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Abstract

Neural networks with ReLU activation functions
(abbrev. ReLU Networks), have demonstrated their
success in many applications. Recently, researchers
noticed that ReLU networks are positively scale-
invariant (PSI) while the weights are not. This
mismatch may lead to undesirable behaviors in
the optimization process. Hence, some new algo-
rithms that conduct optimization directly in the
path space (the path space is proven to be PSI)
were developed, such as Stochastic Gradient De-
scent (SGD) in the path space. However, it is still
unknown that whether other deep learning tech-
niques such as batch normalization (BN), could
also have their counterparts in the path space. In
this paper, we conduct a formal study on the design
of BN in the path space. First, we propose path-
reparameterization of ReLU networks, in which
the weights in the networks are reparameterized by
path-values. Then, the feedforward and backward
propagation of the path-reparameterized networks
can calculate the values of the hidden nodes and
the gradients in the path space, respectively. Next,
we design the a novel way to do batch normaliza-
tion for the path-reparameterized ReLU networks,
called Path-BN. Specifically, we notice that, path-
reparameterized ReLU NNs have a portion of con-
stant weights which play more critical roles to form
the basis of the path space. We propose to exclude
these constant weights when doing batch normal-
ization and prove that, by doing so, the scale and
the direction of the trained parameters can be more
effectively decoupled during training. Finally, we
conduct experiments on benchmark datasets. The
results show that our proposed Path-BN can im-
prove the performance of the optimization algo-
rithms in the path space.

1 INTRODUCTION

In recent years, neural networks with rectified linear unit
(ReLU) activation functions (abbrev. ReLU networks) , have
been successfully applied to many domains, such as image
classification He et al. [2016], Huang et al. [2017], game
playing Mnih et al. [2015], and text processing Kim [2014].
Recently, it has been noticed that ReLU networks, are posi-
tively scale-invariant (PSI) Neyshabur et al. [2015a, 2016],
Dinh et al. [2017], Rangamani et al. [2019], which means
when the incoming weights of a hidden node are multiplied
by a positive constant and the outgoing weights of the hid-
den node are divided by this positive constant, the outputs
of ReLU networks will keep unchanged for any input. How-
ever, the vector space, composed of weights, in which the
conventional optimization algorithms, e.g., Stochastic Gra-
dient Descent (SGD), optimize the neural networks, is not
PSI, and such mismatch may lead to undesirable behaviors
in the optimization process Neyshabur et al. [2015a].

Some recent studies have shown that, one ReLU network
can be optimized in a completely new PSI parameter space,
i.e., the path space, instead of its original weight space Meng
et al. [2019]. To be specific, while regarding ReLU networks
as directed acyclic graphs (DAGs), we can calculate the out-
puts of ReLU networks by using the path-values, i.e., the
multiplication of weights along each input-output path in
the DAG. Here, path-values are invariant to the positive
rescaling of weights, which exactly matches the PSI prop-
erty of ReLU networks, and the optimization algorithms
(e.g., SGD) in the path space (i.e., the vector space com-
posed of path-values), are shown to be superior to those in
the weight space Neyshabur et al. [2015a, 2016], Meng et al.
[2019].

There are already some optimization algorithms developed
in the path space, however, to the best of our knowledge,
it is still unknown whether other deep learning techniques
beyond SGD, can also have their counterparts in the path
space. For example, Batch Normalization (BN) is one of
the most widely used normalization approaches Ioffe and
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Figure 1: Fig.(a) shows the paths of the example ReLU NN and how to calculate output using path-values. Fig.(b) shows the
parameters of ReLU NN after path-reparameterization.

Szegedy [2015], Santurkar et al. [2018], and is crucial for
facilitating the training process of neural networks. With the
help of BN, the training process of neural networks can be
accelerated, by decoupling the scale and direction of weight
vectors Arora et al. [2018].

In this paper, we conduct a formal study on the design of BN
in the path space. First, it is known that, BN is successfully
utilized during the forward and backward process in the
weight space, but it still remains unclear that, how to ensure
the forward propagation in the path space, i.e., the way
to calculate the value of the hidden nodes layer by layer
via path-values is unknown.1 For example, in Fig. 1(a), we
show how to calculate the outputs of ReLU networks using
weights (w1,w2,w3,w4) and path-values (v1,v2,v3,v4) (given
the sign of the hidden node value), respectively. However,
how to calculate the value of the hidden nodes by the path-
values is still unknown.

