
Federated Stochastic Gradient Langevin Dynamics

Khaoula el Mekkaoui*†1 Diego Mesquita∗1 Paul Blomstedt2 Samuel Kaski1,3

1Helsinki Institute for Information Technology,Department of Computer Science,Aalto University, Finland
2F-Secure, Finland

3Department of Computer Science, University of Manchester, UK

A BACKGROUND ON CONVERGENCE ANALYSIS FOR SGLD

Regularity conditions. Let ψ be the functional that solves the Poisson equation Lψ = φ− φ̂. Assume ψ is bounded up to
its third order derivative by a function Γ, such that ‖Dkψ‖ ≤ CkΓpk with Ck, pk > 0∀k ∈ {0, . . . , 3} with Dk denoting
the kth order derivative. Assume as well that the expectation of Γ w.r.t. θt is bounded (supt EΓp[θt] ≤ ∞) and that Γ is
smooth such that sups∈(0,1) Γp(sθ + (1− s)θ′) ≤ C(Γp(θ) + Γp(θ′)), ∀θ, θ′, p ≤ maxk 2pk, for some C > 0.

Under these regularity conditions, Chen et al. [2015] showed the following result.

Theorem 1 (See Chen et al. [2015]). Let Ut be an unbiased estimate of U , the unnormalized negative log posterior, and
ht = h for all t ∈ {1, . . . , T}. Let ∆Vt = (∇Ut −∇U) · ∇. Under the assumptions above, for a smooth test function φ,
the MSE OF SGLD at time K = hT is bounded for some C > 0 independent of (T, h) as:

E[(φ− φ̂)2] ≤ C
( 1
T

∑
t E[‖∆Vt‖2]

T
+

1

Th
+ h2

)
(1a)

Equation (1a) can also be written as:

E[(φ− φ̂)2] ≤ C
( 1
T

∑
t E[‖∆Vtψ(θt)‖2]

T
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1

Th
+ h2

)
. (2a)

For further analysis we add the assumption that (∆Vtψ(θ))2 ≤ C ′‖∇Ut(θ)−∇U(θ)‖2 for some C ′ > 0.

B PROOF OF THEOREM 1: CONVERGENCE OF DSGLD

Here, we follow the footprints of Chen et al. [2015] later adopted by Dubey et al. [2016]. Thus, we focus on bounding
1
T

∑
t E[(∆Vtψ(θt))

2], when Ut(θt) = vst(θt). For some C ′ > 0, we have:
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(3b)
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]

(3c)
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Here, E
x
(m)
st |st

denotes that the expectation is taken w.r.t. a mini-batch of size m with elements drawn with replacement and
equal probability from shard st. Expectations without explicit subscripts are taken w.r.t. all random variables. To advance
from Equation (3c) to (3d), we use law of iterated expectations and the fact that E[‖

∑
i ri‖2] =

∑
i E[‖ri‖2] for zero-mean

independent ri’s. To advance from Equation (3d) to (3e), we use E[‖r − E[r]‖2] ≤ E[‖r‖2]. Substituting Equation (3g) in
Equation (2a) yields the desired result.

C PROOF OF LEMMA 1: UNBIASEDNESS AND FINITE VARIANCE

Recall that the for the DSGLD update [Ahn et al., 2014] we have

E
s,x

(m)
st

[
1

fs

Ns
m
∇ log p(x(m)

st |θt)
]

= ∇ log p(x|θt).

Furthermore, for conducive gradients we have that:

Es
[
∇q(θt)−
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∇qs(θt)

]
= q(θt)−

∑
s

fs
1

fs
qs(θt) = 0.

Since the FSGLD estimator is the sum of the DSGLD estimator and the conducive gradient, it is unbiased.

The sufficient condition for the DSGLD estimator to have finite variance is that the unnormalized log posterior is Lipschitz
continuous. Similarly, since q1, . . . , qS are also Lipschitz continuous, their first derivatives are bounded, so the conducive
gradient is a convex combination of bounded functions and has finite variance. Thus, their sum, the FSGLD estimator has
finite variance.

