
Neural Markov Logic Networks (Supplementary material)

Giuseppe Marra1 Ondřej Kuželka2

1Department of Computer Science, KU Leuven, Leuven, Belgium
2Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

A GRADIENT-BASED OPTIMIZATION

The maximization of the log-likelihood is carried out by a gradient-based optimization scheme. The gradients of the
log-likelihood w.r.t. both the parameters wi, j, where wi, j denotes the j-th component of wi, and βi are:

∂ log(Pω̂)

∂wi, j
= βi

(
∂Φi(ω̂;wi)

∂wi, j
−Eω∼P

[
∂Φ(ω;wi)

∂wi, j

])
(1)

∂ log(Pω̂)

∂βi
=

(
Φi(ω̂;wi)−Eω∼P[Φi(ω;wi)]

)
(2)

At a stationary point, Eq. 2 recovers the initial constraint on statistics imposed in the maximization of the entropy. However,
the minimization of the entropy is mapped to a new requirement: at stationary conditions, the expected value of the gradients
of the Φi under the distribution must match the gradients of the Φi evaluated at the data points.

B TRANSLATING MARKOV LOGIC NETWORKS TO NEURAL MARKOV LOGIC
NETWORKS

In this section we show that any Markov logic network (MLN) without quantifiers can be represented as an NMLN.

Kuželka et al. [2018] studies two maximum-entropy models, Model A, which is close to the model that we study in this
paper, and Model B, which is the same as MLNs. Syntactically, both models are encoded as sets of quantifier-free weighted
first order logic formulas, e.g. Φ = {(α1,w1), . . . ,(αM,wm)}. In particular, given a positive integer k, Model A defines the
following distribution:

pA(ω) =
1
Z

exp

(
∑

(α,w)∈ΦA

w ·#k(α,ω)

)
where Z is the normalization constant and #(α,ω) is the fraction of size-k subsets S of constants in the possible world ω

for which ω〈S 〉 |= α (i.e. the formula α is classically true in the fragment of ω induced by S ). Let us first define

φα,w(γ) =

{
w γ |= α

0 γ 6|= α

It is then easy to see that the distribution pA(ω) can also easily be encoded as an NMLN by selecting the potential function
φ(γ) = ∑(α,w)∈ΦA

φα,w(γ) and by carefully selecting the weights βi in the NMLN.

Next we show that all distributions in Model B can be translated to distributions in Model A. First we will assume that the
formulas αi do not contain any constants.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Giuseppe Marra <giuseppe.marra@kuleuven.be>?Subject=Your NMLN UAI 2021 paper


Model B is given by

pB(ω) =
1
Z

exp

(
∑

(β ,v)∈ΦB

v ·n(β ,ω)

)
where n(β ,ω) is the number1 of true injective groundings of the formula β in the possible world ω . Hence, Model B is
exactly the same as Markov logic networks up to the requirement on injectivity of the groundings. However, as shown in
[Buchman and Poole, 2015], any Markov logic network can be translated into such modified Markov logic network with the
injectivity requirement on the groundings.

Let k be an integer greater or equal to the number of variables in any formula in ΦB. Now, let Γ be the set of all size-
k fragments. For every formula β in ΦB, we introduce a partition P on Γ induced by the equivalence relation ∼β

defined by: γ ∼β γ ′ iff n(β ,γ) = n(β ,γ ′). Since β is assumed to not contain any constants, we can capture each of these
equivalence classes C by a (possibly quite big) first-order logic sentence without constants βC. Let Ci be the equivalence
class that contains fragments γ such that n(β ,γ) = i. Let m(β ,ω) = ∑Ci∈P ∑γ∈Γk(ω) i ·1(γ |= βC). By construction, it holds
m(β ,ω) = ∑γ∈Γk(ω) n(β ,γ). Every true injective grounding of the formula β , having l variables, is contained in

(n−l
k−l

)
different size-k fragments of ω , each of which gives rise to k! anonymized fragments in the multi-set Γk(ω). So m(β ,ω) is
over-counting the number of true groundings n(β ,ω) by a constant factor. It follows that, by carefully selecting the weights
of the formulas βC we can encode the distribution pB(ω) also in Model A. Although this particular transformation that
we have just sketched is not very efficient, it does show that NMLNs with potential functions of width k can express all
distributions that can be expressed by MLNs containing formulas with at most k variables and no existential quantifiers.

