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A ABSTRACT MEAN IS INVARIANT TO AFFINE TRANSFORMATIONS

In this section, we show that hq(u) is invariant to affine transformations. That is, for any choice of a and b,

hq(u) =

{
a · u1−q + b q 6= 1

log u q = 1
(1)

yields the same expression for the abstract mean µhα . First, we note the expression for the inverse h−1
q (u) at q 6= 1

h−1
q (u) =

(
u− b
a

) 1
1−q

. (2)

Recalling that
∑
i wi = 1, the abstract mean then becomes

µhq ({wi}, {ui}) = h−1
q

(∑
i

wihq(ui)

)
(3)

= h−1
q

(
a

(∑
i

wiu
1−q
i

)
+ b

)
(4)

=

(∑
i

wiu
1−q
i

) 1
1−q

(5)

which is independent of both a and b.

B NORMALIZATION IN Q-EXPONENTIAL FAMILIES

The q-exponential family can also be written using the q-free energy ψq(θ) for normalization Amari and Ohara (2011);
Naudts (2011),

πθ,q(z) = π0(z) expq
{
θ · φ(z)− ψq(θ)

}
. (6)

However, since expq{x+y} = expq{y}·expq{ x
1+(1−q)y} (see Suyari et al. (2020) or App. F below) instead of exp{x+y} =

exp{x} · exp{y} for the standard exponential, we can not easily move between these ways of writing the q-family Matsuzoe
et al. (2019).
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Mirroring the derivations of Naudts (2011) pg. 108, we can rewrite (6) using the above identity for expq{x+ y}, as

π
(q)
θ (z) = π0(z) expq{θ · φ(z)− ψq(θ)} (7)

= π0(z) expq{−ψq(θ)} expq
{ θ · φ(z)

1 + (1− q)(−ψq(θ))
}

(8)

Our goal is to express π(q)
θ (z) using a normalization constant Z(q)

β instead of the q-free energy ψq(θ). While the exponential
family allows us to freely move between ψ(θ) and logZθ, we must adjust the natural parameters (from θ to β) in the
q-exponential case. Defining

β =
θ

1 + (1− q)(−ψq(θ))
(9)

Z
(q)
β =

1

expq{−ψq(θ)}
(10)

we can obtain a new parameterization of the q-exponential family, using parameters β and multiplicative normalization
constant Z(q)

β ,

πβ,q(z) =
1

Z
(q)
β

π0(z) expq{β · φ(z)} (11)

= π0(z) expq
{
θ · φ(z)− ψq(θ)

}
= π

(q)
θ (z) . (12)

See Matsuzoe et al. (2019), Suyari et al. (2020), and Naudts (2011) for more detailed discussion of normalization in
deformed exponential families.

C MINIMIZING α-DIVERGENCES

Amari (2007) shows that the α power mean π(α)
β minimizes the expected divergence to a single distribution, for normalized

measures and α = 2q − 1. We repeat similar derivations for the case of unnormalized endpoints {π̃i} and r̃(z) and show

π̃β,q = argmin
r̃(z)

(1− β)Dα[π̃0(z)||r̃(z)] + βDα[π̃1(z)||r̃(z)], (13)

for α = 2q − 1.

Proof. Defining w0 = (1− β) and w1 = β, we consider minimizing the functional

r∗(z) = argmin
r̃(z)

J [r(z)] = argmin
r̃(z)

(
N=1∑
i=0

wiDα(π̃i(z)||r̃(z))

)
(14)

Eq. (14) can be minimized using the Euler-Lagrange equations or using the identity

δf(x)

δf(x′)
= δ(x− x′) (15)

from Meng (2004). We compute the functional derivative of J [r(z)] using (15), set to zero and solve for r:

δJ [r(z′)]

δr(z)
=

δ

δr(z)

(
N=1∑
i=0

wi

(
1

q

∫
p̃(z′)dz +

1

1− q

∫
r̃(z′)dz − 1

q(q − 1)

∫
π̃i(z

′)
1−q

r(z′)qdz′
))

(16)

=

(
N=1∑
i=0

wi

(
1

1− q

∫
δr̃(z′)

δr(z)
dz − 1

q(q − 1)

∫
π̃i(z

′)
1−q · q · r(z′)q−1 δr̃(z

′)

δr(z)
dz′
))

(17)