D PROOF OF THEOREM 2: CONVERGENCE OF FSGLD

We now bound 1
T

∑
t E[(∆Vtψ(θt))

2] for the FSGLD update equation, when Ut(θt) = vst(θt) + gst(θt).
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We proceed from Equation (4b) to (4c) using the law of iterated expectations and the fact that E[‖
∑
i ri‖2] =

∑
i E[‖ri‖2]

for zero-mean independent ri’s. To transition from Equation (4c) to (4d), we use E[‖r − E[r]‖2] ≤ E[‖r‖2]. The last line is
obtained using Lemma 2. We use this bound and Equation 2a to get the desired result.

E MORE DETAILS ON REMARK 3

Following Lemma 2 and assuming that ε2s is a tight bound, i.e.

ε2s :=
1

Ns

∑
xi∈xs

∥∥∥∥∇ log p(xi|θ)−
1

Ns
∇ log qs(θ)

∥∥∥∥2 , (5a)

choosing qs that minimizes ε2s is equivalent to finding
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θ
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which is equal to
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and can be further developed into
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Completing the squares and using max a+ b ≤ max a+ max b, we get the following upper-bound for Equation 5b:

1
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[
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]
+

1

Ns
max
θ

[
1
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]
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in which only the first term depends on qs.

F ADDITIONAL EXPERIMENTS

In this section, we provide additional results for Bayesian linear regression. Since we can leverage the simple likelihood
function and compute surrogates analytically, this setting is especially useful to understand the behavior of our method.

F.1 LINEAR REGRESSION

In this set of experiments, we apply FSGLD to Bayesian linear regression and analyze its performance, which we measure
in terms of MSE averaged over posterior samples.

Model The inputs of our model are Z = {xi, yi}Ni=1, where xi ∈ Rd and yi ∈ R. The likelihood of the ith output
yi ∈ {0, 1}, given the input vector xi, is p (yi|xi) = N

(
yi|β>xi, σe

)
, and we place the prior p(β) = N

(
β|0, λ−1I

)
.



Figure 1: Average MSE and variance along time computed for DSGLD and FSGLD as a function of the number of samples.
Overall, FSGLD converges to better performance than DSGLD. Additionally, FSGLD shows lower variance for all datasets.

Setting We run experiments on three different datasets1 from the UCI repository: Concrete (1030 samples, 9 features);
Noise (1503 samples, 6 features); Conductivity (17389 samples, 81 features)We normalize and partition our datasets into
(80%) training and (20%) test sets. In all our experiments, both DSGLD and FSGLD have the same hyper-parameters.
We sample S = 10 disjoint data subsets for r = 1000 rounds each having 600 iteration per round, with fixed step-size
ht = 10−5 and mini-batch size m = 10. All shards are chosen with same probability f1 = · · · = fS = 1/S. We also
burn-in the first ten thousand samples and thin the remaining by a hundred. We set qs(θ) = N (θ|µ,Σ), with Σ = (x>x)−1

and µ = (
∑
yixi)Σ

−1, for each s = 1 . . . S. We repeated the same experiment for 10 different random seeds. We report the
average test MSE and its variance as a function of the number of posterior samples.

Results Figure 1 shows the cumulative MSE and its variance. Overall, FSGLD converges faster than DSGLD in MSE,
with the notable exception of the Conductivity dataset, for which both methods converge virtually at the same time. In the
case of the Noise dataset, FSGLD additionally converges to a much lower MSE. Notably, our method also presents clearly
lower variance for all datasets.

F.2 METRIC LEARNING

While we employed MCMC-based surrogates for q1, . . . , qS , we can also use FSGLD with coarser approximations. As an
example, we also run FSGLD on the metric learning posterior of subsection 5.2 using Laplace approximations. Notably,
Figure 2 shows that both options lead to similar average results, but Laplace approximations result in higher variance.
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Figure 2: In avgerage, CG-DSGLD with Laplace or MCMC-based qs’s perform on par. Notably, MCMC yields smaller
variance in the metric learning experiment.

1Datasets can be downloaded from https://archive.ics.uci.edu/ml/index.html

https://archive.ics.uci.edu/ml/index.html
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