First-order logic formulas defining MLNs may also contain constants. In NMLNs we may represent constants using
vector-space embeddings as described in the main text. One can then easily extend the argument sketched above to the case
covering MLNs with constants.

C THE MIN-MAX ENTROPY PROBLEM

As we show in this section, NMLNs naturally emerge from a principle of min-max entropy. For simplicity, we assume that
we have one training example ω̂ (the same arguments extend easily to the case of multiple training examples). The example
ω̂ may be, for instance, a knowledge graph (represented in first-order logic). We want to learn a distribution based on this
example.2 For that we exploit the principle of min-max entropy.

Maximizing Entropy Let us first assume that the potentials Φi(ω;wi,We) and the parameter vectors w1, . . . , wm, and We
are fixed. Using standard duality arguments for convex problems [Boyd and Vandenberghe, 2004, Wainwright et al., 2008],
one can show that the solution of the following convex optimization problem is an NMLN:

max
Pω

−∑
ω

Pω logPω (3)

s.t. ∑
ω

Pω = 1, ∀ω : pω ≥ 0 (4)

∀i : EPω
[Φi(ω;wi,We)] = Φi(ω̂;wi,We) (5)

Here, the probability distribution is represented through the variables Pω , one for each possible world. This problem asks to
find a maximum-entropy distribution such that the expected values of the potentials Φi are equal to the values of the same
potentials on the training examples ω̂ , i.e. EPω

[Φi(ω;wi,We)] = Φi(ω̂;wi,We). One can use Lagrangian duality to obtain
the solution in the form of an NMLN: Pω = 1

Z exp(∑i βiΦ(ω;wi,We))). Here, the parameters βi are solutions of the dual
problem maxβi {∑

M
i=1 βiΦi(ω̂;wi,We))− logZ}, which coincides with maximum-likelihood when the domain size of the

training example ω̂ and the domain size of the modelled distribution are equal.3 For details we refer to the discussion of

1In [Kuželka et al., 2018], Model B is defined using fractions of true grounding substitutions instead of numbers of true grounding
substitutions. However, these two definitions are equivalent up to normalizations and both work for our purposes but the latter one is a bit
more convenient here. Hence we choose the latter one here.

2Regarding consistency of learning SRL models from a single example, we refer e.g. to [Kuželka and Davis, 2019].
3We note that the derivation of the dual problem follows easily from the derivations in [Kuželka et al., 2018], which in turn rely

on standard convex programming derivations from [Boyd and Vandenberghe, 2004, Wainwright et al., 2008]. Throughout this section
we assume that a positive solution exists, which is needed for the strong duality to hold; this is later guaranteed by adding noise during
learning.



model A in [Kuželka et al., 2018].

Minimizing Entropy Now we lift the assumption that the weights w and We are fixed. We learn them by minimizing the
entropy of the max-entropy distribution. Let us denote by H(β1, . . . ,βm,w1, . . . ,wm,We) the entropy of the distribution Pω .
We can write the resulting min-max entropy problem as:

min
wi,We

max
βi

H(β1, . . . ,βM,w1, . . . ,wm,We) =

−max
wi,We

min
βi
−H(β1, . . . ,βM,w1, . . . ,wm,We)

subject to the constraints (4) and (5). Plugging in the dual problem and using strong duality, we obtain the following
unconstrained optimization problem which is equivalent to the maximization of log-likelihood when the domain size of the
training example ω̂ and that of the modelled distribution are the same, i.e. the optimization problem is:

max
wi,We,βi

{
m

∑
i=1

βiΦi(ω̂;wi,We)− logZ

}
. (6)

The maximization of the log-likelihood will be carried out by a gradient-based method (see Appendix A).