=

(
N=1∑
i=0

wi

(
1

1− q

∫
δ(z − z′)dz − 1

q − 1

∫
π̃i(z

′)
1−q · r(z′)q−1δ(z − z′)dz′

))
(18)



0 =
1

1− q

N=1∑
i=0

wi

(
1− π̃i(z)1−q · r(z)q−1

)
(19)

N=1∑
i=0

wi =

N=1∑
i=0

wiπ̃i(z)
1−q · r(z)q−1 (20)

1 =

N=1∑
i=0

wiπ̃i(z)
1−q · r(z)q−1 (21)

r(z)1−q =

N=1∑
i=0

wiπ̃i(z)
1−q (22)

r(z) =
[
(1− β)π̃0(z)

1−q
+ βπ̃1(z)

1−q
]1/1−q

= π̃β,q(z) (23)

This result is similar to a general result about Bregman divergences in Banerjee et al. (2005) Prop. 1. although Dα is not a
Bregman divergence over normalized distributions.

C.1 ARITHMETIC MEAN (q = 0)

For normalized distributions, we note that the moment-averaging path from Grosse et al. (2013) is not a special case
of the α-integration Amari (2007). While both minimize a convex combination of reverse KL divergences, Grosse et al.
(2013) minimize within the constrained space of exponential families, while Amari (2007) optimizes over all normalized
distributions.

More formally, consider minimizing the functional

J [r] = (1− β)DKL[π0(z)||r(z)] + βDKL[π1(z)||r(z)] (24)

= (1− β)

∫
π0(z) log

π0(z)

r(z)
dz + β

∫
π1(z) log

π1(z)

r(z)
dz (25)

= const−
∫ [

(1− β)π0(z) + βπ1(z)
]
· log r(z)dz (26)

We will show how Grosse et al. (2013) and Amari (2007) minimize (26).

Solution within Exponential Family Grosse et al. (2013) constrains r(z) = 1
Z(θ)h(z) exp(θT g(z)) to be a (minimal)

exponential family model and minimizes (26) w.r.t r’s natural parameters θ (cf. Grosse et al. (2013) Appendix 2.2):

θ∗i = argmin
θ

J(θ) (27)

= argmin
θ

(
−
∫ [

(1− β)π0(z) + βπ1(z)
] [

log h(z) + θT g(z)− logZ(θ)
]
dz

)
(28)

= argmin
θ

(
logZ(θ)−

∫ [
(1− β)π0(z) + βπ1(z)

]
θT g(z)dz + const

)
(29)

where the last line follows because π0(z) and π1(z) are assumed to be correctly normalized. Then to arrive at the moment
averaging path, we compute the partials ∂J(θ)

∂θi
and set to zero:

∂J(θ)

∂θi
= Er[gi(z)]− (1− β)Eπ0

[gi(z)]− β Eπ1
[gi(z)] = 0 (30)

Er[gi(z)] = (1− β)Eπ0
[gi(z)]− β Eπ1

[gi(z)] (31)

where we have used the exponential family identity ∂ logZ(θ)
∂θi

= Erθ [gi(z)] in the first line.



General Solution Instead of optimizing in the space of minimal exponential families, Amari (2007) instead adds a
Lagrange multiplier to (26) and optimizes r directly (cf. Amari (2007) eq. 5.1 - 5.12)

r∗ = argmin
r

J ′[r] (32)

= argmin
r

J [r] + λ

(
1−

∫
r(z)dz

)
(33)

We compute the functional derivative of J ′[r] using (15) and solve for r:

δJ ′[r]

δr(z)
=−

∫ [
(1− β)π0(z′) + βπ1(z′)

] 1

r(z′)

δr(z′)

δr(z)
dz′ − λ

∫
δr(z′)

δr(z)
dz′ (34)

=−
∫ [

(1− β)π0(z′) + βπ1(z′)
] 1

r(z′)
δ(z − z′)dz′ − λ

∫
δ(z − z′)dz′ (35)

=−
[
(1− β)π0(z) + βπ1(z)

] 1

r(z)
− λ = 0 (36)

Therefore

r(z) ∝
[
(1− β)π0(z) + βπ1(z)

]
, (37)

which corresponds to our q-path at q = 0, or α = −1 in Amari (2007). Thus, while both Amari (2007) and Grosse et al.
(2013) start with the same objective, they arrive at different optimum because they optimize over different spaces.

