# The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization (Supplementary material) 

Yifei Min<br>Lin Chen ${ }^{2}$<br>Amin Karbasi ${ }^{3}$<br>${ }^{1}$ Dept. of Statistics and Data Science, Yale University, New Haven, CT, USA<br>${ }^{2}$ Simons Institute for the Theory of Computing, University of California, Berkeley, Berkeley, CA, USA<br>${ }^{3}$ Dept. of Electrical Engineering, Yale University, New Haven, CT, USA

## 1 PROOF OF RESULTS FOR THE GAUSSIAN MODEL

In this section we give the proof of Theorem 1 and Corollary 2
Before proving Theorem 1 we need to establish several lemmas. First we restate the result by Chen et al. [2020b] that gives the closed form solution for the robust classifier.

Proposition 1 (Lemma 10 in Chen et al. 2020b]). Given n training data points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}$ and $\varepsilon>0$, if the robust classifier is defined as (3), then we have $w_{n}^{\mathrm{rob}}=W \operatorname{sign}(u-\varepsilon \operatorname{sign}(u))$, where $u=\frac{1}{n} \sum_{i=1}^{n} y_{i} x_{i}$.

First, we define the error function $\operatorname{erf}(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{1}
\end{equation*}
$$

and it has the following property.
Lemma 2. If $z \sim \mathcal{N}(0,1)$, we have

$$
\mathbb{P}(z<x)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] .
$$

Proof of Lemma 2 In light of the density of the standard normal distribution and by a change of variable, we have

$$
\mathbb{P}(z<x)=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} d t=\frac{1}{2}+\frac{\sqrt{2}}{\sqrt{2 \pi}} \int_{0}^{x / \sqrt{2}} e^{-s^{2}} d s=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] .
$$

In addition, we define the function $L(\cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
L\left(v, \varepsilon^{\prime}\right)=\operatorname{erf}(v)+\operatorname{erf}\left(v\left(\varepsilon^{\prime}-1\right)\right)-\operatorname{erf}\left(v\left(\varepsilon^{\prime}+1\right)\right) . \tag{2}
\end{equation*}
$$

For all $j \in[d]$, we define

$$
\begin{equation*}
v_{j}=\frac{\sqrt{n} \mu(j)}{\sqrt{2} \sigma(j)}, \quad \varepsilon_{j}^{\prime}=\frac{\varepsilon}{\mu(j)}, \tag{3}
\end{equation*}
$$

where $\mu(j)$ and $\sigma(j)$ are defined in the data generation process described at the beginning of Section 4 .
Lemma 3 gives the expression for the generalization error.

Lemma 3. Suppose that the generalization error is defined as in (4). Then we have

$$
L_{n}=W \sum_{j \in[d]} \mu(j) L\left(v_{j}, \varepsilon_{j}^{\prime}\right)
$$

where $v_{j}$ and $\varepsilon_{j}^{\prime}$ are defined in (3).
Proof of Lemma 3. By (4), Proposition 1 and the independence between test and training data, we have

$$
\begin{aligned}
L_{n} & =-\mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{D}_{\mathcal{N}}}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}_{\mathcal{N}}}\left[y\left\langle w_{n}^{\text {rob }}, x\right\rangle\right]\right]=-\mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim \text { i.i. }_{\sim}^{\sim} \mathcal{D}_{\mathcal{N}}}\left[\left\langle w_{n}^{\text {rob }}, \mu\right\rangle\right] \\
& =-W \cdot \sum_{j \in[d]} \mu(j) \mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{D}_{\mathcal{N}}}[\operatorname{sign}(u(j)-\varepsilon \operatorname{sign}(u(j)))]
\end{aligned}
$$

Since $y_{i} x_{i} \sim \mathcal{N}(\mu, \Sigma)$, we have $u \sim \mathcal{N}\left(\mu, \frac{\Sigma}{n}\right)$, and it follows that

$$
L_{n}=-W \cdot \sum_{j \in[d]} \mu(j) \mathbb{E}_{u(j) \sim \mathcal{N}\left(\mu(j), \frac{\sigma^{2}(j)}{n}\right)}[\operatorname{sign}(u(j)-\varepsilon \operatorname{sign}(u(j)))]
$$

Denote $I_{j}=-\mathbb{E}_{u(j) \sim \mathcal{N}\left(\mu(j), \frac{\sigma^{2}(j)}{n}\right)}[\operatorname{sign}(u(j)-\varepsilon \operatorname{sign}(u(j)))]$. Then we have

$$
\begin{aligned}
I_{j} & =\mathbb{P}(u(j)<-\varepsilon)-\mathbb{P}(-\varepsilon<u(j)<0)+\mathbb{P}(0<u(j)<\varepsilon)-\mathbb{P}(\varepsilon<u(j)) \\
& =1-2 \mathbb{P}(-\varepsilon<u(j)<0)-2 \mathbb{P}(\varepsilon<u(j)) \\
& =1-2 \mathbb{P}\left(\frac{(-\varepsilon-\mu(j)) \sqrt{n}}{\sigma(j)}<z<\frac{-\mu(j) \sqrt{n}}{\sigma(j)}\right)-2 \mathbb{P}\left(\frac{(\varepsilon-\mu(j)) \sqrt{n}}{\sigma(j)}<z\right) \\
& =1-2\left[\mathbb{P}\left(z<\frac{(\varepsilon+\mu(j)) \sqrt{n}}{\sigma(j)}\right)-\mathbb{P}\left(z<\frac{\mu(j) \sqrt{n}}{\sigma(j)}\right)\right]-2\left[1-\mathbb{P}\left(z<\frac{(\varepsilon-\mu(j)) \sqrt{n}}{\sigma(j)}\right)\right]
\end{aligned}
$$

where $z$ is a standard normal random variable. By Lemma 2 we have

$$
\begin{aligned}
I_{j} & =\operatorname{erf}\left(\frac{\mu(j) \sqrt{n}}{\sqrt{2} \sigma(j)}\right)+\operatorname{erf}\left(\frac{(\varepsilon-\mu(j)) \sqrt{n}}{\sqrt{2} \sigma(j)}\right)-\operatorname{erf}\left(\frac{(\varepsilon+\mu(j)) \sqrt{n}}{\sqrt{2} \sigma(j)}\right) \\
& =\operatorname{erf}\left(v_{j}\right)+\operatorname{erf}\left(v_{j}\left(\varepsilon_{j}^{\prime}-1\right)\right)-\operatorname{erf}\left(v_{j}\left(\varepsilon_{j}^{\prime}+1\right)\right)=L\left(v_{j}, \varepsilon_{j}^{\prime}\right)
\end{aligned}
$$

which implies that $L_{n}=W \sum_{j \in[d]} \mu(j) L\left(v_{j}, \varepsilon_{j}^{\prime}\right)$.

