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1 PROOF OF RESULTS FOR THE GAUSSIAN MODEL

In this section we give the proof of Theorem 1 and Corollary 2.

Before proving Theorem 1, we need to establish several lemmas. First we restate the result by Chen et al. [2020b] that gives
the closed form solution for the robust classifier.

Proposition 1 (Lemma 10 in Chen et al. [2020b]). Given n training data points {(xi, yi)}ni=1 ⊂ Rd × {±1} and ε > 0, if
the robust classifier is defined as (3), then we have wrob

n = W sign(u− ε sign(u)), where u = 1
n

∑n
i=1 yixi.

First, we define the error function erf(·) : R→ R by

erf(x) =
2√
π

∫ x

0

e−t
2

dt , (1)

and it has the following property.

Lemma 2. If z ∼ N (0, 1), we have

P(z < x) =
1

2

[
1 + erf

(
x√
2

)]
.

Proof of Lemma 2. In light of the density of the standard normal distribution and by a change of variable, we have

P(z < x) =
1

2
+

1√
2π

∫ x

0

e−
t2

2 dt =
1

2
+

√
2√

2π

∫ x/
√

2

0

e−s
2

ds =
1

2

[
1 + erf

(
x√
2

)]
.

In addition, we define the function L(·, ·) : R2 → R by

L(v, ε′) = erf (v) + erf (v (ε′ − 1))− erf (v (ε′ + 1)) . (2)

For all j ∈ [d], we define

vj =

√
nµ(j)√
2σ(j)

, ε′j =
ε

µ(j)
, (3)

where µ(j) and σ(j) are defined in the data generation process described at the beginning of Section 4.

Lemma 3 gives the expression for the generalization error.
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Lemma 3. Suppose that the generalization error is defined as in (4). Then we have

Ln = W
∑
j∈[d]

µ(j)L
(
vj , ε

′
j

)
,

where vj and ε′j are defined in (3).

Proof of Lemma 3. By (4), Proposition 1 and the independence between test and training data, we have

Ln = − E
{(xi,yi)}ni=1

i.i.d.∼DN

[
E(x,y)∼DN

[
y〈wrob

n , x〉
]]

= −E
{(xi,yi)}ni=1

i.i.d.∼DN

[
〈wrob

n , µ〉
]

= −W ·
∑
j∈[d]

µ(j)E
{(xi,yi)}ni=1

i.i.d.∼DN
[sign (u(j)− ε sign (u(j)))]

Since yixi ∼ N (µ,Σ), we have u ∼ N (µ, Σ
n ), and it follows that

Ln = −W ·
∑
j∈[d]

µ(j)E
u(j)∼N (µ(j),

σ2(j)
n )

[sign (u(j)− ε sign (u(j)))] .

Denote Ij = −E
u(j)∼N

(
µ(j),

σ2(j)
n

) [sign (u(j)− ε sign (u(j)))]. Then we have

Ij = P (u(j) < −ε)− P (−ε < u(j) < 0) + P (0 < u(j) < ε)− P (ε < u(j))

= 1− 2P (−ε < u(j) < 0)− 2P (ε < u(j))

= 1− 2P
(

(−ε− µ(j))
√
n

σ(j)
< z <

−µ(j)
√
n

σ(j)

)
− 2P

(
(ε− µ(j))

√
n

σ(j)
< z

)
= 1− 2

[
P
(
z <

(ε+ µ(j))
√
n

σ(j)

)
− P

(
z <

µ(j)
√
n

σ(j)

)]
− 2

[
1− P

(
z <

(ε− µ(j))
√
n

σ(j)

)]
,

where z is a standard normal random variable. By Lemma 2 we have

Ij = erf
(
µ(j)
√
n√

2σ(j)

)
+ erf

(
(ε− µ(j))

√
n√

2σ(j)

)
− erf

(
(ε+ µ(j))

√
n√

2σ(j)

)
= erf(vj) + erf(vj(ε′j − 1))− erf(vj(ε′j + 1)) = L(vj , ε

′
j) ,

which implies that Ln = W
∑
j∈[d] µ(j)L(vj , ε

′
j).