Justification Selecting the potential in such a way as to decrease the (maximum) entropy of MaxEnt models can be shown
to decrease the KL-divergence between the true data distribution and the model distribution [Zhu et al., 1997]. Of course,
this coincides with maximum-likelihood estimation, but only when the domain size of the training example ω̂ and that of
the modelled distribution are the same; we refer to [Kuželka et al., 2018] for a more thorough discussion of this distinction
for max-entropy models. Importantly, the min-max entropy perspective allows us to see the different roles that are played by
the parameters βi on the one hand and wi and We on the other.

D GENERATING MOLECULES

D.1 MOLECULES FIRST-ORDER-LOGIC REPRESENTATION

Even though molecules can be described with a high level of precision, using both spatial features (i.e. atoms distances, bond
length etc.) and chemical features (i.e. atom charge, atom mass, hybridization), in this work, we focused only on structural
symbolic descriptions of molecules.

In particular, we described a molecule using three sets of FOL predicates:

• Atom-type unary predicates: these are C, N, O, S, Cl, F, P.

• Bond-type binary predicate: these are SINGLE and DOUBLE.

• an auxiliary binary predicate SKIPBOND (see later).

An example of a molecule FOL description can be:

O(0), C(1), C(2), C(3), N(4), C(5), C(6), C(7), O(8), O(9), SINGLE(0,1), SINGLE(1,0), SINGLE(1,2),
SINGLE(2,1), SINGLE(2,3), SINGLE(3,2), SINGLE(3,4), SINGLE(4,3), SINGLE(4,5), SINGLE(5,4),

SINGLE(5,6), SINGLE(6,5), SINGLE(5,7), SINGLE(7,5), DOUBLE(7,8), DOUBLE(8,7), SINGLE(7,9),
SINGLE(9,7), SINGLE(6,1), SINGLE(1,6)

To help NMLNs capture long-range dependencies in molecules even with not so large fragments (e.g. k = 3,4,5), we added
“skip-bond” atoms. For any three distinct x, y, z, such that there is a bond connecting x and y and a bond connecting y and z,
we add SKIPBOND(x,z). This forces NMLN to learn the “definition” of skip-bonds and allows them, for instance, to
implicitly capture the presence of a six-ring of atoms with a fragment of size 4 (whereas without skip-bonds we would need
fragments of size 6 for that).

D.2 FASTER INFERENCE WITH CHEMICAL CONSTRAINTS.

To speed up the convergence, we exploited a slightly modified Gibbs Sampling procedure, again inspired by the blocking
technique. In particular, given a constant or a pair of constants, we sample all its relations in parallel. Since we known, that a



Figure 1: An example of molecule

constant should belong to exactly one unary relation, i.e. atom type, and a pair of constants should belong to at most one
bond type, we can shorten the length of the chain by avoiding sampling inconsistent states. Inconsistent states are simply
defined in NMLN as a set of constraints over the chain intermediate states. We also executed the same generation experiment
without any constraint and there were no sensible differences.

We show a random sample of the training data (Figure 2) and the most frequent molecules sampled by GS (Figure 3).

D.3 MLN COMPARISON

In order to compare with Markov Logic Network (MLN) , we first learned the structure of a MLN using Alchemy. Next,
we used the trained MLN in using the same Gibbs Sampler we used for Neural MLNs, for a fairer comparison. This is the
reason why MLNs are capable not to predict more than one type per atom/bond. Training the following rules required 11
hours, moreover we left Gibbs Sampling to burn for one hour before using sample for evaluation. On the contrary, training a
NMLN required 1 hour (we trained and sample at the same time, but we started using samples for evaluation after one hour
of training).