To solve this problem, we propose to re-parameterize the
weights in ReLU networks, by the path-values. For example,
in Fig. 1(b), weight (w1,w2,w3,w4) are reparameterized as
(v1,v2,1,v3/v1). We call it path-reparameterization of ReLU
networks. We prove that, the output of path-reparameterized
network equals the output of the network in path/weight
space, but still with the MLP structure. Then, we can con-
duct the standard feedforward over the path-reparameterized
ReLU network, and calculate the value of the hidden nodes
by the path-values layer by layers. Furthermore, the back-
ward propagation over path-reparameterized network can
calculates the gradients of path-values in a more efficient

1In Meng et al. [2019], although ReLU networks are optimized
in the path space, the feedforward propagation is still implemented
in the weight space.

way than the Inverse-Chain-Rule and Weight-Allocation
method proposed in Meng et al. [2019].

Then, we design a novel batch normalization in the path
space. We notice that, after the path-reparameterization, a
proportion of the weights in the networks, which play crit-
ical role to form the basis in the path space, are constant
1 and will not be updated by the optimization algorithms
in the path space. If we apply conventional BN to the path-
reparameterized ReLU network, the scale and direction of
the weights cannot be effectively decoupled during training
in path space. Hence, we propose to exclude these con-
stant weights before we do batch normalization for the
path-reparameterized ReLU network and add them back
afterwards. We prove hat, by doing so, the scale and the
direction of the trained parameters in the path space can be
effectively decoupled during training. We call the new batch
normalization method Path-BN. We also prove that, our pro-
posed Path-BN can ensure more stable gradient propagation
in the path space, because the gradient magnitude is less
sensitive to the standard deviation.

Finally, we train ReLU networks in the path space by SGD
with Path-BN on benchmark datasets CIFAR and ImageNet.
The results demonstrate that Path-BN can improve the accu-
racy of SGD in the path space, and outperform SGD with
BN in the weight space.

2 BACKGROUND

2.1 RELATED WORK

In recent years, some researchers have conducted many the-
oretical studies on the path of ReLU networks. In terms
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of generalization, path-based approaches are widely used
to analyze the capacity of ReLU networks. In the works
Neyshabur et al. [2015b] and Zheng et al. [2018], the rela-
tionship between Rademacher complexity and path-norm
or basis path-norm have been studied. In the works Theisen
et al. [2019]Barron and Klusowski [2018], path sampling
methods are designed to produce a sparse approximant of
the original network, which leads to tighter generalization
error bound. The work E et al. [2018] also leveraged the path
representation of ReLU networks, to analyze the generaliza-
tion error of them. In terms of optimization, there are two
typical optimization algorithms designed based on the path
of ReLU networks, i.e., PathSGD Neyshabur et al. [2015a]
and G-SGD Meng et al. [2019]. PathSGD is proposed to
optimize the path-norm regularized loss. It heuristically uti-
lizes a coordinate-wised solution for minimizing the loss
function. G-SGD algorithm directly optimizes the model
in the path space, i.e., update the model by utilizing the
gradients with respected to path-values which are obtained
through Inverse-Chain-Rule (ICR) and Weight-Allocation
(WA) methods.

However, the aforementioned studies have not involved nor-
malization approaches Ba et al. [2016], Wu and He [2018],
such as batch normalization Ioffe and Szegedy [2015],
which are proved to be much crucial for training neural
networks. In this paper, we will give a formal study on
designing BN in the path space.

2.2 RELU NETWORKS IN THE PATH SPACE

We consider an L-layer feedforward ReLU network f L
W with

weight matrices W := {wl ; l = 1, · · · ,L}. Given an input x∈Rd ,
the value of the hidden nodes can be propagated as ol(x) =
g(wlol−1(x)), for l = 1 · · ·L−1, where g(·) = max(·,0) is the
ReLU activation function. The output of the ReLU network
can be obtained as

f L
W (x) = wLoL−1(x). (1)

Regarding the network structure as a directed acyclic graph
consisting of nodes and edges, a path can be defined as:
a list of nodes or edges, starting from an input node, suc-
cessively passing by several hidden nodes along the edges,
and finally ending up with an output node. Given an L-layer
feedforward ReLU network with width d, we denote a path
as p = [p0, p1, p2, · · · , pL] ∈ ZL+1

+ that satisfy pl ≤ d for
l = 0, · · · ,L. Here, pl denotes the index of hidden node at
layer l that the path passes by. The path-value of path p
is defined as a multiplication of the weights along p, i.e.,
vp = ∏

L
l=1 wl

pl pl−1
where wl

jk represents the weight at j-th row
and k-th column of matrix wl . Therefore, the j-th output
f j(x) can be calculated by using path-values as

f j(x) =
d

∑
s=1

∑
p∈Pi, j

vp ·ap · xs. (2)

Here, Ps, j is a set of paths which satisfy p0 = s and pL = j,
the ReLU activation status of path p, can be calculated as

ap =∏
L−1
l=1 I(ol

pl
(x)> 0) where ol

j(x) denotes the j-th element
of vector ol(x).