Note that $L\left(v, \varepsilon^{\prime}\right)$ is differentiable in $v$, and by our definition each $v_{j}$ is smooth and monotonic in $n$. Together with Lemma 3 we know that $L_{n}$ is differentiable w.r.t. $n$. Therefore, to study the dynamic of $L_{n}$ in $n$, it is equivalent to studying the derivative $\frac{d L_{n}}{d n}$. We define the function $f(\cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f\left(t, \varepsilon^{\prime}\right)=t-\left(1+\varepsilon^{\prime}\right) t^{\left(1+\varepsilon^{\prime}\right)^{2}}-\left(1-\varepsilon^{\prime}\right) t^{\left(1-\varepsilon^{\prime}\right)^{2}}
$$

In Lemma 4, we compute the partial derivative of $L$.
Lemma 4. Let $t=e^{-v^{2}}$ and $f$ be defined as in (1). The partial derivative of $L\left(v, \varepsilon^{\prime}\right)$ w.r.t. $v$ is given by

$$
\frac{\partial L\left(v, \varepsilon^{\prime}\right)}{\partial v}=\frac{2}{\sqrt{\pi}} f\left(t, \varepsilon^{\prime}\right)
$$

Proof of Lemma 4. By (1) we have

$$
\frac{d}{d x} \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}
$$

and it follows by (2) that

$$
\frac{\partial L\left(v, \varepsilon^{\prime}\right)}{\partial v}=\frac{2}{\sqrt{\pi}} e^{-v^{2}}+\left(\varepsilon^{\prime}-1\right) \frac{2}{\sqrt{\pi}} e^{-v^{2} \cdot\left(\varepsilon^{\prime}-1\right)^{2}}-\left(\varepsilon^{\prime}+1\right) \frac{2}{\sqrt{\pi}} e^{-v^{2} \cdot\left(\varepsilon^{\prime}+1\right)^{2}}=\frac{2}{\sqrt{\pi}} f\left(t, \varepsilon^{\prime}\right)
$$

The proof of Theorem 1 follows from studying the derivative $\frac{d L_{n}}{d n}$. Lemma 4 implies that the derivative depends on the sign of the function $f$. We investigate the sign of $f$ in Lemma 5

Lemma 5. There exist $0<\delta_{1} \leq \delta_{2}<1$ such that the following statements hold.
(a) When $0<\varepsilon^{\prime}<\delta_{1}, f\left(t, \varepsilon^{\prime}\right)<0$ for $\forall t \in(0,1)$.
(b) When $\delta_{2}<\varepsilon^{\prime}<1$, there exist $0<\tau_{1}<\tau_{2}<1$ depending on $\varepsilon^{\prime}$ such that

$$
f\left(t, \varepsilon^{\prime}\right) \begin{cases}<0 & \forall t \in\left(0, \tau_{1}\right) \\ >0 & \forall t \in\left(\tau_{1}, \tau_{2}\right) \\ <0 & \forall t \in\left(\tau_{2}, 1\right)\end{cases}
$$

and

$$
\begin{aligned}
\lim _{\varepsilon^{\prime} \rightarrow 1^{-}} \tau_{1}\left(\varepsilon^{\prime}\right) & =0, \\
\tau_{2}\left(\varepsilon^{\prime}\right) & \geq \frac{1}{3} .
\end{aligned}
$$

(c) When $1 \leq \varepsilon^{\prime}, f\left(t, \varepsilon^{\prime}\right)$, there exists $\tau_{2}<1$ such that

$$
f\left(t, \varepsilon^{\prime}\right) \begin{cases}>0 & \forall t \in\left(0, \tau_{2}\right) \\ <0 & \forall t \in\left(\tau_{2}, 1\right)\end{cases}
$$

We compute the partial derivative of $f$ w.r.t. $t$

$$
f^{\prime}\left(t, \varepsilon^{\prime}\right)=\frac{\partial f\left(t, \varepsilon^{\prime}\right)}{\partial t}=1-\left(1+\varepsilon^{\prime}\right)^{3} t^{\left(1+\varepsilon^{\prime}\right)^{2}-1}-\left(1-\varepsilon^{\prime}\right)^{3} t^{\left(1-\varepsilon^{\prime}\right)^{2}-1}
$$

The proof of Lemma 5 uses the following Lemma 6 and Lemma 7 To make it concise, whenever we fix $\varepsilon^{\prime}$ in the context, we omit $\varepsilon^{\prime}$ and write $f(t)=f\left(t, \varepsilon^{\prime}\right)$ and $f^{\prime}(t)=f^{\prime}\left(t, \varepsilon^{\prime}\right)$.

Lemma 6. The right-sided limit of $f^{\prime}$ at 0 is given by

$$
\lim _{t \rightarrow 0^{+}} f^{\prime}(t)= \begin{cases}-\infty & \text { if } 0<\varepsilon^{\prime}<1 \\ 1 & \text { if } \varepsilon^{\prime}=1 \\ +\infty & \text { if } 1<\varepsilon^{\prime}<2\end{cases}
$$

In addition, we have

$$
\lim _{t \rightarrow 1^{-}} f^{\prime}(t)<0, \quad \forall 0<\varepsilon^{\prime}
$$

The proof of Lemma 6 follows from direct computation. Using Lemma 6 we obtain Lemma 7
Lemma 7. For any fixed $0<\varepsilon^{\prime}<1$, there exists some $t_{0}=t_{0}\left(\varepsilon^{\prime}\right) \in(0,1)$ such that $f^{\prime}(t)$ is strictly increasing for $t \in\left(0, t_{0}\right)$ and strictly decreasing for $t \in\left(t_{0}, 1\right)$. For any fixed $1 \leq \varepsilon^{\prime} \leq 2, f^{\prime}(t)$ is strictly decreasing for $t \in(0,1)$.

