + \zeta_{h}^{k} + 4\beta_{h}^{k} + \xi_{h}^{k}$$
(28)

where $\beta_h^k = \beta_t$ for $t = N_h^k(s, a, b)$. The terms ξ_h^k and ζ_h^k are defined as

$$\xi_{h}^{k} = \mathbf{E}_{a,b \sim \mu_{h}^{k}(s_{h}^{k}), \nu_{h}^{k}(s_{h}^{k})} \left[\bar{Q}_{h}^{k} - \bar{Q}_{h}^{k} \right] (s_{h}^{k}, a, b)$$
(29)

$$-\left[\bar{Q}_{h}^{k}-\bar{Q}_{h}^{k}\right]\left(s_{h}^{k},a_{h}^{k},b_{h}^{k}\right) \tag{30}$$

$$\zeta_{h}^{k} = \mathcal{E}_{s \sim P(s_{h}^{k}, a_{h}^{k}, b_{h}^{k})} \left[\bar{V}_{h+1}^{k} - \underline{V}_{h+1}^{k} \right] (s)$$
(31)

$$-\left[\bar{V}_{h+1}^{k} - \underline{V}_{h+1}^{k}\right](s_{h+1}^{k}) \tag{32}$$

Here ξ_h^k and ζ_h^k are not i.i.d., but the sequences of their partial sums over k and

h are martingales, and so by the Azuma-Hoeffding inequality

$$\sum_{k=1}^{K} \sum_{h=1}^{H} \xi_{h}^{k} \le \sqrt{2KH^{3} \ln \frac{1}{\delta}}$$
(34)

$$\sum_{k=1}^{K} \sum_{h=1}^{H} \zeta_h^k \le \sqrt{2KH^3 \ln \frac{1}{\delta}} \tag{35}$$

we then have

$$\sum_{k=1}^{K} \sup_{\mu} V_1^{\mu,\nu^k}(s_1) - \inf_{\nu} V_1^{\mu^k,\nu}(s_1)$$
(36)

$$\leq \sum_{k=1}^{K} \left[\bar{V}_{h}^{k}(s_{1}^{k}) - V_{1}^{k}(s_{1}^{k}) \right]$$
(37)

$$\leq \sum_{k=1}^{K} \sum_{h=1}^{H} \left[4\beta_{h}^{k} + \xi_{h}^{k} + \zeta_{h}^{k} \right]$$
(38)

For β_h^k we have

$$\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_h^k = C \sum_{h=1}^{H} \sum_{s \in S_h} \sum_{a \in A_{h,s}} \sum_{b \in B_{h,s}} \sum_{t=1}^{N_h^K(s,a,b)} \frac{1}{\sqrt{t}}$$
(39)

$$\leq \sqrt{KH^2|S||A||B|} \tag{40}$$

by the Cauchy-Schwarz inequality, where

$$C = \sqrt{2H^2|S|\ln(KH|S||A||B|/\delta)} \tag{41}$$

finally, this gives us

$$\sum_{k=1}^{K} \sum_{h=1}^{H} \left[4\beta_{h}^{k} + \xi_{h}^{k} + \zeta_{h}^{k} \right]$$
(42)

$$\leq 4\sqrt{2KH^4|S|^2|A||B|\ln(KH|S||A||B|/\delta)} + 2\sqrt{2KH^3\ln\frac{1}{\delta}}$$
(43)

$$\leq 6\sqrt{2KH^4|S|^2|A||B|\ln(KH|S||A||B|/\delta)}$$
(44)

which completes the proof.

Appendix B Proof of Theorem 4.2

We prove Theorem 4.2 for the max-player's exploration strategy μ^k only, as the proof for the min-player's strategy is symmetric. We first show that the upper bounds \bar{V}_h^k and \bar{Q}_h^k can always be achieved for some game in D_k .

Lemma B.1. At each episode k, there exists a game $G \in D_k$ such that the upper confidence bounds \bar{V}^k and \bar{Q}^k_h computed by Strategic-ULCB for $\beta_t = 0$ satisfy

$$\bar{V}_{h}^{k}(s) = \sup_{\mu} \inf_{\nu} V_{G,h}^{\mu,\nu}(s)$$
(45)

$$\bar{Q}_{h}^{k}(s,a,b) = \sup_{\mu} \inf_{\nu} Q_{G,h}^{\mu,\nu}(s,a,b)$$
(46)

for all $h \in [H]$ and $s \in S_h$, and $a \in A_{h,s}$ or $b \in B_{h,s}$.