Although the output of ReLU networks can be calculated
using path-values, how to do forward and backward prop-
agation using path-values is still unknown. In next section,
we will show path-reparameterization technique to reparam-
eterize ReLU MLP using path-values.

3 PATH-REPARAMETERIZATION OF
RELU NETWORKS

In this section, we first introduce a path-reparameterization
method, to ensure the forward propagation in the path space,
and calculate the values of hidden nodes by using path-
values. Then, we will show that the conventional BN cannot
effectively propagate the error signals in the path space,
which calls us to design an effective BN in the path space.

3.1 PATH-REPARAMETERIZATION

In this subsection, we introduce path-reparameterization for
the parameters of ReLU networks, which can replace each
weight with a path-value or a ratio of path-values, and the
outputs of the reparameterized network will keep unchanged
for any input. For ease of presentation, we use v1

kk =∏
L
l=1 wl

kk
to denote the path-value of the path that satisfies p0 = p1 =

· · ·= pL = k , and vl
jk = (∏s<l ws

kk) ·w
l
jk · (∏s>l wl

j j) to denote
the path-value of the path that satisfies p0 = · · · = pl−1 =

k, pl = · · ·= pL = j. We use sgn(·) to denote the sign function,
i.e., sgn(x) = 1 if x > 0, sgn(x) =−1 if x < 0.

Theorem 1 Consider an L-layer ReLU network with weight
matrices {wl ; l = 1, · · · ,L}, if the value of hidden nodes is
calculated by path-values as follows:

(1) for l = 1,

ôl
j(x) = g

(
d

∑
k=1

(
L

∏
s=2

sgn(ws
j j)

)
· vl

jk · xk

)
(3)

(2) For l ≥ 2, ôl
j(x) =

g

(
sgn(wl

j j) · ôl−1
j (x)+

d

∑
k=1,k 6= j

(
L

∏
s>l

sgn(ws
kk)

)
·

vl
jk

v1
kk
· ôl−1

k (x)

)
,

(4)

it can generate final output f̂ L(x) equal to the one calcu-
lated in Eq.(1).

Proof: Based on the PSI property, we will prove Theorem 1
by designing the path-reparameterization process which con-
sists several weight rescaling steps. After these steps, the
ReLU network can be equivalently re-parameterized, which
means that the outputs will keep unchanged for any input
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Figure 2: An example to demonstrate the path-reparameterization process for an MLP.

after the path-reparameterization. Here, we will next demon-
strate the path-reparameterization process by showing that it
can be conducted for a 2-layer MLP, as well as generalized
to a multi-layer setting.

As for a 2-layer neural network, Eq.(3) and Eq.(4) have the
form

ô1
k(x) = g

(
d

∑
k′=1

sgn(w2
kk) · vl

kk′ · xk′

)

= g

(
d

∑
k′=1
|w2

kk| ·w1
kk′ · xk′

)

and

f̂ 2
j (x) =

d

∑
k=1

sgn(w2
kk) ·

v2
jk

v1
kk
· ô1

k(x)

=
d

∑
k=1

sgn(w2
kk) ·

v2
jk

v1
kk
·g

(
d

∑
k′=1
|w2

kk| ·w
1
kk′ · xk′

)

=
d

∑
k=1

sgn(w2
kk) ·

v2
jk

v1
kk
· |w2

kk| ·g

(
d

∑
k′=1

w1
kk′ · xk′

)

=
d

∑
k=1

w2
jk ·g

(
d

∑
k′=1

w1
kk′ · xk′

)
, (5)

where Eq.(5) is established according to the definition of
vl

kk,v
l
jk and the positively scale-invariant property of ReLU

function, i.e., c ·g(x) = g(c · x),c > 0.

As for a multi-layer setting, the path-reparameterization pro-
cess is illustrated in Figure. 2. In particular, this process can
be proceeded by rescaling weights orderly, from which is
connected with the nodes in the last hidden layer to the first
hidden layer (i.e., from the pair (wL,wL−1) to (w2,w1)), and
the scalar of the rescaling operation at each node, is the cor-
responding outgoing diagonal weight. After such rescaling
steps, the weights can be reparameterized as follows: (1)

w1
jk→ v1

jk; (2) wl
kk→ 1; (3) wl

jk→
vl

jk

v1
kk
, l 6= 1, j 6= k.