Proof of Lemma 7. We differentiate $f^{\prime}$ w.r.t. $t$ to get

$$
\frac{\partial f^{\prime}(t)}{\partial t}=-\left(1+\varepsilon^{\prime}\right)^{3}\left[\left(1+\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1+\varepsilon^{\prime}\right)^{2}-2}-\left(1-\varepsilon^{\prime}\right)^{3}\left[\left(1-\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1-\varepsilon^{\prime}\right)^{2}-2}
$$

First we consider the case where $0<\varepsilon^{\prime}<1$. The function $f^{\prime}$ is continuously differentiable on $\left(t, \varepsilon^{\prime}\right) \in(0,1) \times(0,1)$. For any fixed $\varepsilon^{\prime}<1$, setting $\frac{\partial f^{\prime}(t)}{\partial t}=0$ yields the unique solution of $t$ in $(0,1)$ as

$$
\begin{equation*}
t_{0}=\left[\left(\frac{1+\varepsilon^{\prime}}{1-\varepsilon^{\prime}}\right)^{3}\left(\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right)\right]^{-\frac{1}{4 \varepsilon^{\prime}}} \tag{4}
\end{equation*}
$$

Since $\lim _{t \rightarrow 0^{+}} f^{\prime}(t)=-\infty, f^{\prime}(t)$ is strictly increasing w.r.t. $t \in\left(0, t_{0}\right)$. Also note that

$$
\begin{aligned}
\lim _{t \rightarrow 1^{-}} \frac{\partial f^{\prime}(t)}{\partial t} & =\lim _{t \rightarrow 1^{-}}-\left(1+\varepsilon^{\prime}\right)^{3}\left[\left(1+\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1+\varepsilon^{\prime}\right)^{2}-2}-\left(1-\varepsilon^{\prime}\right)^{3}\left[\left(1-\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1-\varepsilon^{\prime}\right)^{2}-2} \\
& =-2 \varepsilon^{\prime 2}\left(5 \varepsilon^{\prime 2}+7\right)<0
\end{aligned}
$$

which together with $\frac{\partial}{\partial t}\left(f^{\prime}\left(t_{0}\right)\right)=0$ indicates that $f^{\prime}(t)$ is strictly decreasing for $t \in\left(t_{0}, 1\right)$. We conclude that $t_{0}$ is the unique local extreme and also the global maximum of $f^{\prime}(t)$ on $t \in(0,1)$.

For $1 \leq \varepsilon^{\prime} \leq 2$, we have for all $t \in(0,1)$

$$
\begin{aligned}
& -\left(1+\varepsilon^{\prime}\right)^{3}\left[\left(1+\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1+\varepsilon^{\prime}\right)^{2}-2}<0 \\
& -\left(1-\varepsilon^{\prime}\right)^{3}\left[\left(1-\varepsilon^{\prime}\right)^{2}-1\right] t^{\left(1-\varepsilon^{\prime}\right)^{2}-2} \leq 0
\end{aligned}
$$

It follows that $\frac{\partial f^{\prime}(t)}{\partial t}<0$, which implies that $f^{\prime}(t)$ is strictly decreasing.

A direct application of Lemma 7 gives the following Lemma 8
Lemma 8. For all $0<\varepsilon^{\prime}<1$ sufficiently close to 1 , $f^{\prime}(t)$ has exactly two zeros on $t \in(0,1)$.
Proof of Lemma 8. By Lemma 7, we know that $f^{\prime}(t)$ is strictly increasing on $t \in\left(0, t_{0}\right)$ and strictly decreasing on $\left(t_{0}, 1\right)$. Recall that Lemma 6 shows that for $0<\varepsilon^{\prime}<1, \lim _{t \rightarrow 0^{+}} f^{\prime}(t)=-\infty$ and $\lim _{t \rightarrow 1^{-}} f^{\prime}(t)<0$. Therefore it suffices to show $f^{\prime}\left(t_{0}\right)>0$ for all $\varepsilon^{\prime}$ sufficiently close to $1^{-}$. We define

$$
\begin{equation*}
A=\left(\frac{1+\varepsilon^{\prime}}{1-\varepsilon^{\prime}}\right)^{3}\left(\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right) \tag{5}
\end{equation*}
$$

We have $A$ tends to $+\infty$ as $\varepsilon^{\prime} \rightarrow 1^{-}$. We then write

$$
f^{\prime}\left(t_{0}\right)=1-\left(1+\varepsilon^{\prime}\right)^{3} A^{-\frac{1}{2}-\frac{\varepsilon^{\prime}}{4}}-\left(1-\varepsilon^{\prime}\right)^{3} A^{\frac{1}{2}-\frac{\varepsilon^{\prime}}{4}}
$$

Note that $\lim _{\varepsilon^{\prime} \rightarrow 1^{-}}\left(1+\varepsilon^{\prime}\right)^{3} A^{-\frac{1}{2}-\frac{\varepsilon^{\prime}}{4}}=0$, and

$$
\lim _{\varepsilon^{\prime} \rightarrow 1^{-}}\left(1-\varepsilon^{\prime}\right)^{3} A^{\frac{1}{2}-\frac{\varepsilon^{\prime}}{4}}=\lim _{\varepsilon^{\prime} \rightarrow 1^{-}}\left(1-\varepsilon^{\prime}\right)^{\frac{3}{2}+\frac{3 \varepsilon^{\prime}}{4}} \cdot\left[\left(1+\varepsilon^{\prime}\right)^{3}\left(1+\frac{2 \varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right)\right]^{\frac{1}{2}-\frac{\varepsilon^{\prime}}{4}}=0
$$

Therefore we conclude that $f^{\prime}\left(t_{0}\right)>0$ as $\varepsilon^{\prime} \rightarrow 1^{-}$.

We denote the two zeros in Lemma 8 by $t_{1}=t_{1}\left(\varepsilon^{\prime}\right)$ and $t_{2}=t_{2}\left(\varepsilon^{\prime}\right)$ where $t_{1}<t_{2}$.
Now we are ready to prove Lemma 5
Proof of Lemma5. We show (a) first. Note that for any fixed $\varepsilon^{\prime}<1, f(0)=0$. Therefore it suffices to show that for any $\varepsilon^{\prime}$ sufficiently close to 0 , the derivative $f^{\prime}(t)<0$. Since by Lemma 7 we have $f^{\prime}(t)<\sup _{t \in(0,1)} f^{\prime}(t)=f^{\prime}\left(t_{0}\right)$ when $0<\varepsilon^{\prime}<1$, it remains to show that $f^{\prime}\left(t_{0}\right)<0$ for all $\varepsilon^{\prime}$ sufficiently cose to 0 .
In light of (4), $f^{\prime}\left(t_{0}\right)<0$ is equivalent to

$$
1-\left(1+\varepsilon^{\prime}\right)^{3}\left[\left(\frac{1+\varepsilon^{\prime}}{1-\varepsilon^{\prime}}\right)^{3}\left(\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right)\right]^{-\frac{\varepsilon^{\prime 2}+2 \varepsilon^{\prime}}{4 \varepsilon^{\prime}}}-\left(1-\varepsilon^{\prime}\right)^{3}\left[\left(\frac{1+\varepsilon^{\prime}}{1-\varepsilon^{\prime}}\right)^{3}\left(\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right)\right]^{-\frac{\varepsilon^{\prime 2}-2 \varepsilon^{\prime}}{4 \varepsilon^{\prime}}}<0
$$

