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SUPPLEMENTARY MATERIAL

S.1 EXAMPLE 2 IN DETAIL

As described in Section 6, we can generate a DAG of the
form X → Y ← Z and W → Y s.t. X,Y and Z form a mini-
mal unfaithful triple and W��⊥⊥P Y as follows. We generate
X,Z,W and E independently, with X and Z as fair coins,
W as a coin with P(W = 1) = p, where 0 < p < 1 and E
(the noise variable) as a biased coin with P(E = 1) = q,
0 < q < 1

2 . With q > 0, we ensure that the function is
non-deterministic. Further, we generate Y as

Y := ((X ⊕ Z) ∧W) ⊕ E .

We will obtain that P(Y = 1) = q +
p
2 − pq. Further, we

can calculate that P(X = 1,Y = 1) = 1
2 P(Y = 1) = P(X =

1) · P(Y = 1). Also, P(X = 1,Y = 0) = P(X = 1) · P(Y = 0),
which means that they are marginally independent. The
same holds for Z and Y . If we calculate the probability for
all three variables, we get that P(X = 0,Z = 1,Y = 1) =
p+q−2pq

4 and P(X = 0,Z = 1) · P(Y = 1) = 1
4 P(Y = 1).

Hence, we need to solve

P(X = 0,Z = 1,Y = 1) = P(X = 0,Z = 1) · P(Y = 1)

⇔ p + q − 2pq = q +
p
2
− pq

⇔ p − pq =
p
2
.

The only solutions are p = 0 or q = 1
2 , which we excluded.

Hence, Y��⊥⊥P{X,Z} and by weak union also Y��⊥⊥P X | Z,
as well as Y��⊥⊥P Z | X. Since we know by assumption
that X⊥⊥P Z we can conclude from Lemma 1 that also
X��⊥⊥P Z | Y , which means that {X,Y,Z} from a minimal
unfaithful triple since W will also not cancel out any of
these conditional dependencies. Next, we also find that
W��⊥⊥P Y , since P(W = 1,Y = 1) =

p
2 , which is only equal

to P(W = 1) · P(Y = 1), if p = 0, p = 1 or q = 1
2 , which we

excluded, and hence W��⊥⊥P Y . Last, we need to show that

X��⊥⊥P W | {Y,Z} and that Z��⊥⊥P W | {X,Y}. We can write

P(X,W | Y,Z) =
P(X,W,Y,Z)

P(Y,Z)
.

To show conditional dependence, this value has to be differ-
ent from P(X | Y,Z) · P(W | Y,Z). Consider the case where
all variables are equal to one. Hence, we get that

P(X = 1,W = 1,Y = 1,Z = 1) =
pq
4
,

P(X = 1,Y = 1,Z = 1) =
q
4
,

P(W = 1,Y = 1,Z = 1) =
p
4
.

Since we know that P(Y = 1,Z = 1) = P(Y = 1)/2, we thus
need to solve

pq =
pq

2P(Y = 1)
.

This equation can only be true if p or q = 0, i.e. the system
is either independent of W or deterministic, p = 1 or q = 1

2 ,
which we all excluded by assumption. Hence, X��⊥⊥P W |

{Y,Z}. The dependence between Z and W given X and Y can
be derived in the same way.

S.2 2-ORIENTATION FAITHFULNESS AND
SPARSEST MARKOV REPRESENTATION

In this section, we briefly discuss the connection of our new
assumptions to approaches based on the sparsest Markov
representation (SMR) (Raskutti and Uhler, 2018) which is
also referred to as frugality (Forster et al., 2017), which we
discussed in the related work section. A graph G∗ satisfies
the SMR assumption if every graph G that fulfils the Markov
property and is not in the Markov equivalence class of G∗

contains more edges than G∗. Here we will not discuss
the SMR assumption in further detail, but focus on the
suggested permutation-based causal discovery algorithm
under the SMR assumption, which is called the Sparsest
Permutation (SP) algorithm.
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To explain the SP algorithm, we need to define a DAG Gπ,
w.r.t. a permutation π. A DAG Gπ consists of vertices V and
directed edges Eπ, where an edge from the j-th node π( j)
according to permutation π to node π(k) is in Eπ if and only
if j < k and

Xπ( j)��⊥⊥P Xπ(k) | {Xπ(1), Xπ(2), . . . , Xπ(k−1)}\{Xπ( j)} ,

where Xπ( j) refers to the j-th random variable according to
permutation π. Based on this definition, the SP algorithm
constructs a graph Gπ for each possible permutation and se-
lects that permutation π∗ for which Gπ∗ contains the fewest
edges. This permutation π∗ is also called minimal or a mini-
mal permutation, if it is not unique.