The trained MLN is showed below:

-0.000134051;c(a1)
-0.000134051;n(a1)
-0.000134051;o(a1)
-0.000134051;s(a1)
-9.65167e-05;p(a1)
-9.65165e-05;cl(a1)
-9.65166e-05;f(a1)
-0.000780653;double(a1,a2)
-0.000824121;single(a1,a2)
-0.000780779;skipBond(a1,a2)
-0.000206012;double(a1,a1)
-0.000199457;single(a1,a1)
-3.78726e-05;skipBond(a1,a1)
-0.0376156;p(a1) v cl(a1) v f(a2) v double(a3,a1) v single(a2,a1) v skipBond(a3,a1)
-0.0377639;p(a1) v cl(a1) v f(a2) v single(a1,a3) v single(a3,a2) v skipBond(a1,a2)
-0.0373712;double(a1,a2) v double(a2,a3) v double(a3,a1) v single(a1,a2) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a2,a1) v single(a3,a2) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0471552;c(a1) v n(a1) v o(a2) v s(a3) v double(a2,a1) v single(a1,a3)
-0.0375403;double(a1,a2) v double(a3,a1) v single(a3,a2) v skipBond(a1,a2) v

skipBond(a2,a3) v skipBond(a3,a1)



-0.0378946;double(a1,a2) v single(a1,a3) v single(a3,a2) v skipBond(a1,a2) v
skipBond(a2,a3) v skipBond(a3,a1)

-0.0373712;double(a1,a2) v double(a2,a3) v double(a3,a1) v single(a1,a3) v
skipBond(a1,a2) v skipBond(a2,a3)

-0.0376156;p(a1) v cl(a1) v f(a2) v double(a2,a1) v single(a2,a1) v skipBond(a1,a3)
-0.0373712;double(a1,a2) v double(a2,a3) v double(a3,a1) v single(a3,a1) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a2,a1) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0471552;c(a1) v n(a1) v o(a2) v s(a2) v double(a3,a1) v single(a1,a2)
-0.0471552;c(a1) v n(a2) v o(a3) v s(a2) v double(a3,a1) v single(a1,a2)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a3,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a2) v single(a2,a3) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0377255;double(a1,a2) v double(a3,a1) v single(a1,a3) v single(a3,a2) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0377255;double(a1,a2) v double(a3,a1) v single(a1,a2) v single(a3,a1) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0377255;double(a1,a2) v double(a3,a1) v single(a1,a3) v single(a3,a2) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0376156;p(a1) v cl(a1) v f(a2) v double(a2,a1) v single(a1,a3) v skipBond(a3,a1)
-0.0375403;double(a1,a2) v double(a3,a1) v single(a2,a3) v skipBond(a1,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a2,a3) v single(a3,a1) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0471552;c(a1) v n(a2) v o(a2) v s(a2) v double(a3,a1) v single(a1,a2)
-0.0375403;double(a1,a2) v double(a2,a3) v single(a3,a1) v skipBond(a1,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0380798;double(a1,a2) v single(a1,a3) v single(a2,a1) v single(a3,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0471552;c(a1) v n(a2) v o(a1) v s(a3) v double(a1,a2) v single(a2,a3)
-0.0378946;double(a1,a2) v single(a2,a1) v single(a3,a2) v skipBond(a1,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a2,a1) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a2,a1) v single(a3,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0339415;p(a1) v cl(a1) v f(a2) v single(a1,a3) v single(a3,a2) v skipBond(a1,a1)
-0.0471552;c(a1) v n(a2) v o(a1) v s(a2) v double(a1,a3) v single(a3,a2)
-0.0377255;double(a1,a2) v double(a3,a1) v single(a1,a3) v single(a2,a1) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0377255;double(a1,a2) v double(a3,a1) v single(a2,a1) v single(a3,a2) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0375403;double(a1,a2) v double(a2,a3) v single(a3,a2) v skipBond(a1,a2) v