Recall that we define

$$
A=\left(\frac{1+\varepsilon^{\prime}}{1-\varepsilon^{\prime}}\right)^{3}\left(\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}\right)
$$

Rearranging the terms yields $A^{\varepsilon^{\prime} / 4}<\left(1+\varepsilon^{\prime}\right)^{3} A^{-1 / 2}+\left(1-\varepsilon^{\prime}\right)^{3} A^{1 / 2}$. Since $A>1$ and $\varepsilon^{\prime}<1$, we have $A^{\varepsilon^{\prime} / 4}<A^{1 / 2}$. Thus it now suffices to show $A^{1 / 2}<\left(1+\varepsilon^{\prime}\right)^{3} A^{-1 / 2}+\left(1-\varepsilon^{\prime}\right)^{3} A^{1 / 2}$, or equivalently $A<\left(1+\varepsilon^{\prime}\right)^{3} /\left[1-\left(1-\varepsilon^{\prime}\right)^{3}\right]$. We can further simplify this into

$$
\frac{2+\varepsilon^{\prime}}{2-\varepsilon^{\prime}}<\frac{\left(1-\varepsilon^{\prime}\right)^{3}}{1-\left(1-\varepsilon^{\prime}\right)^{3}}
$$

Finally, note that LHS $\rightarrow 1$ and RHS $\rightarrow+\infty$ as $\varepsilon^{\prime} \rightarrow 0^{+}$. Therefore there must exist $\delta_{1} \in(0,1)$ such that: for any $0<\varepsilon^{\prime}<\delta_{1}, f^{\prime}(t)<0$ for all $t \in(0,1)$. Thus $f(t)<0$ for all $t \in(0,1)$.

Now we show (b) By Lemma 8 , we know that for all $\varepsilon^{\prime}$ sufficiently close to $1^{-}, f^{\prime}$ has exactly two zeros $t_{1}$ and $t_{2}$. By Lemma 7, we know that $f^{\prime}(t)>0$ for $t \in\left(t_{1}, t_{2}\right)$. These imply that $f(t)$ is decreasing on $t \in\left(0, t_{1}\right)$, increasing on $t \in\left(t_{1}, t_{2}\right)$ and decreasing on $t \in\left(t_{2}, 1\right)$, which gives $\arg \max _{t \in[0,1]} f(t) \subseteq\left\{0, t_{2}\right\}$. Furthermore, since $f(0)=0$ and $f^{\prime}(t)<0$ for $t \in\left(0, t_{1}\right)$, we know $f(t)<0$ in $t \in\left(0, t_{1}\right)$. Also note that $f(1)=-1<0$. Therefore, depending on $\varepsilon^{\prime}$, the sign of $f(t)$ in $t \in(0,1)$ only has two possibilities: either $f(t)<0$ for all $t \in(0,1)$ except possibly one point where $f(t)=0$, or there exist $\tau_{1}$ and $\tau_{2}$ as described in (b) In the latter case we have $0<t_{1}<\tau_{1}<t_{2}<\tau_{2}<1$.

We now show the existence of such $\tau_{1}$ and $\tau_{2}$ for all $\varepsilon^{\prime}$ sufficiently close to $1^{-}$. Since we have shown that $\arg \max _{t \in[0,1]} f(t) \subseteq\left\{0, t_{2}\right\}$ and $f(0)=0$, it suffices to show $f\left(t_{2}\right)>0$. Since $f^{\prime}\left(t_{2}\right)=0$, we have $f\left(t_{2}\right)>0 \Leftrightarrow$ $f\left(t_{2}\right)-t_{2} \cdot f^{\prime}\left(t_{2}\right)>0 \Leftrightarrow\left[\left(1+\varepsilon^{\prime}\right)^{3}-\left(1+\varepsilon^{\prime}\right)\right] t_{2}^{\left(1+\varepsilon^{\prime}\right)^{2}}>\left[\left(1-\varepsilon^{\prime}\right)-\left(1-\varepsilon^{\prime}\right)^{3}\right] t_{2}^{\left(1-\varepsilon^{\prime}\right)^{2}}$, which can be simplified into

$$
\frac{\left(1+\varepsilon^{\prime}\right)^{3}-\left(1+\varepsilon^{\prime}\right)}{\left(1-\varepsilon^{\prime}\right)-\left(1-\varepsilon^{\prime}\right)^{3}}>\frac{1}{t_{2}^{4 \varepsilon^{\prime}}}
$$

Since $\varepsilon^{\prime}<1$, it then suffices to show

$$
1+\frac{6}{\frac{2}{\varepsilon^{\prime}}+\varepsilon^{\prime}-3} \geq \frac{1}{t_{2}^{4}}
$$

Observe that LHS $\rightarrow+\infty$ as $\varepsilon^{\prime} \rightarrow 1^{-}$. It remains to show that $t_{2}$ is bounded away from 0 as $\varepsilon^{\prime} \rightarrow 1^{-}$, i.e., $\lim \inf _{\varepsilon^{\prime} \rightarrow 1^{-}} t_{2}\left(\varepsilon^{\prime}\right)>0$. We claim that $\lim \inf _{\varepsilon^{\prime} \rightarrow 1^{-}} t_{2} \geq \frac{1}{2}$. To show this, we note that

$$
\liminf _{\varepsilon^{\prime} \rightarrow 1^{-}} f^{\prime}\left(q, \varepsilon^{\prime}\right)=\liminf _{\varepsilon^{\prime} \rightarrow 1^{-}} 1-\left(1+\varepsilon^{\prime}\right)^{3} \cdot q^{\left(1+\varepsilon^{\prime}\right)^{2}-1}-\left(1-\varepsilon^{\prime}\right)^{3} \cdot q^{\left(1-\varepsilon^{\prime}\right)^{2}-1}=1-2^{3} \cdot q^{3}
$$