In summary, a ReLU network (e.g., Step 1 in Fig. 2) can be
equivalently re-parameterized into another network which is
parameterized by path-values or a ratio of path-values (e.g.,
Step 4 in Fig. 2), by rescaling its weights layer by layer. Af-
ter the path-reparameterization, the outputs of hidden nodes
can be calculated by using path-values, in the same way as
they are calculated by weights, and also, based on PSI prop-
erty, the output of the network will keep unchanged after
the reparameterization. Hence, Theorem 1 is established. �

Remark: The path-reparameterization can be extended to
other kinds of NN structures such as convolutional neural
networks (CNN) and ResNet with ReLU activations. For
CNN, we regard each feature map as a hidden node in MLP.
For example, we suppose the 4-triple of weight matrices is
[64,64,3,3] where the first two elements denote the number
of input channels and output channels, the last two ele-
ments denote the size of filter which is 3×3. The element
[0,0,1,1], [1,1,1,1], [2,2,1,1], · · · , [63,63,1,1] are the cor-
responding diagonal weights. Similar as MLP, we scale the
incoming weights and outgoing weights for a feature map
using the value of the diagonal weights. For ResNet, the net-
work is composed by several residual block and we rescale
the weights inside each residual block independently. For
example, suppose the structure inside one residual block is
a three-layer CNN, the path-reparameterization process for
the three layer is the same with that for a CNN.

Theorem 1 explicitly describe how the value of the hidden
nodes are calculated by the path-values layer by layer under
the condition that the signs of diagonal elements of weight
matrices wl ,(l > 1) are fixed. After path-reparameterization,
the weights of ReLU networks can be reparameterized as
follows: (1) w1

jk →
(
∏

L
s=2 sgn(ws

kk)
)
· v1

jk; (2) wl
kk → sgn(wl

kk);

(3) wl
jk→

(
∏

L
s>l sgn(ws

kk)
)
· vl

jk

v1
kk
, l 6= 1, j 6= k. Thus, efficient for-

ward and backward propagation in the path-reparameterized
network can be ensured.
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3.2 THE OPTIMIZATION PROCESS AFTER
PATH-REPARAMETERIZATION

In this section, we show how the network be optimized
after it has been path-reparameterized. Specifically, after
path-reparameterization, we can optimize the loss function
according to gradients with respect to the path-values using
the optimization algorithm such as SGD as follows. First,
we denote the parameter matrix of the path-reparameterized
network at the l-th layer as Ul . Next, we can use back prop-
agation to obtain the gradient of Ul . According to the chain
rule and the relation between the path-values and the weights

(i.e., ul
jk =

vl
jk

v1
kk
, j 6= k,ul

kk = 1, l 6= 1;u1
kk = v1

kk ), the gradient

for vl
jk, j 6= l can be calculated as:

∇vl
jk
`=

∇ul
jk
`

v1
kk

. (6)

where ` is the loss function. For v1
kk, its gradient can be

calculated as:

∇v1
kk
`= ∇u1

kk
`−

vl
jk ∑

L
l=2 ∑

d
j=1 ∇ul

jk
`

(v1
kk)

2 (7)

Then, we can derive the update rule of SGD in path space.

Remark: Here, please note that the update rules derived
from path-reparameterization is consistent with that pro-
vided in Meng et al. [2019], and path-reparameterization
provides a much simpler and straightforward way to explain
the complex update rules. Moreover, v1

kk,(k = 1, · · · ,d) ap-
pears in the denominator for most of its elements, and hence,
these elements are initialized to be 1 to ensure numerical
stability.

3.3 DISCUSSIONS

In this section, we will discuss the combination of conven-
tional BN and the path-reparameterized network. For ease of
presentation, we will assume the signs of diagonal elements
of weight matrices wl ,(l > 1) are positive in the following
context without loss of generality 2. Given a mini-batch of
inputs {xi; i = 1, · · · ,m}, BN normalizes the values of hid-
den node as BN(ol

j(x
i)) = γ l

j ·
ol

j(x
i)−µ l

j

σ l
j

+β l
j , where µ l

j and σ l
j

represent the mean and standard deviation of the hidden
value ol

j over the minibatch, and γ l
j, β l

j are the scale and shift
term, respectively. Normalizing hidden values in this way
can decouple the scale and direction of weight vector, which
is one the reason for BN can stabilize the training process
of deep neural networks in original weight space Kohler
et al. [2019]. However, the next proposition shows that if

2When the network is wide, fixing signs of diagonal weights
do little damage to the expressiveness of the model because the
portion of diagonal weights is small.

we apply conventional BN to the reparameterized network,
the scale of the trained parameters can not be effectively
decoupled.