skipBond(a2,a3) v skipBond(a3,a1)
-0.0376156;p(a1) v cl(a1) v f(a2) v double(a2,a1) v single(a3,a2) v skipBond(a3,a1)
-0.0471552;c(a1) v n(a1) v o(a1) v s(a2) v double(a3,a1) v single(a1,a2)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a2,a1) v

skipBond(a1,a2) v skipBond(a2,a3)
-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a3,a2) v

skipBond(a1,a2) v skipBond(a3,a1)
-0.0376156;p(a1) v cl(a1) v f(a2) v double(a2,a1) v single(a3,a2) v skipBond(a3,a2)
-0.0376156;p(a1) v cl(a1) v f(a2) v double(a2,a3) v single(a3,a2) v skipBond(a3,a1)
-0.0377639;p(a1) v cl(a1) v f(a2) v single(a1,a3) v single(a2,a1) v skipBond(a1,a3)



-0.0377255;double(a1,a2) v double(a2,a3) v single(a1,a3) v single(a2,a1) v
skipBond(a2,a1) v skipBond(a3,a2)

E IMPLEMENTATION DETAILS

We provide details about hyperparameters exploited in the experiments described in the main text.

All the functions φ were implemented using feed-forward neural networks. No regularization technique is exploited on the
weights or activations of the network (e.g. L2, dropout), even though, as highlighted in the main text, the addition of noise
has a regularizing effect apart from avoiding NMLN to focus on deterministic rules.

When we searched over grids (grid-search), we list all the values and we show in bold the selected ones.

NMLN (Smokers)

• Network architecture: 1 hidden layer with 30 sigmoidal neurons.

• Number of parallel chains: 10

• πn: 0.

• learning rates: [0.1, 0.01, 0.001]

NMLN-K3 (Nations)

• Network architecture: 2 hidden layer with [150,100,75] and [50,25] [ReLU,sigmoid] neurons.

• Number of parallel chains: 10

• πn: [0.01,0.02,0.03]

• learning rates: [10−4,10−510−510−5,10−6]

NMLN-K3 (Kinship, UMLS) We just run them on the best performing configuration on Nations.

NMLN-K2E (Nations, Kinship, UMLS)

• Network architecture: 2 hidden layer with 75 and 50 ReLU neurons.

• Number of parallel chains: 10

• πn: [0.01,0.02,0.03]

• learning rates: [0.1, 0.01, 0.001]

• Embedding size: [10,20,30]

• Number of disconnected fragments per connected one: 2

For πn, learning rate and embedding size the selected configurations are, respectively for each datasets: Nations (0.02, 0.001,
20), Kinship (0.02, 0.1, 10), UMLS (0.02, 0.01, 30)

NMLN-K2E (WordNet, Freebase)

• Network architecture: 3 hidden layer with 50,50 and 50 ReLU neurons.

• Number of parallel chains: 10

• πn: [0.01,0.03, 0.04, 0.05, 0.1]

• learning rates: [0.1, 0.01, 0.001]

• Embedding size: [5,10,30]

• Number of disconnected fragments per connected one: [2,4,10]

For πn, learning rate, embedding size and the number of disconnected fragments per connected one, the selected configura-
tions are, respectively for each datasets: Wordnet (0.05, 0.01, 10, 2), Freebase (0.04, 0.01, 10, 2)



Molecules generation

• Network architecture: 2 hidden layer with 150 and 50 ReLU neurons.