Note that L(v, ε′) is differentiable in v, and by our definition each vj is smooth and monotonic in n. Together with Lemma 3
we know that Ln is differentiable w.r.t. n. Therefore, to study the dynamic of Ln in n, it is equivalent to studying the
derivative dLn

dn . We define the function f(·, ·) : R2 → R by

f (t, ε′) = t− (1 + ε′)t(1+ε′)2 − (1− ε′)t(1−ε
′)2 .

In Lemma 4, we compute the partial derivative of L.

Lemma 4. Let t = e−v
2

and f be defined as in (1). The partial derivative of L(v, ε′) w.r.t. v is given by

∂L(v, ε′)

∂v
=

2√
π
f(t, ε′) .

Proof of Lemma 4. By (1) we have
d

dx
erf(x) =

2√
π
e−x

2

,

and it follows by (2) that

∂L(v, ε′)

∂v
=

2√
π
e−v

2

+ (ε′ − 1)
2√
π
e−v

2·(ε′−1)2 − (ε′ + 1)
2√
π
e−v

2·(ε′+1)2 =
2√
π
f(t, ε′) .



The proof of Theorem 1 follows from studying the derivative dLn
dn . Lemma 4 implies that the derivative depends on the sign

of the function f . We investigate the sign of f in Lemma 5.

Lemma 5. There exist 0 < δ1 ≤ δ2 < 1 such that the following statements hold.

(a) When 0 < ε′ < δ1, f(t, ε′) < 0 for ∀ t ∈ (0, 1).
(b) When δ2 < ε′ < 1, there exist 0 < τ1 < τ2 < 1 depending on ε′ such that

f(t, ε′)


< 0 ∀t ∈ (0, τ1) ,

> 0 ∀t ∈ (τ1, τ2) ,

< 0 ∀t ∈ (τ2, 1) ,

and

lim
ε′→1−

τ1(ε′) = 0 ,

τ2(ε′) ≥ 1

3
.

(c) When 1 ≤ ε′, f(t, ε′), there exists τ2 < 1 such that

f(t, ε′)

{
> 0 ∀t ∈ (0, τ2) ,

< 0 ∀t ∈ (τ2, 1) .

We compute the partial derivative of f w.r.t. t

f ′(t, ε′) =
∂f(t, ε′)

∂t
= 1− (1 + ε′)

3
t(1+ε′)2−1 − (1− ε′)3

t(1−ε
′)2−1 .

The proof of Lemma 5 uses the following Lemma 6 and Lemma 7. To make it concise, whenever we fix ε′ in the context, we
omit ε′ and write f(t) = f(t, ε′) and f ′(t) = f ′(t, ε′).

Lemma 6. The right-sided limit of f ′ at 0 is given by

lim
t→0+

f ′(t) =


−∞ if 0 < ε′ < 1 ,

1 if ε′ = 1 ,

+∞ if 1 < ε′ < 2 .

In addition, we have
lim
t→1−

f ′(t) < 0 , ∀ 0 < ε′ .

The proof of Lemma 6 follows from direct computation. Using Lemma 6, we obtain Lemma 7.

Lemma 7. For any fixed 0 < ε′ < 1, there exists some t0 = t0(ε′) ∈ (0, 1) such that f ′(t) is strictly increasing for
t ∈ (0, t0) and strictly decreasing for t ∈ (t0, 1). For any fixed 1 ≤ ε′ ≤ 2, f ′(t) is strictly decreasing for t ∈ (0, 1).

Proof of Lemma 7. We differentiate f ′ w.r.t. t to get

∂f ′(t)

∂t
= − (1 + ε′)

3
[
(1 + ε′)

2 − 1
]
t(1+ε′)2−2 − (1− ε′)3

[
(1− ε′)2 − 1

]
t(1−ε

′)2−2 .