Proposition 2 Suppose ôl−1
j (xi) 6= 0 and ôl

j(x
i) = ôl−1

j (xi)+

∑
d
k=1,k 6= j

vl
jk

v1
kk
· ôl−1

k (xi). If the scale of the trained parameters

{ vl
jk

v1
kk
}k=1,··· ,d;k 6= j is changed by a positive scalar c,(c 6= 1) as

{c · vl
jk

v1
kk
}k=1,··· ,d;k 6= j , the value of BN(ôl

j(x
i)) will be changed.

We put the proof of Proposition 2 in the Supplementary.
Proposition 2 shows that the output after conventional BN
still relies on the scale (which can be measured by the L2-
norm) of the trained parameters. Thus conventional BN
can not decouple the scale and direction of the trained
parameters in path space. The reason is that after path-
reparameterization, some parameters are degenerates to con-
stants that won’t be trained for optimization in the path
space.

Then, we analyze the gradient propagation process for the
reparameterized network with conventional BN. We con-
duct experiments to observe the magnitude of gradient of
cross-entropy loss w.r.t the hidden values in each layer. The
detailed experimental setting is shown in Section 5.2. The
results is shown in the left figure in Fig. 4. The blue curve
shows L2-norm of gradient of loss w.r.t the hidden values
in each layer. We can conclude that the L2-norm of the gra-
dient w.r.t hidden values is exponentially increasing as it is
propagated from output layer to input layer. It indicates that
the gradient propagation for path-reparameterized network
with conventional BN is unstable.

The above discussions motivate us to design BN in the
path space by modifying the conventional BN, in order to
effectively decouple the scale and direction of the trained
parameters in path space, and stably propagate the error
signals. We will next detailedly introduce the proposed BN
in the path space, i.e., Path-BN.

4 PATH-BN: EFFECTIVE BN IN THE
PATH SPACE

In this section, we design the BN in the path space, namely
Path-BN, attuned to the path-reparameterized ReLU net-
work. Motivated by the calculation for the values of hidden
nodes in Theorem 1, as well as the discussion in Propo-
sition 2, we propose to normalize the terms related to the
trained parameters (i.e., Eq. 3 and the 2nd term in Eq. 4),
and exclude the constant terms (i.e., the 1st term in Eq. 4).
Specifically, we use z̃l

j(x
i) to denote the hidden value after

Path-BN and ReLU, and detailedly describe the forward
process of Path-BN in the following two steps.

(1) For the 1st layer, the operation of Path-BN is the same
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Figure 3: The left figure shows a network after path-
reparameterization and the right figure illustrates Path-
BN which is applied to a hidden node of the path-
reparameterized network.

as the conventional BN, i.e., z̃1
j(x

i) = z1
j(x

i) = g
(

BN(ô1
j(x

i))
)

.

(2) For the l-th layer (l ≥ 2), as shown in Fig. 3, there are
three sub-steps for Path-BN as follows.

First, we calculate the partial weighted summation. Here,
the input related to the diagonal constant element in the
parameter matrix is excluded, i.e.,

õl
j(x

i) =
d

∑
k=1,k 6= j

vl
jk

v1
kk
· z̃l−1

k (x) (8)

Second, normalize the partial weighted summation above,
i.e.,

BN(õl
j(x

i)) = γ
l
j ·

õl
j(x

i)− µ̃ l
j

σ̃ l
j

+β
l
j (9)

Third, add the excluded term z̃l−1
j (xi) into the normalized

partial weighted summation in Eq. 9, i.e.,

z̃l
j(x

i) = g
(

BN(õl
j(x

i))+ z̃l−1
j (xi)

)
(10)

Consequently, Path-BN can be easily combined with the
optimization algorithm in the path space for ReLU networks.
It is easy to verify that normalizing the path-reparameterized
network using Path-BN can decouple the scale and direction
of the trained parameters, and thus Path-BN can address the
issue of conventional BN showed in Proposition 2.

Next, we analyze the gradient propagation in the repa-
rameterized network with Path-BN and conventional BN.
We will show that the gradients can be effectively propa-
gated by using Path-BN in Theorem 3. Here, we use ` and
∇zl(xi)`=

(
∂`

∂ zl
1(xi)

, · · · , ∂`
∂ zl

d(xi)

)
, to denote loss function and the

gradient vector w.r.t hidden values in layer l, respectively.
Then, we can give an estimation of the norm of ∇zl(xi)` and
∇z̃l(xi)L in Theorem 3.