• Number of parallel chains: 10
• πn: [0., 0.01]

• learning rates: [0.0001]



OH

O

O

OH

O

NH2

O

OH

NH2

O

N

S

NH

NH2

HS

F

N

N
H

O

N

OH

N

HO

NH

O
N

OH
NH2

O

OH

OH

O

S

H 2N

O

OH

O

NH2
N

N

NH2

O

O

P

O

OH
HO

OH

O
N

S
N N

N

H 2N NH2N

S

N
H

NH2

NH2

NH2

NH

HO

OH

S

SS

OHN
HO

HO

NH

OH

NHO

NH2

NH2 OH

NH2

O

OH

S

N

N
O O SH

S

N

H 2N

N

N

OHN

HCl

H 2N

O
O

N NCC N
H

OH

O

NH2

N NH2

H 2N

O

P

O

HO
OH O

N
N

O
NH2NO

HN

SHCl

H 2N

N

ClN
N
H

HO

N

H 2N
P
H

O

OH

NH2
O

OH

HCl

S
H O

OH NH2

OH

OH
NH

O

O

HO

OH

O
O

HO

HCl

N

NH

SH

OH

O

F

F

F

HCl

N
S

HN

HCl

N
S

O

HO N
H

O

N
H

OH

OH

P
H

O

S
NH2

N
HO

O

Figure 2: Molecules from the training data.



O

OH

O

OH

O

OH
OH

O

HO

OH

O

OHN
H

HO

O

HO

O

OHN
H

NH2

O O

OHN
H

OH

O

OH

NH2

O

HO

NH2

O

O

N

OH

O

O

HO
NH2

O

HO
O

OH
OH

O

O

HO

NH2

O

HO

O

OH

HO

OH

OH

O

OH

NH2

O

HO

O

N
NH2

O

OHN
H

O

N
N

O

OH
O

HO

NH2
HO

NH2

OH

O

OH

NH2

OH

H 2N

OH O

OH
N
H

OH Cl

NH2

O

OH

N
H

O

OH

H 2N
O

HO
O

O

HO

NH2

O

OH H 2N
P

O

OH

HO O

OH

O

OH

OHO

HO

H 2N
N
H

O

OH

O

NH

O

HO

NH

O

OH

O

OH
O

OHN

O

HO
N

O

Figure 3: Most frequent generated molecules.