Although this procedure might be very slow in practice,
it has theoretically appealing properties. In particular, we
conjecture that it can identify the collider pattern even if
strict 2-associations are included, if 2-orientation faithful-
ness holds. In this work, we will not provide a proof for
this conjecture, but give some evidence by discussing the
behaviour of the SP algorithm on an example graph.

Consider the graph provided in Figure 4(a) again. For this
example, we assume that V does not consist of any further
vertices than the four shown in the graph. We will show that
all permutations π that are minimal have in common that
π(4) = Y . W.l.o.g. let π(1) = X, π(2) = Z and π(3) = W,
then Gπ only contains the three correct edges, which are:

π(1)→ π(4) : X��⊥⊥P Y | {Z,W}

π(2)→ π(4) : Z��⊥⊥P Y | {X,W}

π(3)→ π(4) : W��⊥⊥P Y | {X,Z}

and we do not add any superfluous edges, as

π(1)→ π(2) : X⊥⊥P Z | ∅

π(1)→ π(3) : X⊥⊥P W | Z

π(2)→ π(3) : Z ⊥⊥P W | X .

If we would pick a permutation π′ in which we flip for
example W and Y such that Y is no longer the node assigned
to the highest number in the permutation, i.e. π′(3) = Y and
π′(4) = W, we will find more edges and thus not a minimal
graph anymore. In particular, we get that

π′(1)→ π′(3) : X��⊥⊥P Y | {Z}

π′(2)→ π′(3) : Z��⊥⊥P Y | {X}

π′(3)→ π′(4) : Y��⊥⊥P W | {X,Z}

π′(1)→ π′(4) : X��⊥⊥P W | {Z,Y}

π′(2)→ π′(4) : Z��⊥⊥P W | {X,Y}

and thus the graph according to this permutation contains
two edges more than for permutation π. The main point is

that we are now allowed to condition on Y , which opens
the paths between X or Z and W. Similarly, assume that we
put X as the last node and get the order π′(1) = Z, π′(2) =

W, π′(3) = Y and π′(4) = X, for which

π′(1)→ π′(2) : Z ⊥⊥P W | ∅

π′(1)→ π′(3) : Z ⊥⊥P Y | {W}

π′(1)→ π′(4) : Z��⊥⊥P X | {W,Y}

π′(2)→ π′(3) : W��⊥⊥P Y | {Z}

π′(2)→ π′(4) : W��⊥⊥P X | {Z,Y}

π′(3)→ π′(4) : Y��⊥⊥P X | {Z,W}

and hence, we again find four edges, which is one more than
for π. Also, if π′(1) = Y , we can use it in the conditional
to find a dependence between X and Z and at least one
dependence between X or Z and W. Hence, the SP algorithm
would infer a correct ordering for this graph.

An interesting avenue for future work would be to analyze
whether it is possible to always detect the collider pattern
also in larger graphs and triples that may be shielded.

S.3 PROOFS

Before we provide the proofs, we state the graphoid ax-
ioms (Dawid, 1979; Spohn, 1980; Geiger et al., 1990),
which are used in several of our proofs.

Definition 10 (Graphoid Axioms) Let M = (G,V, P),
with W, X,Y, Z ⊆ V. The (semi-)graphoid axioms are the
following rules (⊥⊥ denotes ⊥⊥P and ⊥⊥G)

1. Symmetry: X⊥⊥Y | Z ⇒ Y ⊥⊥ X | Z.
2. Decomposition: X⊥⊥Y ∪W | Z ⇒ X⊥⊥Y | Z.
3. Weak Union: X⊥⊥Y ∪W | Z ⇒ X⊥⊥Y |W ∪ Z.
4. Contraction: (X⊥⊥Y | W ∪ Z) ∧ (X⊥⊥W | Z) ⇒

X⊥⊥Y ∪W | Z.

For separations only on the graph, the graphoid axioms
include two additional rules (only for ⊥⊥G).

5. Intersection: (X⊥⊥Y |W ∪ Z) ∧ (X⊥⊥W | Y ∪ Z)⇒
X⊥⊥Y ∪ W | Z, for any pairwise disjoint subsets
W, X,Y, Z ⊆ V.

6. Composition: (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)⇒ X⊥⊥Y ∪
W | Z.

As an illustration why certain rules only hold for graphs
and not generally for probability distributions, consider rule
(6) and Figure 1(a) again. From the distribution induced
by the xor, we find that Y ⊥⊥P X and Y ⊥⊥P Z but we cannot
conclude that Y ⊥⊥P{X,Z}. If, however, in a graph Y is d-
separated from X and from Z then Y is d-separated from the
set {X,Z}.