Theorem 3 We use Vl to denote the parameter matrix in
layer l for ReLU network after the path-reparameterization.
Suppose the scale term is of O(1) and the minibatch size
is large enough, the gradient norm of loss w.r.t z̃l

j(x
i) for

path-reparameterized network with Path-BN can be upper
bounded as

‖∇z̃l(xi)`‖ ≤ O

(
L

∏
s=l+1

‖
(

I +(σ̃ s)−1 ·V
′
s

)
‖

)
(11)

and the gradient norm of loss w.r.t zl
j(x

i) for path-
reparameterized network with BN can be upper bounded
as

‖∇zl(xi)`‖ ≤ O

(
L

∏
s=l+1

‖(σ s)−1 · (I +V ′s )‖

)
, (12)

where V ′l =Vl−I, σ l = diag(σ l
1, · · · ,σ

l
d), σ̃ l = diag(σ̃ l

1, · · · , σ̃
l
d),

and diag(a1, · · · ,ad) represents a diagonal matrix whose di-
agonal elements are a1, · · · ,ad .3

Proof: As for Eq. (11), the upper bound of gradient norm
of in the reparameterized network with Path-BN, according
to the chain rule, we have

∇z̃l `=

∇z̃L` ·
(

∂ z̃L

∂ õL ·
∂ õL

∂ z̃L−1 +
∂ z̃L

∂ z̃L−1

)
· · ·
(

∂ z̃l+1

∂ õl+1 ·
∂ õl+1

∂ z̃l +
∂ z̃l+1

∂ z̃l

)
,

where ∂ z̃s

∂ õs equals

∂ z̃s

∂ õs =


∂ z̃s

1(x
1)

∂ õs
1(x

1)

∂ z̃s
1(x

1)

∂ õs
2(x

1)
· · · ∂ z̃s

1(x
1)

∂ õs
d(x

m)

∂ z̃s
2(x

1)

∂ õs
1(x

1)

∂ z̃s
2(x

1)

∂ õs
2(x

1)
· · · ∂ z̃s

2(x
1)

∂ õs
d(x

m)

· · · · · ·
∂ z̃s

d(x
m)

∂ õs
1(x

1)

∂ z̃s
d(x

m)

∂ õs
2(x

1)
· · · ∂ z̃s

d(x
m)

∂ õs
d(x

m)

 . (13)

Assuming that γ̃ l = diag(γ̃ l
1, · · · , γ̃ l

d) and D̃l(xi) =
diag(D̃l

1(x
i), · · · , D̃l

d(x
i)) where D̃l

j(x
i) = 1 if z̃l

j(x
i) > 0,

otherwise D̃l
j(x

i) = 0, we have

(1) if j1 = j2 = j and i1 = i2 = i,

∂ z̃s
j(x

i)

∂ õs
j(x

i)
= D̃s

j(x
i) ·

γ̃s
j

σ̃ s
j
(1− 1

m
− 1

m
· (BN(õs

j(x
i))2);

(2) if j1 = j2 = j and i1 6= i2,

∂ z̃s
j(x

i1)

∂ õs
j(x

i2)
= D̃s

j(x
i1) ·

γ̃s
j

σ̃ s
j
(− 1

m
− 1

m
·BN(õs

j(x
i1)) ·BN(õs

j(x
i2)));

(3) if j1 6= j2,
∂ z̃s

j1
(xi1 )

∂ õs
j2
(xi2 )

= 0.

Obviously, most of the elements in the matrix equals to zero.
Under the assumption that z̃l

j(x
i) is bounded for all i, j, l, the

3Here, ‖ · ‖ denotes the spectral norm of a matrix or the L2
norm of a vector.
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above matrix tend to be the diagonal matrix D̃l · γ̃ l · (σ̃ l)−1

if m approaches ∞. Under the assumption that the scale term
γ̃ l

i is of O(1) and the minibatch size m is large enough, we
have D̃l · γ̃ l · (σ̃ l)−1 ≤ O((σ̃ l)−1I).

As for the matrix ∂ õs

∂ z̃s−1 , we have

∂ õs

∂ z̃s−1 = I. (14)

As for the matrix ∂ õs

∂ z̃s−1 , we have

∂ õs

∂ z̃s−1 =


V ′s 0 · · · 0
0 V ′s · · · 0

· · ·
0 0 · · · V ′s

 (15)

Thus, using the fact that ‖AB‖ ≤ ‖A‖‖B‖, we can get the
result in the theorem.

Besides, the upper bound of gradient norm of in the repa-
rameterized network with BN (i.e., Eq. (12)), can be proved
in the same way. �

According to Theorem 3, we have the following corollary.