D q-EXPONENTIAL FAMILIES AND ESCORT MOMENT-AVERAGING PATH

In this section, we provide examples of parametric q-exponential family distributions and additional analysis for the special
case of annealing between endpoints within the same parametric family. After reviewing the q-Gaussian and Student-t
distributions as standard examples of the q-exponential family, we present the escort-moments path, which is analogous
to Grosse et al. (2013) and relies on the dual parameters of the q-family. We experimentally evaluate these paths in toy
examples in Fig. 3, but note that the applicability of the escort-moments path is limited in practice.

D.1 EXAMPLES OF PARAMETRIC q-EXPONENTIAL FAMILY DISTRIBUTIONS

q-Gaussian and Student-t The q-Gaussian distribution appears throughout nonextensive thermodynamics (Naudts, 2009,
2011; Tsallis, 2009), and corresponds to simply taking the expq of the familiar first and second moment sufficient statistics.
In what follows, we ignore the case of q < 1 since the q-Gaussian has restricted support based on the value of q. For
q > 1, the q-Gaussian matches the Student-t distribution, whose degrees of freedom parameter ν specifies the order of the
q-exponential and introduces heavy tailed behavior.

The Student-t distribution appears in hypothesis testing with finite samples, under the assumption that the sample mean
follows a Gaussian distribution. In particular, the degrees of freedom parameter ν = n− 1 can be shown to correspond to an
order of the q-exponential family with ν = (3− q)/(q − 1) (in 1-d), so that the choice of q is linked to the amount of data
observed.

We can first write the multivariate Student-t density, specified by a mean vector µ, covariance Σ, and degrees of freedom
parameter ν, in d dimensions, as

tν(x|µ,Σ) =
1

Z(ν,Σ)

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−( ν+d
2

)
(38)

where Z(ν,Σ) = Γ(ν+d
2 )/Γ(ν2 ) · |Σ|−1/2ν−

d
2 π−

d
2 . Note that ν > 0, so that we only have positive values raised to the

−(ν + d)/2 power, and the density is defined on the real line.

The power function in (38) is already reminiscent of the q-exponential, while we have first and second moment sufficient
statistics as in the Gaussian case. We can solve for the exponent, or order parameter q, that corresponds to −(ν + d)/2 using
−
(
ν+d

2

)
= 1

1−q . This results in the relations

ν =
d− dq + 2

q − 1
or q =

ν + d+ 2

ν + d
(39)



We can also rewrite the ν−1 (x− µ)TΣ−1(x− µ) using natural parameters corresponding to {x, x2} sufficient statistics as
in the Gaussian case (see, e.g. Matsuzoe and Wada (2015) Example 4).

Note that the Student-t distribution has heavier tails than a standard Gaussian, and reduces to a multivariate Gaussian as
q → 1 and expq(u) → exp(u). This corresponds to observing n → ∞ samples, so that the sample mean and variance
approach the ground truth (Murphy, 2007).

Pareto Distribution The q-exponential family can also be used for modeling the tail behavior of a distribution (Bercher
and Vignat, 2008; Vehtari et al., 2015), or, in other words, the probability of p(x) restricted to X > xmin and normalized.

For example, the generalized Pareto distribution is defined via the tail function

P (X > x) =

{(
1 + ξ x−xmin

σ

)− 1
ξ ξ 6= 0

exp{−x−xmin
σ } ξ = 0

(40)

When ξ ≥ 0, the domain is restricted to x ≥ xmin, whereas when ξ < 0, the support is between xmin ≤ x ≤ xmin − σ
ξ .

Writing the CDF as 1− P (X > x) and differentiating leads to

p(x) =
1

σ

[
1 + ξ · x− xmin

σ

]− 1
ξ−1

(41)

Solving − 1
ξ − 1 = 1

1−q in the exponent, we obtain q = 2ξ+1
ξ+1 or ξ = q−1

q−2 .

D.2 q-PATHS BETWEEN ENDPOINTS IN A PARAMETRIC FAMILY

If the two endpoints π0, π̃1 are within a q-exponential family, we can show that each intermediate distribution along the q-path
of the same order is also within this q-family. However, we cannot make such statements for general endpoint distributions,
members of different q-exponential families, or q-paths which do not match the index of the endpoint q-parametric families.

