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1 OTHER CHOICES ON
PATH-REPARAMETERIZATION

In this section, we discuss other choices on path-
reparameterization and the influence. The path-
reparameterization method using path-values showed in the
proof of Theorem 1 is not unique. For example, we can
obtain another kind of path-reparameterization, via multi-
plying and dividing the incoming and outgoing weights of
O1

1 by v111 in step 4 of Figure.2 in the main paper. This will
not influence analyses much in this paper for the following
two reasons. First, whatever path-reparameterization
method used, each path-reparameterized network can serve
as a sufficient representation for ReLU networks in the
path space, because the outputs of the network will keep
unchanged for any input after path-reparameterization. Sec-
ond, our studies are based on Theorem 1 in the main paper,
which can be generalized to other path-reparameterization
methods.

2 PROOF FOR PROPOSITION 2
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3 DETAILS ON EXPERIMENTS

3.1 EXPERIMENTAL SETTING DETAILS

In particular, following the settings in Meng et al. [2019],
we apply G-SGD or Path-BN with residual blocks, be-
cause there is no positive scaling invariance across residual
blocks. In addition, we introduce a coefficient λ(λ < 1) for
z̃l−1
j (xi) for experiments of ResNet, to prevent the output

exploding during the forward process, and λ for all layers
in ResNet is set to be 0.1.

Here we describe pre-processing steps, which is same as
He et al. [2016]. For CIFAR-10 and CIFAR-100, we ran-
domly crop the input image by size of 32 with padding
size of 4, and normalize every pixel value to [0, 1]. Then
the random horizontal flipping to the image is applied. For
ImageNet, we randomly crop the input image by size of 224,
and normalize every pixel value to [0, 1]. Then the random
horizontal flipping to the image is also applied.

We use 1 NVIDIA Tesla P100 or P40 GPU to run the exper-
iments on CIFAR, and use 4 NVIDIA Tesla P100 or P40
GPUs in one machine to run the experiments on ImageNet.
All experiments are averaged over 5 runs with different ran-
dom seeds, and PyTorch Paszke et al. [2017] is used for
implementation.
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Dataset Method PlainNet ResNet

18 34 18 34 50

CIFAR-10 SGD+Path-BN 7.00% (±0.08) 7.68% (±0.21) 6.78% (±0.15) 6.57% (±0.06) 6.47% (±0.23)

CIFAR-100 SGD+Path-BN 28.57% (±0.46) 32.98% (±0.81) 26.71% (±0.22) 26.80% (±0.51) 25.68% (±0.28)

Table 1: Test error rate on CIFAR-10 and CIFAR-100 for SGD+Path-BN.

Here we list hyper-parameters used for CIFAR-10 and
CIFAR-100. As for the hyper-parameters of methods men-
tioned in their corresponding papers, i.e., SGD+BN He et al.
[2016] and (G-SGD)+BN(wnorm) Meng et al. [2019], we
use the same settings as their original ones. Specifically,
for SGD+BN, the initial learning rate is set to 0.1, and for
G-SGD+BN (wnorm), the initial learning rate is set to 1.0.
Besides, we tune hyper-parameters for (G-SGD)+BN and
the proposed (G-SGD)+(Path-BN). Specifically, the initial
learning rate is searched from {0.1, 0.2, 0.5, 1.0}. Then, we
use the method proposed in Zheng et al. [2018] as the weight
decay in the path space, and set the coefficient of the weight
decay to 1× 10−4, for these two methods. Besides, we use
the SGD without momentum in our experiments, because
the way to utilize momentum in the path space remains
unclear now. Moreover, for all models and algorithms, the
mini-batch size is set to be 128 and the training process is
conducted for 64k iterations. The learning rates are multi-
plied by 0.1 after 32k and 48k iterations in all experiments,
and the coefficient of weight decay for methods is set to be
0.0001.

Here we list hyper-parameters used for ImageNet. For all
experiments here, the mini-batch size is set to be 256 and
the hyper-parameter for weight decay is set to be 0.0001 He
et al. [2016]. For SGD+BN, the initial learning rate is set
to 0.1 He et al. [2016]. For G-SGD+Path-BN, we only tune
the initial learning rate from {0.1, 0.2, 0.5}. The training
process is conducted for 90 epochs, and the learning rate is
multiplied by 0.1 after 30 and 60 epochs.

As for the stacked CNN used for observations in Section 5.2
in the main paper, we use the following settings: kernel size
3, stride 1, padding 1, and no bias. For CNN, the network
width is the the number of channels, which is set to 128 for
all hidden layers.

3.2 SUPPLEMENTARY RESULTS

Here, we add other baseline, i.e., SGD+Path-BN, in which
we use SGD to train the network with Path-BN, and in
Table 1, we show the test error for SGD+Path-BN. We can
observe that G-SGD+Path-BN outperforms SGD+Path-
BN, which demonstrate the benefits of optimizing in the
path space.

3.3 ANALYSIS OF COMPUTATIONAL COSTS

Different from the conventional BN, Path-BN is to identify
the diagonal elements of weight matrices. For convolutional
networks, the outputs of hidden nodes in MLP always cor-
respond to the feature maps. Hence, on the one hand, if
the sizes of feature maps in different layers are the same,
and the stride length is 1, we can then set the diagonal ele-
ments in weight matrices to 0 and add skip connections for
all layers (except the 1st layer), which will not bring extra
computational cost. On the other hand, if the stride length
is larger than 1, we can also set the diagonal elements in
weight matrices to 0, and additionally, use a fixed-weight
convolutional layer, with only diagonal elements fixed to
1 and others fixed to 0. Thus, with the skip connection or
the fixed-weight convolutional layer, the back propagation
process can be easily implemented. Therefore, according
to the above implementation, Path-BN will not bring much
extra computational cost compared with the conventional
BN. Statistically, in our experiments, the ratio of run time
between G-SGD+Path-BN and SGD+BN, is less than 4 : 3,
and the extra computational cost is mainly brought by the
update of G-SGD instead of Path-BN.
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