Proof. We prove this by induction on h. Assume that for some $k \ge 1$, h in [H], there exists a game $G \in D_k$ such that

$$\bar{V}_{h+1}^k(s) = \sup_{\mu} \inf_{\nu} V_{G,h+1}^{\mu,\nu}(s)$$
(47)

for all $s \in S_{h+1}$. For each $s \in S_h$, $a \in A_{h,s}$, and $b \in B_{h,s}$, if $(h, s, a, b) \in \mathcal{H}_t$, then since $G \in D^k$ we will have $\hat{R}_h^k(s, a, b) = R_{G,h}(s, a, b) = R_h(s, a, b)$ and $\hat{P}_{h}^{k}(s, a, b) = P_{G,h}(s, a, b) = P_{h}(s, a, b)$, and so

$$\bar{Q}_{h}^{k}(s,a,b) = R_{G,h}(s,a,b) + P_{G,h}(s,a,b)^{\top} \bar{V}_{G,h+1}^{k}$$
(48)

$$= \sup_{\mu} \inf_{\nu} Q_{G,h}^{\mu,\nu}(s,a,b)$$
(49)

On the other hand, if $(h, s, a, b) \notin \mathcal{H}_t$, then we have $\bar{Q}_h^k(s, a, b) = H$. In this case, there exists a game $G' \in D^k$ that is equivalent to G for all $h' \ge h$, but for which $P_{G',h}(s,a,b,s^*) = 1$, and $R_h(s,a,b) = H$, where s^* is our hypothetical absorbing state with reward 0 for all actions and time steps. Because transition distributions can be selected independently of one another for each s, a and b, there exists $G' \in D_k$ such that $P_{G',h}(s,a,b,s^*) = 1$, and $R_h(s,a,b) = H$ for all $s \in S_h, a \in A_{h,s}$, and $b \in B_{h,s}$ where $(h, s, a, b) \notin \langle t, such that \bar{Q}_h^k(s, a, b) =$ $\sup_{\mu} \inf_{\nu} Q_{G',h}^{\mu,\nu}(s,a,b)$. We then have that

$$\bar{V}_h^k(s) = \mu_h^k(s)^\top \bar{Q}_h^k(s,\cdot,\cdot) \tilde{\nu}_h^k(s)$$
(50)

$$= \sup_{\nu} \inf_{\nu} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \tag{51}$$

$$= \sup_{\mu} \inf_{\nu} \bar{Q}_{h}^{k}(s, \cdot, \cdot)$$
(61)
$$= \sup_{\mu} \inf_{\nu} \bar{Q}_{G',h}^{k}(s, \cdot, \cdot)$$
(52)

Noting that Equation 47 holds trivially for h = H, where we implicitly assume that $\overline{V}_{H+1}^k = V_{H+1}^{\mu,\nu} = 0$, this proves the lemma for all $h \in H$.

To show that Strategic ULCB is strategically efficient for the max-player exploration policy, we need to show that, for some game $G \in D_k$, μ^k is the max player component of a Nash equilibrium of G.

Proof of Theorem 4.2. Let $G \in D_k$ be a game for which Equations 45 and 46 hold. By Lemma B.1, such a game always exists. We can prove that μ^k is a max-player component of an equilibrium of G by induction on h. Assume that, for $h\in [H]$ and for all $s\in S_h$

$$\mu^k \in \operatorname*{arg\,max\,inf}_{\mu} V^{\mu,\nu}_{G,h+1}(s) \tag{53}$$

We then have that, for all $h \in H$, $s \in S_h$

$$\mu_h^k(s) \in \operatorname*{arg\,max}_x \inf_y x^\top \bar{Q}_h^k(s,\cdot,\cdot) y \tag{54}$$

$$= \arg\max_{x} \inf_{y} x^{\top} \left[\sup_{\mu} \inf_{\nu} Q_{G,h}^{\mu,\nu}(s,\cdot,\cdot) \right] y$$
(55)

$$= \arg\max_{x} x^{\top} \left[\sup_{\mu} \inf_{\nu} Q_{G,h}^{\mu,\nu}(s,\cdot,\cdot)\nu_{h}(s) \right]$$
(56)

$$= \arg\max_{x} x^{\top} \inf_{\nu} V_{G,h+1}^{\mu^{k},\nu}(s)$$
(57)

where the last line implies that

$$\mu^k \in \operatorname*{arg\,max\,inf}_{\mu} V^{\mu,\nu}_{G,h}(s) \tag{58}$$

Noting that Equation 53 is implicitly satisfied for h = H, this concludes the proof for μ^k . Repeating this process for ν^k proves the result.