which equals zero when $q=\frac{1}{2}$.
The claim in (b) that $\tau_{2}\left(\varepsilon^{\prime}\right) \geq \frac{1}{3}$ follows directly from the above analysis since $t_{2}<\tau_{2}$ and $\lim _{\inf _{\varepsilon^{\prime} \rightarrow 1^{-}}} t_{2} \geq \frac{1}{2}$.
To show $\lim _{\varepsilon^{\prime} \rightarrow 1^{-}} \tau_{1}\left(\varepsilon^{\prime}\right)=0$, we claim that $\tau_{1} \leq\left(1-\varepsilon^{\prime}\right)^{0.9}$ as $\varepsilon^{\prime} \rightarrow 1^{-}$. Then it suffices to show that $f\left(\left(1-\varepsilon^{\prime}\right)^{0.9}, \varepsilon^{\prime}\right)>0$ for all $\varepsilon^{\prime} \rightarrow 1^{-}$. We have

$$
\frac{1}{\left(1-\varepsilon^{\prime}\right)^{0.9}} \cdot f\left(\left(1-\varepsilon^{\prime}\right)^{0.9}, \varepsilon^{\prime}\right)=1-\left(1+\varepsilon^{\prime}\right)\left(1-\varepsilon^{\prime}\right)^{0.9\left[\left(1+\varepsilon^{\prime}\right)^{2}-1\right]}-\left(1-\varepsilon^{\prime}\right)^{1+0.9\left[\left(1-\varepsilon^{\prime}\right)^{2}-1\right]}
$$

which tends to 1 as $\varepsilon^{\prime} \rightarrow 1^{-}$. This implies (b)
We now show (c) First note that $f(0)=0$ and $f(1)=-1$.
When $\varepsilon^{\prime}=1, f(t)=t-2 t^{4}$. In this case, we have $f(t)>0$ for $t \in\left(0,2^{-1 / 3}\right)$ and $f(t)<0$ for $t \in\left(2^{-1 / 3}, 1\right)$.
When $1<\varepsilon^{\prime} \leq 2$, by Lemma 7 , we have $f^{\prime}(t)=1+\left(\varepsilon^{\prime}-1\right)^{3} t^{\left(\varepsilon^{\prime}-1\right)^{2}-1}-\left(\varepsilon^{\prime}+1\right)^{3} t^{\left(\varepsilon^{\prime}+1\right)^{2}-1}$ being strictly decreasing on $t \in(0,1)$. Therefore the function $f(t)$ is concave. Since $\lim _{t \rightarrow 0^{+}} f^{\prime}(t)>0, f(0)=0$ and $f(1)=-1<0$, the result follows by concavity.

When $2<\varepsilon^{\prime}$, again since $f(0)=0$ and $f(1)=-1$, it suffices to show $f$ is strictly increasing and then strictly decreasing on $t \in(0,1)$. Note that since $\lim _{t \rightarrow 0^{+}} f^{\prime}(t)=1>0$ and $\lim _{t \rightarrow 1^{-}} f^{\prime}(t)<0$, it then suffices to show $f^{\prime}(t)$ is increasing and then decreasing on $(0,1)$. To show this, it suffices to show that if $f^{\prime \prime}(\hat{t})=\frac{\partial}{\partial t} f(\hat{t})<0$ for some $\hat{t} \in(0,1)$, then $f^{\prime \prime}(t)<0$ for all $t \in[\hat{t}, 1)$. Now, since

$$
f^{\prime \prime}(\hat{t})<0 \Leftrightarrow \frac{\left(\varepsilon^{\prime}-1\right)^{3}\left[\left(\varepsilon^{\prime}-1\right)^{2}-1\right]}{\left(\varepsilon^{\prime}+1\right)^{3}\left[\left(\varepsilon^{\prime}+1\right)^{2}-1\right]}<\hat{t}^{\left(\varepsilon^{\prime}+1\right)^{2}-\left(\varepsilon^{\prime}-1\right)^{2}}
$$

and $\hat{t}\left(\varepsilon^{\prime}+1\right)^{2}-\left(\varepsilon^{\prime}-1\right)^{2}<t^{\left(\varepsilon^{\prime}+1\right)^{2}-\left(\varepsilon^{\prime}-1\right)^{2}}$ for all $t \geq \hat{t}$, we conclude that $f^{\prime \prime}(t)<0$ for all $t \in[\hat{t}, 1)$. So we are done.

Now we are in a position to prove Theorem 1 .

Proof of Theorem 1. Let $t_{j}=e^{-v_{j}^{2}}$ for all $j \in[d]$. By Lemma 3 and Lemma 4, we have

$$
\begin{align*}
\frac{d L_{n}}{d n} & =W \sum_{j \in[d]} \mu(j) \frac{\partial L\left(v_{j}, \varepsilon_{j}^{\prime}\right)}{\partial v_{j}} \cdot \frac{d v_{j}}{d n}=\frac{2 W}{\sqrt{\pi}} \sum_{j \in[d]} \mu(j) f\left(t_{j}, \varepsilon_{j}^{\prime}\right) \cdot \frac{\mu(j)}{2 \sqrt{2} \sigma(j) \sqrt{n}} \\
& =\frac{W}{\sqrt{2 n \pi}} \sum_{j \in[d]} \frac{\mu^{2}(j)}{\sigma(j)} f\left(t_{j}, \varepsilon_{j}^{\prime}\right) . \tag{6}
\end{align*}
$$

By part (a) of Lemma5, when $\varepsilon<\delta_{1} \min _{j \in[d]} \mu(j)$, we have for all $j \in[d]$, it holds that $\varepsilon_{j}^{\prime}<\delta_{1}$ and thus $f\left(t_{j}, \varepsilon_{j}^{\prime}\right)<0$ for all $t \in(0,1)$. Combining it with (6) yields $\frac{d L_{n}}{d n}<0$.
When $\max _{j \in[d]} \mu(j) \leq \varepsilon$, we have for all $j \in[d]$, it holds that $1<\varepsilon_{j}^{\prime}$. It follows from part (c) of Lemma 5 that for all $j \in[d]$, there exists $\tau_{2}\left(\varepsilon_{j}^{\prime}\right)$ such that $f\left(t_{j}, \varepsilon_{j}^{\prime}\right)>0 \forall t_{j} \in\left(0, \tau_{2}\left(\varepsilon_{j}^{\prime}\right)\right)$. Pick $\tau_{2}=\min _{j} \tau_{2}\left(\varepsilon_{j}^{\prime}\right)$. Then for all $j \in[d]$, we have $f\left(t_{j}, \varepsilon_{j}^{\prime}\right)>0$ when $t_{j}<\tau_{2}$. Since $t_{j}=e^{-v_{j}^{2}}=\exp \left(-\frac{n \mu^{2}(j)}{2 \sigma^{2}(j)}\right)$, when $\exp \left(-\frac{n \mu^{2}(j)}{2 \sigma^{2}(j)}\right)<\tau_{2}$, or equivalently $n>2 \log \left(\frac{1}{\tau_{2}}\right) \max _{j \in[d]} \frac{\sigma^{2}(j)}{\mu^{2}(j)}$, we have $\frac{d L_{n}}{d n}>0$.
When $\delta_{2} \cdot \max _{j \in[d]} \mu(j)<\varepsilon<\min _{j \in[d]} \mu(j)$, we have for all $j \in[d]$, it holds that $\delta_{2}<\varepsilon_{j}^{\prime}<1$. Then by part (b) of Lemma 5 for all $j \in[d], \exists \tau_{1}\left(\varepsilon_{j}^{\prime}\right)$ and $\tau_{2}\left(\varepsilon_{j}^{\prime}\right)$ such that