Lemma 1 Given M = (G,V, P), let {X,Y,Z} ⊆ V form
an unfaithful triple in P, then X��⊥⊥P{Y,Z}, Y��⊥⊥P{X,Z} and
Z��⊥⊥P{X,Y}, which in addition implies that X��⊥⊥P Y | Z,
X��⊥⊥P Z | Y and Y��⊥⊥P Z | X.

Proof: Assume that w.l.o.g. X��⊥⊥P{Y,Z} is violated. By
weak union, we get X⊥⊥P Y | Z which is equivalent to
Y ⊥⊥P X | Z, using symmetry. We know that Y ⊥⊥P Z. By
contraction, we get that Y ⊥⊥P{X,Z}. Similarly, we conclude
that Z ⊥⊥P{X,Y}. Altogether, this implies that X,Y,Z would
be independent, which is a contradiction.

Each pair of joint dependence and marginal independence,
e.g. X��⊥⊥P{Y,Z} and X⊥⊥P Z, implies a conditional depen-
dence, e.g. X��⊥⊥P Y | Z, by contraction. �

Lemma 2 GivenM = (G,V, P), let {X,Y,Z} ⊆ V form an
unfaithful triple in P. If CMC holds, each node in the triple
is d-connected to at least one other node in the triple by a
path in G.

Proof: Assume w.l.o.g. that X is d-separated from Y and
Z in G—i.e. X⊥⊥G Y and X⊥⊥G Z. By applying the com-
position axiom, we get that X⊥⊥G{Y,Z}. If we apply the
causal Markov condition, we get that X⊥⊥P{Y,Z}, which is
a contradiction to our assumption. �

Theorem 1 GivenM = (G,V, P) with distinct X,Y,Z ∈ V
and assume that CMC holds. If ∀S ⊆ V\{X,Y,Z} it holds
that X��⊥⊥P Y | Z ∪ S, X��⊥⊥P Z | Y ∪ S and Y��⊥⊥P Z | X ∪ S,
then one of the three nodes is a collider on a path of length
two between the two other nodes, e.g. X → Y ← Z in G.

Proof: There must be (at least) one node in {X,Y,Z} that
is not an ancestor of any of the other nodes, say Z < An(X)
and Z < An(Y), because of acyclicity. In other words, X <
De(Z) and Y < De(Z). The local Markov property states that
Z ⊥⊥G Nd(Z) | Pa(Z) and hence in particular

Z ⊥⊥G{X,Y} | Pa(Z) .

Further, if |Pa(Z) ∩ {X,Y}| < 2, we get a contradiction with
the assumed conditional dependences. Hence {X,Y} ⊆ Pa(Z)
and X → Z ← Y is in G. �

Theorem 2 Assuming that the causal Markov condition
holds, the orientation rule in Definition 8 is sound.

Proof: First, we derive a general statement about the rela-
tions between X and Z without further specifying the role
of Y . In particular, we show that there always exists a pair
(X,Z) ∈ X × Z s.t. w.l.o.g.

X⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}) , (1)

where Pa(X) ⊆ V\Z. Due to acyclicity, there has to exist a
node in X ∪ Z, say X, that is not an ancestor of any node in
(X ∪ Z)\{X} and hence (X ∪ Z)\{X} ⊆ Nd(X). By the local
Markov condition, we get that X⊥⊥G(X ∪ Z)\{X} | Pa(X).
Thus, by weak union,

X⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}) ,

for any Z ∈ Z. Further, Z ∩ Pa(X) = ∅, as by assumption no
pair of nodes (X,Z) ∈ X × Z is adjacent in G.

Since Y
s
−≤2 X and Y

s
−≤2 Z, we know that Y is at least

adjacent to one node in X and one node in Z. Hence, Y can
take the following roles:

a) Y is a descendent of each node in X ∪ Z (which corre-
sponds to X → Y ← Z),

b) Y is a non-descendent of each node in X ∪ Z and
c) Y is a descendent of at least one node in X ∪ Z and a

non-descendent of at least one node in X ∪ Z.

The first statement corresponds to the graph structure im-
plied by rule i) and any possible structure from the latter
two is implied by the probabilities found in rule ii). To show
these two implications hold, we do a proof by contraposition
for each rule.

Hence, to show rule i), we need to prove that if the graph
structure is not a collider—i.e. Y takes one of the roles
described in b) or c)—then there exists a pair (X,Z) ∈ X×Z
and there exists a subset S ⊆ V\{X,Z} s.t.