Exponential Family Case We assume potentially vector valued parameters θ = {θ}Ni=1 with multiple sufficient statistics
φ(z) = {φi(z)}Ni=1, with θ · φ(z) =

∑N
i=1 θiφi(z). For a common base measure g(z), let π0(z) = g(z) exp{θ0 · φ(z)}

and π̃1(z) = g(z) exp{θ1 · φ(z)}. Taking the geometric mixture,

π̃β(z) = exp
{

(1− β) log π0(z) + β log π̃1(z)
}

(42)

= exp
{

log g(z) + (1− β) θ0 · φ(z) + β θ1φ(z)
}

(43)

= g(z) exp
{(

(1− β) θ0 + β θ1

)
· φ(z)

}
(44)

which, after normalization, will be a member of the exponential family with natural parameter (1− β) θ0 + β θ1.

q-Exponential Family Case For a common base measure g(z), let π0(z) = g(z) expq{θ0 · φ(z)} and π̃1(z) =
g(z) expq{θ1 · φ(z)}. The q-path intermediate density becomes

π̃
(q)
β (z) =

[
(1− β)π0(z)1−q + β π̃1(z)1−q] 1

1−q (45)

=
[
(1− β) g(z)1−q expq{θ0 · φ(z)}1−q + β g(z)1−q expq{θ1 · φ(z)}1−q

] 1
1−q (46)

=

[
g(z)1−q

(
(1− β) [1 + (1− q)(θ0 · φ(z))]

1
1−q 1−q + β [1 + (1− q)(θ1 · φ(z))]

1
1−q 1−q

)] 1
1−q

= g(z)

[
1 + (1− q)

((
(1− β) θ0 + β θ1

)
· φ(z)

)] 1
1−q

(47)

= g(z) expq
{(

(1− β) θ0 + β θ1

)
· φ(z)

}
(48)

which has the form of an unnormalized q-exponential family density with parameter (1− β) θ0 + β θ1.



Figure 1: Intermediate densities between Student-t distributions, tν=1(−4, 3) and tν=1(4, 1) for various q-paths and 10
equally spaced β, Note that ν = 1 corresponds to q = 2, so that the q = 2 path stays within the q-exponential family.

Annealing between Student-t Distributions In Fig. 2, we consider annealing between two 1-dimensional Student-t
distributions. We set q = 2, which corresponds to ν = 1 with ν = (3− q)/(q − 1), and use the same mean and variance as
the Gaussian example in Fig. 2, with π0(z) = tν=1(−4, 3) and π1(z) = tν=1(4, 1). For this special case of both endpoint
distributions within a parametric family, we can ensure that the q = 2 path stays within the q-exponential family of Student-t
distributions, just as the q = 1 path stayed within the Gaussian family in Fig. 2.

Comparing the q = 0.5 and q = 0.9 paths in the Gaussian case (Fig. 2) with the q = 1.0 and q = 1.5 path for the Student-t
family with q = 2, we observe that mixing behavior appears to depend on the relation between the q-path parameter and the
order of the q-exponential family of the endpoints. For our experiments in the main text, we did not find benefit to increasing
q > 1. However, the toy example above indicates that q > 1 may be useful in some settings, for example involving heavier
tailed distributions.

As q → ∞, the power mean (15) approaches the min operation as 1 − q → −∞. In the Gaussian case in Fig. 2, we see
that, even at q = 2, intermediate densities for all β appear to concentrate in regions of low density under both π0 and πT .
However, for the heavier-tailed Student-t distributions, we must raise the q-path parameter significantly to observe similar
behavior.

D.3 MOMENT-AVERAGED PATH AS A GENERALIZED MEAN

While our q-paths can take arbitrary unnormalized density functions u =
(
π̃0(z), π̃1(z)

)
as input arguments for the

generalized mean, we can reinterpret the moment-averaging path as a generalized mean over the natural parameters
u =

(
θ0, θ1

)
. We contrast the difficulty of inverting the function h(θ) for the moments path (which involves the Legendre

transform), against the simple form of the geometric or q-paths as arithmetic means in the parameter space θ as in
Appendix D.2.

The moment-averaged path is defined using a convex combination of the dual parameter vectors (Grosse et al., 2013), for
the restricted case where π0(z) and π1(z) are members of the same exponential family, with parameters θ0 and θ1

η(θβ) = (1− β) η(θ0) + β η(θ1) . (49)

To solve for the corresponding natural parameters, we calculate the Legendre transform, or a function inversion η−1.

θβ = η−1
(
(1− β) η(θ0) + β η(θ1)

)
. (50)

Comparing to the form of Eq. (15), we can interpret the moment-averaging path as a generalized mean, with the natural
parameters u = (θ0, θ1) as inputs and the sufficient statistic function as the transformation h(θ) = η(θ), although calculating
the inverse is difficult in practice.