$$
f\left(t_{j}, \varepsilon_{j}^{\prime}\right) \begin{cases}<0 & \forall t \in\left(0, \tau_{1}\left(\varepsilon_{j}^{\prime}\right)\right),  \tag{7}\\ >0 & \forall t \in\left(\tau_{1}\left(\varepsilon_{j}^{\prime}\right), \tau_{2}\left(\varepsilon_{j}^{\prime}\right)\right), \\ <0 & \forall t \in\left(\tau_{2}\left(\varepsilon_{j}^{\prime}\right), 1\right)\end{cases}
$$

where $\tau_{1}\left(\varepsilon_{j}^{\prime}\right) \rightarrow 0^{+}$as $\varepsilon_{j}^{\prime} \rightarrow 1^{-}$and $\tau_{2}\left(\varepsilon_{j}^{\prime}\right)>\frac{1}{3}$, for all $j \in[d]$. Let $\tau_{2}=\max _{j \in[d]} \tau_{2}\left(\varepsilon_{j}^{\prime}\right)>\frac{1}{3}, \tau_{1}=\min _{j \in[d]} \tau_{1}\left(\varepsilon_{j}^{\prime}\right)$ and $\hat{\tau}_{1}=\max _{j \in[d]} \tau_{1}\left(\varepsilon_{j}^{\prime}\right)$. Note that since $\lim _{\varepsilon_{j}^{\prime} \rightarrow 1^{-}} \tau_{1}\left(\varepsilon_{j}^{\prime}\right)=0$, without loss of generality we can assume $\hat{\tau}_{1}<\frac{1}{3}$. It follows from (7) that for all $j \in[d]$

$$
f\left(t_{j}, \varepsilon_{j}^{\prime}\right) \begin{cases}<0 & \forall t \in\left(0, \tau_{1}\right)  \tag{8}\\ >0 & \forall t \in\left(\hat{\tau}_{1}, \frac{1}{3}\right) \\ <0 & \forall t \in\left(\tau_{2}, 1\right)\end{cases}
$$

Denote $\gamma=\frac{\mu(j)}{\sigma(j)}$ for all $j \in[d]$ since this ratio is fixed. Then we have $t_{j}=\exp \left(-\frac{\mu^{2}(j) n}{2 \sigma^{2}(j)}\right)=\exp \left(-\gamma^{2} n / 2\right)$. Therefore we can choose $N_{4}=\log \left(\tau_{1}^{-1}\right) \cdot\left(\frac{2}{\gamma^{2}}\right), N_{3}=\log \left(\hat{\tau}_{1}^{-1}\right) \cdot\left(\frac{2}{\gamma^{2}}\right), N_{2}=\log (3) \cdot\left(\frac{2}{\gamma^{2}}\right)$ and $N_{1}=\log \left(\tau_{2}^{-1}\right) \cdot\left(\frac{2}{\gamma^{2}}\right)$ where $N_{1}<N_{2}<N_{3}<N_{4}$ and the result follows from (6) and (8).

Proof of Corollary 2. From the proof of Theorem 1, in this simplified case we have $\tau_{1}=\hat{\tau}_{1}$ and $\tau_{2}=\tau_{2}\left(\varepsilon_{j}^{\prime}\right)$ for all $j$. It follows that the thresholds $N_{1}, N_{2}, N_{3}$, and $N_{4}$ in Theorem 1 satisfy $N_{1}=N_{2}$, and $N_{3}$ is no longer needed and can be replaced by $N_{4}$. Therefore only two thresholds are needed in Corollary 2 . We denote the two thresholds as $N_{1}$ and $N_{2}$.
It remains to show $\lim _{\varepsilon \rightarrow \mu_{0}^{-}} N_{2}(\varepsilon)-N_{1}(\varepsilon)=+\infty$. From part (b) of Lemma 5 and (6), we know the derivative $\frac{d L_{n}}{d n}$ is positive when $t:=\exp \left(-\frac{n \mu_{0}^{2}}{2 \sigma_{0}^{2}}\right) \in\left(\tau_{1}, \tau_{2}\right)$, or equivalently $\left.n \in \log \left(\frac{1}{\tau_{2}}\right) \frac{2 \sigma_{0}^{2}}{\mu_{0}^{2}}, \log \left(\frac{1}{\tau_{1}}\right) \frac{2 \sigma_{0}^{2}}{\mu_{0}^{2}}\right)$. By (b) of Lemma 5 , we know $\tau_{1} \rightarrow 0^{+}$as $\varepsilon \rightarrow \mu_{0}^{-}$while $\tau_{2}$ is bounded away from 0 . This shows $\lim _{\varepsilon \rightarrow \mu_{0}^{-}} \log \left(\frac{1}{\tau_{1}}\right)-\log \left(\frac{1}{\tau_{2}}\right)=+\infty$ and completes the proof.

## 2 PROOF OF LEMMA

In this section we give the proof of Lemma 3 .