Corollary 4 Suppose λ = ‖V ′l ‖. A sufficient condition for
that ‖∇zl(xi)`‖ and ‖∇z̃l(xi)`‖ can be upper bounded by con-
stant (i.e., will not diverge as L→∞) is σ l

j ∈ [
L(1+λ )

L+1 ,
L(1+λ )

L−1 ]

and σ̃ l
j ∈ [λL,∞) ∀ j, respectively. 4

Discussion: According to Theorem 3, the standard deriva-
tion σ l

j can not be much larger or smaller than 1 if we want
the gradient of path-reparameterized network with conven-
tional BN stably propagated, while we only need σ̃ l

j not be
too small if we want the gradient of path-reparameterized
network with Path-BN stably propagated. Although σ l

j is not
a variable that we can control in the training process, corol-
lary 4 just show the tolerance on the magnitude of the stan-
dard derivation to ensure stable back-propagation. Corollary
4 shows explicit range for standard derivations and we can
conclude that the range for σ̃ l

j is much larger than that for

σ l
j . Furthermore, if λ ≤ 1

L , we have [
L(1+λ )

L+1 ,
L(1+λ )

L−1 ]⊂ [λL,∞)

(i.e., the range for σ l
j is fully contained in the range σ̃ l

j),
which shows that the gradient norm for NN with Path-BN is
less sensitive to the magnitudes of the standard deviations
in batch normalization. It indicates the backward stability of
ReLU network with Path-BN. We will observe the standard
deviations in each layer in Section 5.2. The results in Fig-
ure. 4 demonstrate that the gradient of ReLU network with
Path-BN is more stably propagated compared to NN with
conventional BN.

4Please note that the conditions are tight in the sense that if
we change L in the ranges to be L1−ε , the upper bound of both the
gradient norms for BN and Path-BN will diverge.
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Figure 4: Experimental observations on standard derivation
and gradient norm for path-reparameterized network with
BN and Path-BN.

Remark: Although Theorem 3 is established for the gradi-
ent with respect to the hidden output, according to Equation
(6) and (7), the stability of ∇zl ` can ensure the stability of
∇ul

jk
`, and hence, the stability of ∇vl

jk
`.

5 EXPERIMENTS

In this section, we conduct experiments by first comparing
the performance of Path-BN with the baselines on various
datasets, and then showing some experimental observations
to support theoretical analyses.

5.1 PERFORMANCE EXPERIMENTS

In this section, we evaluate the performance of Path-BN on
training deep neural networks by conducting experiments
on CIFAR-10, CIFAR-100, and ImageNet datasets. First, we
will introduce the network structures and compared meth-
ods.

5.1.1 Network Structures and Compared Methods

In this subsection, we describe the network structures and
the compared methods. First, as for the network structures,
we apply Path-BN to train ResNet and PlainNet He et al.
[2016]. Second, we show the setting details of four com-
pared methods as follows.
(1) SGD+BN: We use SGD to train the network with BN.
(2) G-SGD+BN: We use G-SGD to train the network with
the conventional BN.
(3) G-SGD+BN(wnorm): We use a method which was intu-
itively proposed to handle the conventional BN without any
theoretical analysis Meng et al. [2019]. Here, the gradient of
the path-value, is normalized by the L2-norm of the weights
pointing to the same hidden unit.
(4) G-SGD+Path-BN: Our proposed Path-BN targets on BN
in the path space, and the network with Path-BN should be
optimized by the algorithms in the path space. Thus, we use
G-SGD to train the network with Path-BN.
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Dataset Method PlainNet ResNet

18 34 18 34 50

CIFAR-10

SGD+BN 6.93% (±0.12) 7.76% (±0.22) 6.76% (±0.10) 6.40% (±0.09) 6.55% (±0.24)
G-SGD+BN 6.66% (±0.12) 6.74% (±0.13) 6.84% (±0.30) 6.54% (±0.06) 6.62% (±0.19)
G-SGD+BN(wnorm) 6.26% (±0.17) 6.67% (±0.26) 6.31% (±0.14) 6.33% (±0.15) 6.31% (±0.14)
G-SGD+Path-BNours 5.99% (±0.13) 6.04% (±0.16) 6.04% (±0.14) 5.66% (±0.10) 5.99% (±0.12)

CIFAR-100

SGD+BN 28.10% (±0.19) 33.37% (±0.41) 26.97% (±0.12) 26.42% (±0.23) 25.62% (±0.18)
G-SGD+BN 27.08% (±0.35) 28.19% (±0.35) 27.13% (±0.39) 26.61% (±0.10) 25.99% (±0.40)
G-SGD+BN(wnorm) 26.76% (±0.05) 27.61% (±0.24) 26.60% (±0.17) 26.72% (±0.27) 25.65% (±0.22)
G-SGD+Path-BNours 26.70% (±0.10) 27.04% (±0.12) 26.39% (±0.10) 26.24% (±0.29) 25.29% (±0.19)

Table 1: Test error rate on CIFAR-10 and CIFAR-100.