This observation highlights the convenience of working with generalized means in unnormalized density function space as
in q-paths. When constructing paths from generalized means in parameter space θ, one may have to calculate normalization
constants or consider the entire domain of the density function. By contrast, the expression for q-paths in Eq. (2) only
involves inverting a scalar function at each point in the input sample space z.
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Figure 2: We visualize the escort-moments path for Student-t endpoints with tν(−4, 3) and tν(4, 1) for various ν =
(3− q)/(1− q). We compare the corresponding q-path, whose intermediate densities remain within the q-exponential family,
to the escort-moments path (Eq. (57)). Note, q = 1.01 closely resembles the moment-averaged path of Grosse et al. (2013).

D.4 ESCORT MOMENT-AVERAGED PATH

While exponential families are ubiquitous throughout machine learning, whether via common parametric distributions
such as Gaussians or energy-based models such as (Restricted) Boltzmann Machines, models involving the q-exponential
function have received comparatively little attention in machine learning. Nevertheless, we derive an analogue of the
moment-averaged path for endpoint distributions within the same q-exponential family, with several parametric examples in
App. D. We begin by recalling the definition,

πθ,q(z) = g(z) expq
{
θ · φq(z)− ψq(θ)

}
. (51)

where g(z) indicates a base distribution and ψq(θ) denotes the q-free energy, which is convex as a function of the parameter
θ (Amari and Ohara, 2011).

As in the case of the exponential family, differentiating the q-free energy yields a dual parameterization of the q-exponential
family (Amari and Ohara, 2011). However, the standard expectation is now replaced with the escort expectation (Naudts,
2011)

ηq(θ) = ∇θψq(θ) =

∫
π̃

(q)
θ (z)q∫
π̃

(q)
θ (z)q

· φ(z)dz (52)

:= EΠq(θ)[φ(z)] (53)

where Πq(θ) ∝ π̃θ,q(z)q is the escort distribution for a given for π̃θ,q in a parametric q-exponential family. This reduces to
the standard expectation for q = 1 as in Eq. (9).

We propose the escort moment-averaging path for endpoints within a q-exponential family, using linear mixing in the dual
parameters. Letting the function ηΠ(θ) output the escort expected sufficient statistics for a q-exponential family distribution
with parameter θ,

ηΠq (θβ) = (1− β) ηΠq (θ0) + β ηΠq (θ1) (54)

To provide a concrete example of the escort moment-averaging path in Fig. 2, we consider the Student-t distribution, which
uses the same first- and second-order sufficient statistics as a Gaussian distribution and a degrees of freedom parameter
ν that specifies the order of the q-exponential function for q ≥ 1. This parameter induces heavier tails than a standard
Gaussian, which appears as a special case as q → 1 and expq(u)→ exp(u).

In Fig. 2, we observe that the escort moments path spreads probability mass more widely than the q-path, which matches the
observations of Grosse et al. (2013) in comparing the moment-averaging path to the geometric path for exponential family
endpoints. Note that the q-path remains within the q-exponential family as shown in Appendix D.2.

We proceed to derive a closed form expression for the parameters of intermediate distributions along the escort moment-
averaged path between Student-t endpoints.

D.5 ESCORT MOMENT-AVERAGED PATH WITH STUDENT-t ENDPOINTS

For the case of the Student-t distribution with degrees of freedom parameter ν , the escort distribution is also a Student-t
distribution, but with ν′ = ν + 2 and a rescaling of the covariance matrix 1

ZΠ(Σ) tν(z;µ,Σ)q = tν+2(z;µ, ν
ν+2Σ) (Tanaka



2010, Matsuzoe 2017).

Finding the escort moment-averaged path thus becomes a moment matching problem over Student-t distributions with a
different ν. We seek to find πβ(z) = tν(z;µβ ,Σβ) such that the expected sufficient statistics, under the escort distribution
Πβ(z) = tν+2(z;µβ ,

ν
ν+2Σβ), are equal to

EΠβ [z] = (1− β)EΠ0
[z] + β EΠ1

[z] (55)

EΠβ

[
zzT

]
= (1− β)EΠ0

[
zzT

]
+ β EΠ1

[
zzT

]
(56)

where optimization is over the parameters of the distribution tν(z;µβ ,Σβ). Note that EΠβ [z] = µβ since the mean is
unchanged for the escort distribution, whereas EΠβ

[
zzT

]
= ΣΠβ + µΠβµ

T
Πβ

= ν
ν+2Σβ + µβµ

T
β .