Let $f^{*} \in S_{2}$, i.e., $f^{*}$ is a minimizer of $\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right)$ with the smallest $\ell_{1}$ norm. To show $S_{2}$ is nonempty and such $f^{*}$ does exist, we specify the form of $f^{*}$. We claim that $f^{*}$ can take the following form

$$
\begin{equation*}
f^{*}(s)=\sum_{j=1}^{N} \alpha_{j} \mathbb{1}\left[s \in I_{j}\right], \tag{9}
\end{equation*}
$$

where $I_{j}=(j-\varepsilon, j+\varepsilon), j \in[N]$. Indeed, by definition of $H$, we know that the value of $f^{*}$ outside those intervals $I_{j}$ 's won't change the value of $H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right.$. Therefore in order to attain the smallest possible $\ell_{1}$ norm, we must have $f^{*}(s)=0$ for all $s \notin \cup_{j} I_{j}$.
Note that by letting $\varepsilon<1 / 2$, any two intervals have no overlap. To see why $f^{*}$ is a constant function over each interval $I_{j}$, we consider three possible cases of the dataset $\left\{\left(x_{i}, y_{i}\right), i \in[n]\right\}$. For the first case, suppose that those data points with $s=j$ contain only positive points. Then in order to correctly classify these points with $\varepsilon$ perturbation, we must have $f^{*}(s) \leq \mu-\varepsilon$ for all $s \in I_{j}$. In order to minimize $\left\|f^{*}\right\|_{1}$, we would take $\alpha_{j}=\min \{0, \mu-\varepsilon\}$. Similarly, if those points purely consist of negative points, then $\alpha_{j}=\max \{0,-\mu+\varepsilon\}$. For the second case, suppose that those data points with $s=j$ contain both positive and negative points. Suppose the number of positive points exceeds the number of negative points. Then to correctly classify the positive points, we have $f^{*}(s) \leq \mu-\varepsilon$ for all $s \in I_{j}$. To correctly classify the negative points, we have $f^{*}(s) \geq-\mu+\varepsilon$ for all $s \in I_{j}$. If $-\mu+\varepsilon \leq 0 \leq \mu-\varepsilon$, then $\alpha_{j}=0$. Otherwise, if $-\mu+\varepsilon>\mu-\varepsilon$, then $f^{*}$ can never simultaneously classify both classes correctly. It will choose to correctly classify the class with more points, which is the positive class. Then $\alpha_{j}=\mu-\varepsilon$. On the other hand, if negative class has more points, then $\alpha_{j}=-\mu+\varepsilon$. If the two class have equal number of points at $s=j$, then $\alpha_{j}$ can be either $-\mu+\varepsilon$ or $\mu-\varepsilon$. For the third case, assume no point in the training set has $s=j$. Then $\alpha_{j}=0$.
We have now specified the form that $f^{*} \in S_{2}$ can take, which also indicates that $S_{2}$ is nonempty. We now show for all sufficiently small $\lambda, S(\lambda)=S_{2}$.
First we show $S(\lambda) \subseteq S_{2}$. Let $f \in S(\lambda)$. We want to show $f \in S$ and $\|f\|_{1} \leq\|\hat{f}\|_{1}$ for all $\hat{f} \in S$. Suppose on the contrary that $f \notin S$. Then by definition of $H$, there exists $f^{*} \in S$ s.t.

$$
\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right) \leq \sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right)-1 / 2
$$

and since $S_{2}$ is nonempty we can further assume $f^{*}$ satisfies

$$
\left\|f^{*}\right\|_{1} \in \underset{\hat{f} \in S}{\arg \min }\|\hat{f}\|_{1} .
$$

Since $f \in S(\lambda)$, we then have $\lambda\|f\|_{1} \leq \lambda\left\|f^{*}\right\|_{1}-1 / 2$, which implies $\left\|f^{*}\right\|_{1} \geq 1 / 2 \lambda$. From above analysis we know $f^{*}$ must take the form of Eq. $(9)$ where $\alpha_{j} \leq|\mu-\varepsilon|$, and $I_{j}$ has length equal to $2 \varepsilon$. This implies $\left\|f^{*}\right\|_{1} \leq 2 N \varepsilon|\mu-\varepsilon|$. Therefore, if we pick $\lambda<\frac{\square}{4 N \varepsilon|\mu-\varepsilon|}$, then such $f^{*}$ cannot exist. Therefore, for all sufficiently small $\lambda$, we have $f \in S$.
Now we show $\|f\|_{1} \leq\|\hat{f}\|_{1}$ for all $\hat{f} \in S$. Suppose on the contrary that there exists $f^{*} \in S$ such that $\left\|f^{*}\right\|_{1}<\|f\|_{1}$. However, since we have already shown

$$
\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right)=\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right),
$$

this would contradict the fact that $f \in S(\lambda)$. Therefore we have $S(\lambda) \subseteq S_{2}$.
To see $S_{2} \subseteq S(\lambda)$ for all sufficiently small $\lambda$, we again pick $\lambda<\frac{1}{4 N \varepsilon \mid \mu-\varepsilon}$. Note that since $\left\|f^{*}\right\|_{1} \leq 2 N \varepsilon|\mu-\varepsilon|$ for all $f^{*} \in S_{2}$, we have $\lambda\left\|f^{*}\right\|_{1}<\frac{1}{2}$. Now suppose on the contrary that there exists $f \notin S_{2}$ such that

$$
\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right)+\lambda\|f\|_{1}<\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right)+\lambda\left\|f^{*}\right\|_{1} .
$$

Since $f^{*} \in S_{2}$, we must have $\lambda\|f\|_{1}<\lambda\left\|f^{*}\right\|_{1}<\frac{1}{2}$. Now, if $\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right) \leq$ $\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right.$, this would contradict the fact that $f^{*}$ is in $\arg \min _{S}\|f\|_{1}$. Therefore we
must have $\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right)>\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right)$. However, by definition of $H$, this implies

$$
\begin{aligned}
\sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f\left(\tilde{s}_{i}\right)\right)\right)+\lambda\|f\|_{1} & \geq \sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right)+\frac{1}{2}+\lambda\|f\|_{1} \\
& \geq \sum_{i=1}^{n} \max _{\left\|\tilde{x}_{i}-x_{i}\right\|_{\infty}<\varepsilon} H\left(-y_{i}\left(\tilde{t}_{i}-f^{*}\left(\tilde{s}_{i}\right)\right)\right)+\lambda\left\|f^{*}\right\|_{1}
\end{aligned}
$$

which is a contradiction. Therefore $S_{2} \subseteq S(\lambda)$. Altogether we have $S(\lambda)=S_{2}$.

## 3 PROOF OF THEOREM

In this section, we give the proof of Theorem 4
The proof follows from the Lemma3 and its proof. By Lemma 3, we have $S(\lambda)=S_{2}$ and we can consider the equivalent definition that $f_{n}^{\text {rob }} \in S_{2}$. From the proof of Lemma 3 we know $f_{n}^{\text {rob }}$ must take the form of $\sqrt{9}$. Since $\left|\alpha_{j}\right| \leq|\mu-\varepsilon|$, when $\varepsilon<2 \mu$, we have $\left|\alpha_{j}\right|<\mu$ and thus $\left|f_{n}^{\text {rob }}(s)\right|<\mu$ for all $s \in \mathbb{R}$. For such $f_{n}^{\text {rob }}$, we have $H\left(-y\left(t-f_{n}^{\text {rob }}(s)\right)\right)=0$ for all $(x, y)=(s, t, y)$ in the support of $\mathcal{D}_{2 N}$. This implies $L_{n}=0$ for all $n$.