First we consider the case where 0 < ε′ < 1. The function f ′ is continuously differentiable on (t, ε′) ∈ (0, 1)× (0, 1). For
any fixed ε′ < 1, setting ∂f ′(t)

∂t = 0 yields the unique solution of t in (0, 1) as

t0 =

[(
1 + ε′

1− ε′

)3(
2 + ε′

2− ε′

)]− 1
4ε′

. (4)



Since limt→0+ f ′(t) = −∞, f ′(t) is strictly increasing w.r.t. t ∈ (0, t0). Also note that

lim
t→1−

∂f ′(t)

∂t
= lim

t→1−
− (1 + ε′)

3
[
(1 + ε′)

2 − 1
]
t(1+ε′)2−2 − (1− ε′)3

[
(1− ε′)2 − 1

]
t(1−ε

′)2−2

= − 2ε′2
(
5ε′2 + 7

)
< 0 ,

which together with ∂
∂t (f

′(t0)) = 0 indicates that f ′(t) is strictly decreasing for t ∈ (t0, 1). We conclude that t0 is the
unique local extreme and also the global maximum of f ′(t) on t ∈ (0, 1).

For 1 ≤ ε′ ≤ 2, we have for all t ∈ (0, 1)

− (1 + ε′)
3
[
(1 + ε′)

2 − 1
]
t(1+ε′)2−2 < 0 ,

− (1− ε′)3
[
(1− ε′)2 − 1

]
t(1−ε

′)2−2 ≤ 0 .

It follows that ∂f
′(t)
∂t < 0, which implies that f ′(t) is strictly decreasing.

A direct application of Lemma 7 gives the following Lemma 8

Lemma 8. For all 0 < ε′ < 1 sufficiently close to 1, f ′(t) has exactly two zeros on t ∈ (0, 1).

Proof of Lemma 8. By Lemma 7, we know that f ′(t) is strictly increasing on t ∈ (0, t0) and strictly decreasing on (t0, 1).
Recall that Lemma 6 shows that for 0 < ε′ < 1, limt→0+ f ′(t) = −∞ and limt→1− f

′(t) < 0. Therefore it suffices to
show f ′(t0) > 0 for all ε′ sufficiently close to 1−. We define

A =

(
1 + ε′

1− ε′

)3(
2 + ε′

2− ε′

)
. (5)

We have A tends to +∞ as ε′ → 1−. We then write

f ′(t0) = 1− (1 + ε′)3A−
1
2−

ε′
4 − (1− ε′)3A

1
2−

ε′
4 .

Note that limε′→1−(1 + ε′)3A−
1
2−

ε′
4 = 0, and

lim
ε′→1−

(1− ε′)3A
1
2−

ε′
4 = lim

ε′→1−
(1− ε′) 3

2 + 3ε′
4 ·
[
(1 + ε′)3

(
1 +

2ε′

2− ε′

)] 1
2−

ε′
4

= 0 .

Therefore we conclude that f ′(t0) > 0 as ε′ → 1−.

We denote the two zeros in Lemma 8 by t1 = t1(ε′) and t2 = t2(ε′) where t1 < t2.

Now we are ready to prove Lemma 5.

Proof of Lemma 5. We show (a) first. Note that for any fixed ε′ < 1, f(0) = 0. Therefore it suffices to show that for any
ε′ sufficiently close to 0, the derivative f ′(t) < 0. Since by Lemma 7 we have f ′(t) < supt∈(0,1) f

′(t) = f ′(t0) when
0 < ε′ < 1 , it remains to show that f ′(t0) < 0 for all ε′ sufficiently close to 0.

In light of (4), f ′(t0) < 0 is equivalent to

1− (1 + ε′)3

[(
1 + ε′

1− ε′

)3(
2 + ε′

2− ε′

)]− ε′2+2ε′
4ε′

− (1− ε′)3

[(
1 + ε′

1− ε′

)3(
2 + ε′

2− ε′

)]− ε′2−2ε′
4ε′

< 0 .