5.1.2 CIFAR

We conduct experiments on CIFAR-10 dataset and CIFAR-
100 dataset Krizhevsky et al. [2009]. Here, we train ResNet
of 18, 34, and 50 layers, and PlainNet of 18 and 34 layers,
respectively. As for the hyper-parameters of methods men-
tioned in their corresponding papers, i.e., SGD+BN He et al.
[2016] and G-SGD+BN(wnorm) Meng et al. [2019], we use
the same settings as their original ones. Besides, we tune
the hyper-parameters for other methods, i.e., G-SGD+BN,
and the proposed G-SGD+Path-BN.

In Table 1, we show the performance results on the test
error rate. In Figure 5, we plot the training curves and test
accuracy for training ResNet-50 on CIFAR datasets. Such
results demonstrate that: (1) G-SGD+Path-BN outperforms
others on all tested datasets and network structures, which
shows the superiority of Path-BN; (2) Combining the path
space and the conventional BN directly hurts performance,
which empirically motivates us to propose Path-BN; (3) G-
SGD+Path-BN outperforms G-SGD+BN(wnorm), which
shows the benefit and significance of our proposed formal
analyses.

5.1.3 ImageNet

We conduct experiments on ImageNet dataset Russakovsky
et al. [2015]. Here, we train ResNet of 50, 101 and 152 lay-
ers, to demonstrate that the proposed Path-BN can help
to train very deep networks on a large dataset, and we
compare the performance results between SGD+BN and G-
SGD+Path-BN. The method for tuning the hyper-parameters
is similar to that in Section 5.1.2.

In Fig. 6, we plot the training curve and test accuracy during
training ResNet of 50, 101, and 152 layers. These results
well demonstrate the superiority of G-SGD+Path-BN, and
show that for the large dataset and very deep networks,
Path-BN can still outperform the conventional BN. 5

5We put the explanation on computational cost of Path-BN
compared to BN in Supplementary.
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Figure 5: Training curves and test accuracy for training
ResNet-50 on CIFAR datasets.

5.2 OBSERVATIONS ON STANDARD DEVIATIONS
AND GRADIENTS

After analyzing the advantage of Path-BN over the conven-
tional BN theoretically in Section 3.3 and 4, we now provide
some experimental observations to support our analyses.
Here, we will show the magnitude of standard deviations in
BN, and the gradients of ReLU networks with conventional
BN and Path-BN.

In these experiments, we use a stacked CNN of 50 lay-
ers with 128 channels in each layer, and use CIFAR-10 as
training data, with the batch size of 128. Then, we add the
conventional BN or Path-BN at the end of each hidden layer
in the stacked CNN, which is denoted as BN and Path-BN,
respectively. For the model with the conventional BN, it
is randomly initialized. For the model with Path-BN, the
diagonal elements in parameter matrices (expect for the 1st
layer) are initialized to 1 (cf. Section 3), and other elements
are initialized with small random values.
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Figure 6: Curves for training ImageNet.

Because the theoretical analyses are not related to the train-
ing process, we will just observe some quantities at initial-
ization as follows.

We log standard derivation σ l
j for each hidden node during

the forward process of the 1st mini-batch, and then calculate
the average standard deviation among the nodes in each
layer. Then we log the L2-norm of gradients of loss w.r.t. the
hidden values in each layer. The curves regarding standard
deviations and the log of the gradient norm are shown in
Fig.4. From Fig. 4, we can observe that: (1) For the conven-
tional BN, the standard deviations are smaller than 1 and
gradient norm grows exponentially as the depth decreases.
(2) For Path-BN, the standard deviation grows when the
layer index becomes larger, and most of them are larger
than 1. The gradient norm grows slower than that of NN
with conventional BN. These observations match the claim
in Theorem 3 that Path-BN is less sensitive to the magni-
tudes of standard derivations which is one of the reasons for
relatively stable gradient propagation.

6 CONCLUSION

In this paper, we conduct a formal study on the design of
BN in the path space. We propose path-reparameterization
of ReLU networks to ensure the forward and backward prop-
agation in the path space. Via path-reparameterization, the
values of hidden nodes can be calculated by using path-
values. Then, we design a new batch normalization method
for path-reparameterized ReLU networks, called Path-BN.
We prove that Path-BN can efficiently decouple of scale
and direction of trained weight in the path space and can
ensure stable gradient propagation. Experiments on two
benchmark datasets, CIFAR and ImageNet show that our
proposed Path-BN can improve optimization algorithms in
the path space. The path-reparameterization gives the path
representation of ReLU networks an explicit characteriza-
tion, and it makes the study of other techniques in the path
space easier. Based on the path-reparameterization, we will
explore the counterpart of other techniques in path space,
such as layer normalization and dropout in future.
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