X⊥⊥P Z | S ∪ {Y} ∪ (X\{X}) ∪ (Z\{Z}) .

First, consider all graphs in which Y is a non-descendent
of each node in X ∪ Z as described in b) We know from
statement (1) that, w.l.o.g., there exists a pair (X,Z) ∈ X× Z
for which X⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}). Since Y ∈
Nd(X), we will also find that X⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪
(Z\{Z}) ∪ {Y}, where Pa(X) does not include X or Z. Thus,
by CMC we found the required independence. For the cases
described in c), again assume that X is not an ancestor of
any node in (X ∪ Z)\{X}. To conclude the same statement
as previously, we show that X has to be in De(Y) and thus
Y ∈ Nd(X). We do this by deriving a contradiction: assume
X ∈ Nd(Y). If X consists only of the single node X, then X
has to be adjacent to Y , X ∈ Pa(Y) and hence X → Y in G.
Thus, Y (and hence X) has to be an ancestor of at least one
node in Z, by assumption (Y is a non-descendent of at least
one node in X ∪ Z), which is a contradiction. Similarly, if
X contains a second node, X′, we know by assumption that
X′ ∈ Nd(X). We also know that the triple {X, X′,Y} has to
contain a collider. X cannot be the collider, since X < De(Y)
and also X′ cannot be the collider since X < An(X′). Hence,
Y has to be the collider on the path 〈X,Y, X′〉. As above,
at least one node Z ∈ Z has to be a descendent of Y , by
assumption and thus, X ∈ An(Z), which is a contradiction.

Last, we prove that the implication in rule ii) holds. Thus,
by contraposition, we need to show that if X → Y ← Z,



then there exists a pair X,Z ∈ X × Z s.t. X is conditionally
independent of Z given a subset of V\{X,Z} that contains
(X\{X})∪(Z\{Z}) but does not contain Y . From statement (1)
there exists a pair (X,Z) ∈ X × Z that is d-separated given
Pa(X) ∪ (X\{X}) ∪ (Z\{Z}). Since Y cannot be in Pa(X) due
to acyclicity, we showed that there exists such a pair of
nodes X,Z that can be rendered conditionally independent
by a subset of V\{X,Z} that contains (X\{X}) ∪ (Z\{Z}) but
does not contain Y (after applying CMC). �

Corollary 1 Given M := (G,V, P) with Y ∈ V and X, Z ⊆
V, where X∩Z = ∅, Y

s
−≤2 X, Y

s
−≤2 Z and no pair of nodes

(X,Z) ∈ X × Z is adjacent. Assuming that CMC holds, we
can detect if condition i) or ii) of 2-orientation faithfulness
fails on the triple {X,Y, Z}.

Proof: Since we know that Y
s
−≤2 X and Y

s
−≤2 Z, we can

conclude that, as in the proof of Theorem 2, Y can take three
different roles w.r.t. X and Z, where role a) corresponds to
condition i) in 2-orientation faithfulness and rule i) in the
orientation rule and roles b) and c) correspond to condition
ii) and rule ii).

Now assume that condition i) in 2-orientation faithfulness
fails, that is, the true graph can be described by role a),
but there exists a pair X ∈ X and Z ∈ Z, for which X is
independent of Z given a subset of V\{X,Z} that contains
Y ∪ (X\{X}) ∪ (Z\{Z}). If this is the case, we cannot apply
rule i) of our orientation rule. In addition, we showed in
Theorem 2 that for a graph as described by a) rule ii) can
never apply. Thus, we can detect this failure of condition i)
in 2-orientation faithfulness by noticing that neither rule i)
nor ii) of our orientation rule applies.

Next, assume condition ii) in 2-orientation fails. This means
that we cannot apply rule ii) of the orientation rule. Again,
we showed that for such graphs Y takes either role b) or c),
in which case orientation rule i) can never apply. Hence, we
can detect if condition ii) in 2-orientation faithfulness fails,
since none of the conditions in the orientation rule is met. �

Theorem 3 Given M = (G,V, P). Assuming that 2-
adjacency faithfulness, Assumption 1 and CMC hold, Algo-
rithm 1 correctly identifies MB(T ) for T ∈ V.

Proof: We follow the original correctness proof under
the faithfulness assumption (Margaritis and Thrun, 2000),
that consists of two main steps. First, we need to show that
MB(T ) ⊆ S after the grow phase and second, we need to
ensure that all nodes in MB(T ) stay in S during the shrink
phase, while nodes not in MB(T ) will be removed from S
in the shrink phase.