Table 1: Novel Molecules existing in ChemSpider

Smile code Molecule Name

CC(C)CCC(N)=O 4-Methylpentanamide

O=C(O)C1=CCCN1 Multiple search results

O=C1CCCCN1O 1-Hydroxy-2-piperidinone

CC(N)CCC(=O)O 4-AMINOVALERIC ACID

CCCC(N)C(=O)O DL-Norvaline

CC(O)C(O)C(=O)O 4-DEOXYTETRONIC ACID

NCCCCCCO MO8840000

CC(N)C(O)C(=O)O 3-amino-2-hydroxybutanoic acid

CC(CCN)C(=O)O 4-Amino-2-methylbutanoic acid

CC(=O)C=CC(=O)O 4-Oxo-2-pentenoic acid

CCC(O)CC(=O)O 3-Hydroxyvaleric acid

CCCCNC(=O)O Butylcarbamic acid



Table 1 – Continued from previous page
Smile code Molecule Name

CCCC(=N)C(=O)O Multiple search results

CCCCC(=O)CO 1-Hydroxy-2-hexanone

OCCCNCCO 3-((2-Hydroxyethyl)amino)propanol

NC(=O)CCC(=O)O 4-Amino-4-oxobutanoic acid

O=C(O)C1C=CCC1 2-Cyclopentenecarboxylic acid

ONC1CCCCC1 NC3410400

CC(C)CCCCO 5-Methyl-1-hexanol

CC(=O)CCC(N)=O 4-Oxopentanamide

NC1CCCC(=O)C1 3-Aminocyclohexanone

O=NC1CCCCC1 Nitrosocyclohexane

CCCCP(=O)(O)O Butylphosphonate

CC(C)COC(=O)O Isobutyl hydrogen carbonate



Table 1 – Continued from previous page
Smile code Molecule Name

CCCCCNC=O MFCD07784338

CC(C)(O)CC(=O)O 3-OH-isovaleric acid

O=C1CCCCC1O Adipoin

CNCCCCCO MFCD16696454

CCCC(C)C(C)O MFCD00021889

CC(C)CCC(N)=S 4-Methylpentanethioamide

O=C(O)C1C=CC=N1 Multiple search results

CCCCCC(C)C 2-Methylheptane

CC(C)C=CC(N)=O 4-Methyl-2-pentenamide

COCCCC(=O)O 4-Methoxybutanoic acid

NCCC(=O)C(=O)O 4-Amino-2-oxobutanoic acid

NCC(=O)CC(=O)O 4-Amino-3-oxobutanoic acid



Table 1 – Continued from previous page
Smile code Molecule Name

CCCC=CC(=O)O 2-Hexenoic acid

CCCCCC(O)O Hexanediol

CCCC(=O)C(C)O 2-Hydroxy-3-hexanone

CC(CO)CC(N)=O 4-Hydroxy-3-methylbutanamide

CCCCCC(=N)N Hexanamidine

CC1CCC1C(=O)O 2-Methylcyclobutanecarboxylic acid

NC(CCO)C(=O)O Homoserine

O=C1CC=CC=C1O Multiple search results

CC(C)CCCCN 5-Methyl-1-hexanamine

NC1=CC=CC(=O)C1 Multiple search results

CNC1CCCCC1 GX1529000

CCCC1=CC(=O)C1 3-Propyl-2-cyclobuten-1-one



Table 1 – Continued from previous page
Smile code Molecule Name

ClC1=CCCCCC1 1-Chlorocycloheptene

CCCCOC(=O)O monobutyl carbonate

O=C(Cl)CC1C=CC1 Cyclobutylideneacetyl chloride

CC(=O)CCCCN 6-Amino-2-hexanone

CCNC(C)C(=O)O N-Ethylalanine

N=C1CCCCN1O 2-Imino-1-piperidinol

CCCC=CC(N)=O (2E)-2-Hexenamide

NCCC1=CC(=O)C1 Multiple search results

CCC(C)CC(N)=O 3-Methylpentanamide

NC(=O)C1CCCC1 Cyclopentanecarboxamide

CCCCC(C)CC 3-Methylheptane

CCCC(O)C(=O)O 2-hydroxyvaleric acid



Table 1 – Continued from previous page
Smile code Molecule Name

O=C1C=CC(O)=CC1 4-(2H)Hydroxy-2,4-cyclohexadien-1-one

O=C(O)C1CC=CC1 3-Cyclopentenecarboxylic Acid

OCC1CCCCC1 Cyclohexylmethanol

CC(CO)CCCN 5-Amino-2-methyl-1-pentanol

CC1CCCC(N)N1 6-Methyl-2-piperidinamine

CCC(=O)CC(N)=O 3-Oxopentanamide

CC(O)CCCCN 6-Amino-2-hexanol

NC1CC=CC(=O)C1 Multiple search results

CCNCCCCO 4-(Ethylamino)-1-butanol

NCCCCC(N)=O 5-Aminopentanamide

CCCCCC(=O)Cl 506332

CC(C)CNC(N)=O Isobutylurea



Table 1 – Continued from previous page
Smile code Molecule Name

C=C(C)CCC(=O)O 4-Methyl-4-pentenoic acid

OC1=CCCCC1O Multiple search results



References

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

David Buchman and David Poole. Representing aggregators in relational probabilistic models. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

Ondřej Kuželka and Jesse Davis. Markov logic networks for knowledge base completion: A theoretical analysis under the
MCAR assumption. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI, 2019.

Ondřej Kuželka, Yuyi Wang, Jesse Davis, and Steven Schockaert. Relational marginal problems: Theory and estimation. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational inference. Foundations
and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application to texture modeling.
Neural computation, 9(8):1627–1660, 1997.


	Gradient-based Optimization
	Translating Markov Logic Networks to Neural Markov Logic Networks
	The Min-Max Entropy Problem
	Generating Molecules
	Molecules First-Order-logic representation
	Faster inference with chemical constraints.
	MLN comparison

	Implementation Details