Assume $2 \mu<\varepsilon<1 / 2$. Then $\left|\alpha_{j}\right|$ can take the value of either 0 or $|\mu-\varepsilon|>|\mu|$. When $\alpha_{j}=0, f_{n}^{\text {rob }}$ can classify both the positive and negative points at location $s=j$ correctly. When $\left|\alpha_{j}\right|>\mu$, then $f_{n}^{\mathrm{rob}}$ can only classify one of the two classes correctly. Note that $\alpha_{j}=0$ if and only if there is no point with $s=j$ in the training set. Let the random variable $Z \in 0 \cup[N]$ denote the cardinality of the set $\left\{j \in[N]: s_{i} \neq j\right.$ for all $\left.i \in[n]\right\}$, which is a function of the training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$. Then the generalization error can be written as

$$
L_{n}=\mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim \mathcal{D}_{2 N}} \frac{N-Z}{N}=1-\frac{\mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} Z}^{N} .}{}
$$

Note that $\mathbb{E}_{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}} Z$ decreases as $n$ increases. Therefore $L_{n}<L_{n+1}$ for all $n$.

## 4 FURTHER DETAILS ON GAUSSIAN MIXTURE WITH 0-1 LOSS

### 4.1 PROOF OF PROPOSITION

Here we give the proof of Proposition 5

Proof of Proposition 5. By (1), it suffices to show that under the 0-1 loss

$$
\begin{equation*}
\sum_{i=1}^{n} \max _{\tilde{x}_{i} \in B_{x_{i}}^{\infty}(\varepsilon)} \mathbb{1}\left[y_{i}\left(\tilde{x}_{i}-w\right)<0\right]=\sum_{i=1}^{n} y_{i} \mathbb{1}\left[x_{i}^{\prime}<w\right] \tag{10}
\end{equation*}
$$

Conditioning on whether there exists $\tilde{x}_{i} \in B_{x_{i}}^{\infty}(\varepsilon)$ such that $\mathbb{1}\left[y_{i}\left(\tilde{x}_{i}-w\right)<0\right]=1$ or not, one can deduce that

$$
\underset{\tilde{x}_{i} \in B_{x_{i}}^{\infty}(\varepsilon)}{\arg \max } \mathbb{1}\left[y_{i}\left(\tilde{x}_{i}-w\right)<0\right] \supseteq \underset{\tilde{x}_{i} \in B_{x_{i}}^{\infty}(\varepsilon)}{\arg \min } y_{i}\left(\tilde{x}_{i}-w\right)=\left\{x_{i}^{\prime}\right\}
$$

and it follows that

$$
\sum_{i=1}^{n} \max _{\tilde{x}_{i} \in B_{x_{i}}^{\infty}(\varepsilon)} \mathbb{1}\left[y_{i}\left(\tilde{x}_{i}-w\right)<0\right]=\sum_{i=1}^{n} \mathbb{1}\left[y_{i}\left(x_{i}^{\prime}-w\right)<0\right]=\sum_{i=1}^{n} y_{i} \mathbb{1}\left[x_{i}^{\prime}<w\right]
$$

### 4.2 TEST LOSS AND OPTIMAL TIEBREAK

To find the optimal tiebreaking in hingsight, we need to minimize the test loss over the model parameter $w$, which is given by Proposition 9

Proposition 9. The test loss of classifier $w$ is given by

$$
\begin{equation*}
\mathbb{E}_{(x, y) \sim \mathcal{D}_{\mathcal{N}}}[\mathbb{1}[y(x-w)<0]]=\frac{1}{2}+\frac{1}{2}\left(\Phi\left(\frac{w-\mu}{\sigma}\right)-\Phi\left(\frac{w+\mu}{\sigma}\right)\right) \tag{11}
\end{equation*}
$$

where $\Phi$ is the CDF of the standard normal distribution. Furthermore, the minimizer of (11) is $w=0$.
Proposition 9 indicates that the optimal tiebreak in hindsight chooses the point closest to 0 (i.e., the point with the minimum absolute value) from (the closure of) the interval where $w^{*}$ lies. This is because $w=0$ minimizes the test loss in (11), and one can see that (11) increases as $|w|$ increases. Indeed, the derivative of 11) is given by $\frac{1}{2 \sigma \sqrt{2 \pi}}\left(\exp \left(-\frac{(w-\mu)^{2}}{2 \sigma}\right)-\exp \left(-\frac{(w+\mu)^{2}}{2 \sigma}\right)\right)$, which is negative for $w<0$ and positive for $w>0$.

Proof of Proposition 9. Conditioning on $y= \pm 1$, we have

$$
\begin{aligned}
& \mathbb{E}_{(x, y) \sim \mathcal{D}_{\mathcal{N}}}[\mathbb{1}[y(x-w)<0]] \\
= & \mathbb{P}(y=1) \cdot \mathbb{E}_{x \mid y=1}[\mathbb{1}[y(x-w)<0]]+\mathbb{P}(y=-1) \cdot \mathbb{E}_{x \mid y=-1}[\mathbb{1}[y(x-w)<0]] \\
= & \frac{1}{2} \cdot \mathbb{E}_{x \sim \mathcal{N}(\mu, \sigma)}[\mathbb{1}[x-w<0]]+\frac{1}{2} \cdot \mathbb{E}_{x \sim \mathcal{N}(-\mu, \sigma)}[\mathbb{1}[x-w>0]] \\
= & \frac{1}{2} \cdot \mathbb{P}_{z \in \mathcal{N}(0,1)}\left(z<\frac{w-\mu}{\sigma}\right)+\frac{1}{2} \cdot \mathbb{P}_{z \in \mathcal{N}(0,1)}\left(z>\frac{w+\mu}{\sigma}\right) \\
= & \frac{1}{2} \cdot \Phi\left(\frac{w-\mu}{\sigma}\right)+\frac{1}{2} \cdot\left[1-\Phi\left(\frac{w+\mu}{\sigma}\right)\right] .
\end{aligned}
$$

Since the derivative is $\frac{1}{2 \sigma \sqrt{2 \pi}}\left(\exp \left(-\frac{(w-\mu)^{2}}{2 \sigma}\right)-\exp \left(-\frac{(w+\mu)^{2}}{2 \sigma}\right)\right)$, we see that $w^{*}=0$ minimizes the above quantity.