Following similar derivations as in Grosse et al. (2013) Sec. 4 using the escort expressions, we have

µβ = µΠβ = (1− β)µ0 + βµ1 (57)

Σβ =
ν + 2

ν
ΣΠβ = (1− β)Σ0 + βΣ1 +

ν + 2

ν
β(1− β)(µ1 − µ0)(µ1 − µ0)T

which implies that the escort moment-averaged distribution has the form tν(z;µβ ,Σβ), with the same degrees of freedom ν
as in the original q-exponential family.

E ADDITIONAL EXPERIMENTS FOR PARAMETRIC ENDPOINT DISTRIBUTIONS

In these experiments, we consider using Annealed Importance Sampling (AIS) to estimate the partition function ratio for
well-separated 1-d Gaussian (q = 1) and Student-t (q > 1) endpoint distributions. Our goal is to compare the performance of
the moment-averaging or escort-moment averaging paths, which are limited to the case of parametric endpoints distributions,
with the more general q-paths.

Gaussian To compare q-paths against the moment-averaging path (Grosse et al., 2013), we anneal between π0 = N (−4, 3)
and π1 = N (4, 1). Similarly, we anneal between π0 = tν=1(−4, 3) and π1 = tν=1(4, 1), where ν = 1 corresponds to
q = 2, to compare against the escort moment-averaged path in Appendix D. For all experiments, we use use parallel runs of
Hamiltonian Monte Carlo (HMC) (Neal, 2011) to obtain 2.5k independent samples from π̃β,q(z) using K linearly spaced βt
between β0 = 0 and βK = 1. We perform a grid search over 20 log-spaced δ ∈ [10−5, 10−1] and report the best q = 1− δ.

Results are shown in Fig. 3, where we observe q-paths outperform the geometric path in both cases, as well as the moment
and q-moments paths which have closed-form expressions and exact samples. In App. D.2, we provide additional analysis
for annealing between two Student-t distributions.

Student-t Since the Student-t family generalizes the Gaussian distribution to q 6= 1, we can run a similar experiment
annealing between two Student-t distributions. We set q = 2, which corresponds to ν = 1 with ν = (3− q)/(q − 1), and
use the same mean and variance as the Gaussian example in Fig. 2 or Student-t example in Fig. 2 with π0(z) = tν=1(−4, 3)
and π1(z) = tν=1(4, 1).

In Fig. 3, we compare the escort-moment averaging path with q = 2 to the geometric path and various q-paths. As shown
in Appendix D.2, the q-path with q = 2 stays within the q-exponential family. The escort-moment averaging path does
not outperform q-paths, which may be surprising since it appears to achieve interesting mass covering behavior in Fig. 2.
As in the Gaussian case, we see that q-paths with q 6= 2 can achieve improvements even when the endpoints Student-t
distributions use q = 2.

F SUM AND PRODUCT IDENTITIES FOR q-EXPONENTIALS

In this section, we prove two lemmas which are useful for manipulation expressions involving q-exponentials, for example
in moving between Eq. (7) and Eq. (8) in either direction.

Lemma 1. Sum identity

expq

(
N∑
n=1

xn

)
=

N∏
n=1

expq

(
xn

1 + (1− q)
∑n−1
i=1 xi

)
(58)



(a) N (−4, 3)→ N (4, 1) (b) tv=1(−4, 3)→ tv=1(4, 1)

Figure 3: BDMC gaps for various paths on toy models. q-Paths out perform both the moments and the escort-moments path,
both of which make use of parametric endpoint assumptions. Best q out of 20 shown.