Appendix C Optimistic Nash-Q Algorithm

Algorithm 1 describes Optimistic Nash-Q algorithm of Bai et al. [2020]. Note that, in our implementation, the evaluation strategies are taken as the marginals of the most recent exploration strategy, which is itself a joint distribution over the actions for both players. Here, the sequences of learning rates α_t and exploration bonuses β_t are left as free hyperparameters that can be tuned to a specific task.

Appendix D Strategic Nash-Q Algorithm

Algorithm 2 describes the Strategic Nash-Q algorithm, which applies the strategically efficient updater rules of Strategic ULCB to the Optimistic Nash-Q algorithm of Bai et al. [2020]. Here, the sequences of learning rates α_t and exploration bonuses β_t are left as free hyperparameters that can be tuned to a specific task.

References

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In *International Conference on Machine Learning*, pages 551–560. PMLR, 2020.

Algorithm 1 The Optimistic Nash-Q algorithm. Optimistic Nash-Q maintains upper and lower bounds on the optimal Q-function, and selects as its exploration strategy a *Coarse Correlated Equilibrium* (CCE) of the corresponding general-sum game for each state.

- Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances in Neural Information Processing Systems, 33, 2020.
- Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, 2003.

Algorithm 2 The Strategic Nash-Q algorithm. Unlike Optimistic Nash-Q, Strategic Nash-Q computes the max and min-player policies for each state independently, and updates its value function bounds under the assumption that the adversary acts pessimistically (optimizing the lower-bound on its expected return, rather than the upper bound). Like Strategic ULCB, Strategic Nash-Q maintains separate evaluation policies $\tilde{\mu}^k$ and $\tilde{\nu}^k$.

 $\begin{array}{l} \text{Inputs: } \alpha_{t\geq 0}, \beta_{t\geq 0} \\ \text{Initialize: } \forall (h, s, a, b), \ \bar{Q}_{h}(s, a, b) \leftarrow H, \ Q_{h}(s, a, b) \leftarrow 0, \ N_{h}(s, a, b) \leftarrow 0, \\ \mu_{h}^{1}(s, a) \leftarrow \frac{1}{|A_{h,s}|}, \nu_{h}^{1}(s, a) \leftarrow \frac{1}{|B_{h,s}|}. \\ \text{for episode } k = 1, \ldots, K \ \text{do} \\ \text{observe } s_{1}^{k}. \\ \text{for step } h = 1, \ldots, H \ \text{do} \\ \text{take action } a_{h}^{k} \sim \mu_{h}^{k}(s_{h}^{k}), b_{h}^{k} \sim \nu_{h}^{k}(s_{h}^{k}). \\ \text{observe reward } r_{h}^{k}, \text{next state } s_{h+1}^{k}. \\ N_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) \leftarrow N_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) + 1 \\ t \leftarrow N_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) \leftarrow \min\{(1 - \alpha_{t})\overline{Q}_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) + \alpha_{t}(r_{h}^{k} + \overline{V}_{h+1}^{k}(s_{h+1}^{k}) + \beta_{t}), H\} \\ Q_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) \leftarrow \max\{(1 - \alpha_{t})Q_{h}(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}) + \alpha_{t}(r_{h}^{k} + V_{h+1}^{k}(s_{h+1}^{k}) - \beta_{t}), 0\} \\ \mu_{h}^{k+1}(s_{h}^{k}), \tilde{\nu}_{h}^{k+1}(s_{h}^{k}) \leftarrow \operatorname{Nash}(\overline{Q}_{h}(s_{h}^{k}, \cdot, \cdot), -\overline{Q}_{h}(s_{h}^{k}, \cdot, \cdot)) \\ \tilde{\mu}_{h}^{k}(s) \leftarrow \mu_{h}^{k}(s)^{\top} \overline{Q}_{h}^{k}(s, \cdot, \cdot) \tilde{\nu}_{h}^{k} \\ Y_{h}^{k}(s) \leftarrow \mu_{h}^{k}(s)^{\top} \overline{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k} \\ \text{end for } \end{array}$