Grow phase: By assumption (2-adjacency faithfulness), for
each node X ∈ PC(T ), T is either 1-associated to X, or there
exists a set X that includes X such that T

s
−2 X. If T is

1-associated to a node X, then T��⊥⊥P X | S, if X < S, hence
we will add those nodes. If T is strictly 2-associated to a
set {X,Z} then T��⊥⊥P X | S ∪ {Z} for all S ⊆ V\{X,T,Z}.
Thus, we also add X to S, if X < S and afterwards also
find that T��⊥⊥P Z | S, if Z < S, since X ∈ S. Hence, all
nodes in PC(T ) will be added during the grow phase. Next,
we need to consider the spouses of T that do not overlap
with PC(T ), hence might not have been added yet.1 Since
we know that eventually S will contain all children of T ,
we will afterwards also add the corresponding spouses. In
particular, we need to consider two classes of spouses S : 1)
Spouses that through a child node C are strictly 2-associated
to T (T

s
−2 {C, S }). Those will be added due to the strict

2-association as explained above. 2) Spouses that are not
involved in such a strict 2-association. For the latter, we find
a conditional dependence between T and S by condition-
ing on the corresponding child node C (by Assumption 1),
which will be in S. A special case occurs if a child node
C is strictly 2-associated to two spouses S 1 and S 2. Due
to Assumption 1, T is dependent on S 1 if we condition on
C and S 2, vice versa T is dependent on S 2 if we condition
on C and S 1. Similarly to how we add strict 2-associations
above, we will also first add one of the two and then the
second one. Thus, after the grow phase, S will contain all
elements of MB(T ).

Shrink phase: Since it is possible that after the grow phase
S is a superset of MB(T ), we need to ensure that in the
shrink phase all W < MB(T ) will be deleted from S and all
X ∈ MB(T ) will stay in S.

First, we show that no node X ∈ MB(T ) will be removed
from S. Assume X is the first element in MB(T ) that we
attempt to remove from S. If X ∈ PC(T ), by definition of
2-adjacency faithfulness T is either 1-associated to X and
hence, X will not be removed, or T is strictly 2-associated
to a set X ⊆ MB(T ) that contains X. W.l.o.g. let X = {X,Z},
then T��⊥⊥P X | S\{X}, since S contains Z, and hence, X will
not be removed from S. If X is a spouse of T , there again
exist two cases. Either T is strictly 2-associated to a set that
contains X, in which case, X will not be removed from S
as explained above, or T is not strictly 2-associated to a set
that contains X. In the latter case, by Assumption 1, X is
dependent on T conditioned on a subset of MB(T )\{X} and
thus X��⊥⊥P T | S\{X}. In particular, this subset consists of
the common child C and in the special case that C is strictly
2-associated to X and a second spouse S , it also contains
that second spouse S . Either way, those conditioning sets
are contained in S. Hence, X will not be removed from S.
In the following iterations, S will still contain MB(T ) and
hence, we will also not remove a true element of MB(T ).

Last, assume W < MB(T ), but W ∈ S after the grow
phase. Further, we can write S\{W} as MB(T ) ∪ Q, where

1There could be nodes that are spouses of T and in PC(T ) at
the same time e.g. if T has two children X and Z, where Z is also a
parent of X.



Q contains all elements from S\{W} that are not in MB(T ).
Then, T ⊥⊥G{W} ∪ Q | MB(T ) and thus by weak union,
T ⊥⊥G W | MB(T ) ∪ Q, which implies T ⊥⊥P W | S\{W} (by
CMC). Hence, we delete each node in S that is not in MB(T )
in the shrink phase. �

References

A. P. Dawid. Conditional Independence in Statistical The-
ory. Journal of the Royal Statistical Society: Series B
(Methodological), 41(1):1–15, 1979.

M. Forster, G. Raskutti, R. Stern, and N. Weinberger. The
Frugal Inference of Causal Relations. The British Journal
for the Philosophy of Science, 69(3):821–848, 2017.

D. Geiger, T. Verma, and J. Pearl. Identifying Independence
in Bayesian Networks. Networks, 20(5):507–534, 1990.

D. Margaritis and S. Thrun. Bayesian Network Induction via
Local Neighborhoods. In Advances in Neural Information
Processing Systems, pages 505–511, 2000.

G. Raskutti and C. Uhler. Learning directed acyclic graph
models based on sparsest permutations. Stat, 7(1), 2018.

W. Spohn. Stochastic Independence, Causal Independence,
and Shieldability. Journal of Philosophical logic, 9(1):
73–99, 1980.


	Example 2 in Detail
	2-Orientation Faithfulness and Sparsest Markov Representation
	Proofs