Lemma 2. Product identity

N∏
n=1

expq(xn) = expq

(
N∑
n=1

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
(59)

F.1 PROOF OF LEMMA 1

Proof. We prove by induction. The base case (N = 1) is satisfied using the convention
∑b
i=a xi = 0 if b < a so that the

denominator on the RHS of Eq. (58) is 1. Assuming Eq. (58) holds for N ,

expq

(
N+1∑
n=1

xn

)
=

[
1 + (1− q)

N+1∑
n=1

xn

]1/(1−q)

+

(60)

=

[
1 + (1− q)

(
N∑
n=1

xn

)
+ (1− q)xN+1

]1/(1−q)

+

(61)

=

[(
1 + (1− q)

N∑
n=1

xn

)(
1 + (1− q) xN+1

1 + (1− q)
∑N
n=1 xn

)]1/(1−q)

+

(62)

= expq

(
N∑
n=1

xn

)
expq

(
xN+1

1 + (1− q)
∑N
n=1 xn

)
(63)

=

N+1∏
n=1

expq

(
xn

1 + (1− q)
∑n−1
i=1 xi

)
(using the inductive hypothesis) (64)

F.2 PROOF OF LEMMA 2

Proof. We prove by induction. The base case (N = 1) is satisfied using the convention
∏b
i=a xi = 1 if b < a. Assuming

Eq. (59) holds for N , we will show the N +1 case. To simplify notation we define yN :=
∑N
n=1 xn ·

∏n−1
i=1 (1 + (1− q)xi).



Then,

N+1∏
n=1

expq(xn) = expq(x1)

(
N+1∏
n=2

expq(xn)

)
(65)

= expq(x0)

(
N∏
n=1

expq(xn)

)
(reindex n→ n− 1)

= expq(x0) expq(yN ) (inductive hypothesis)

=

[
(1 + (1− q) · x0) (1 + (1− q) · yN )

]1/(1−q)

+

(66)

=

[
1 + (1− q) · x0 +

(
1 + (1− q) · x0

)
(1− q) · yN

]1/(1−q)

+

(67)

=

[
1 + (1− q)

(
x0 +

(
1 + (1− q) · x0

)
yN

)]1/(1−q)

+

(68)

= expq
(
x0 +

(
1 + (1− q) · x0

)
yN
)

(69)

Next we use the definition of yN and rearrange

= expq

(
x0 +

(
1 + (1− q) · x0

)(
x1 + x2(1 + (1− q) · x1) + ...+ xN ·

N−1∏
i=1

(1 + (1− q) · xi)

))

= expq

(
N∑
n=0

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
. (70)

Then reindexing n→ n+ 1 establishes

N+1∏
n=1

expq(xn) = expq

(
N+1∑
n=1

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
. (71)

G EXPERIMENTAL DETAILS AND RESULTS

Algorithm 1 ESS Heuristic for Q-paths

1: Input: Set of log weights {logwi}Si=1, random restarts M , sample variance σ
2: Output: q, β which minimizes ESS criterion from Chopin and Papaspiliopoulos (2020).
3: Initialize δ0 = maxi | logwi| and Lbest =∞
4: for j from 1 to M do
5: Initialize β0 = 1, q0 = 1− ρ−1 with ρ ∼ N (ρ0, σ)

6: Solve β∗, q∗ = argminβ,q L(β0, q0) with L defined in Eq. (39) using coordinate descent.
7: if L(β∗, q∗) < Lbest then
8: Set qbest ← q∗, βbest ← β∗, Lbest ← L(β∗, q∗)

9: end if
10: end for
11: return qbest, βbest



G.1 SEQUENTIAL MONTE CARLO

We follow the experimental setup from Ch. 17.3 of Chopin and Papaspiliopoulos (2020) using the prepro-
cessed Pima Indians diabetes (N = 768, D = 9) and Sonar datasets (N = 208, D = 61) avail-
able at https://particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest/
datasets.html. The model is specified as:

p(wj) = N (0, 52) p(yi|xi, w) = Bern(pi = sigmoid(xTi w)) (72)

p(θ) =

D∏
j=1

p(wj) p(D, θ) = p(θ)

N∏
i=1

p(yi|xi, w). (73)

In Algorithm 1 we use M = 100 restarts and compute ρ in log10 space with a sample variance σ = 0.1 (i.e q = 1− 10−ρ

for ρ ∼ N (log10 (ρ0), 0.1)). For coordinate descent we use the modified Powell algorithm available from the scipy python
library.

G.2 EVALUATING GENERATIVE MODELS USING AIS

Table 1: Settings for training and evaluating a variational autoencoder (VAE) generative model trained with thermodynamic
variational objective (TVO) on the Omniglot dataset.

Configuration Value
training examples 24,345

simulated examples 2,500
real test examples 8,070

epochs 5000
number of importance samples 50

number of TVO partitions 100
TVO partition schedule log uniform (β1 = 0.025)

decoder [50, 200, 200, 784]
encoder [784, 200, 200, 50]

batch size 100
activation function tanh
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