Recall that we define

A =

(
1 + ε′

1− ε′

)3(
2 + ε′

2− ε′

)
.



Rearranging the terms yields Aε
′/4 < (1 + ε′)3A−1/2 + (1− ε′)3A1/2. Since A > 1 and ε′ < 1, we have Aε

′/4 < A1/2.
Thus it now suffices to show A1/2 < (1 + ε′)3A−1/2 + (1− ε′)3A1/2, or equivalently A < (1 + ε′)3/[1− (1− ε′)3]. We
can further simplify this into

2 + ε′

2− ε′
<

(1− ε′)3

1− (1− ε′)3
.

Finally, note that LHS → 1 and RHS → +∞ as ε′ → 0+. Therefore there must exist δ1 ∈ (0, 1) such that: for any
0 < ε′ < δ1, f ′(t) < 0 for all t ∈ (0, 1). Thus f(t) < 0 for all t ∈ (0, 1).

Now we show (b). By Lemma 8, we know that for all ε′ sufficiently close to 1−, f ′ has exactly two zeros t1 and t2. By
Lemma 7, we know that f ′(t) > 0 for t ∈ (t1, t2). These imply that f(t) is decreasing on t ∈ (0, t1), increasing on
t ∈ (t1, t2) and decreasing on t ∈ (t2, 1), which gives arg maxt∈[0,1] f(t) ⊆ {0, t2}. Furthermore, since f(0) = 0 and
f ′(t) < 0 for t ∈ (0, t1), we know f(t) < 0 in t ∈ (0, t1). Also note that f(1) = −1 < 0. Therefore, depending on ε′,
the sign of f(t) in t ∈ (0, 1) only has two possibilities: either f(t) < 0 for all t ∈ (0, 1) except possibly one point where
f(t) = 0, or there exist τ1 and τ2 as described in (b). In the latter case we have 0 < t1 < τ1 < t2 < τ2 < 1.

We now show the existence of such τ1 and τ2 for all ε′ sufficiently close to 1−. Since we have shown that
arg maxt∈[0,1] f(t) ⊆ {0, t2} and f(0) = 0, it suffices to show f(t2) > 0. Since f ′(t2) = 0, we have f(t2) > 0 ⇔
f(t2)− t2 · f ′(t2) > 0⇔ [(1 + ε′)3 − (1 + ε′)]t

(1+ε′)2

2 > [(1− ε′)− (1− ε′)3]t
(1−ε′)2
2 , which can be simplified into

(1 + ε′)
3 − (1 + ε′)

(1− ε′)− (1− ε′)3 >
1

t4ε
′

2

.

Since ε′ < 1, it then suffices to show

1 +
6

2
ε′ + ε′ − 3

≥ 1

t42
.

Observe that LHS → +∞ as ε′ → 1−. It remains to show that t2 is bounded away from 0 as ε′ → 1−, i.e.,
lim infε′→1− t2(ε′) > 0. We claim that lim infε′→1− t2 ≥ 1

2 . To show this, we note that

lim inf
ε′→1−

f ′ (q, ε′) = lim inf
ε′→1−

1− (1 + ε′)3 · q(1+ε′)2−1 − (1− ε′)3 · q(1−ε′)2−1 = 1− 23 · q3 ,

which equals zero when q = 1
2 .

The claim in (b) that τ2(ε′) ≥ 1
3 follows directly from the above analysis since t2 < τ2 and lim infε′→1− t2 ≥ 1

2 .

To show limε′→1− τ1(ε′) = 0, we claim that τ1 ≤ (1−ε′)0.9 as ε′ → 1−. Then it suffices to show that f((1−ε′)0.9, ε′) > 0
for all ε′ → 1−. We have

1

(1− ε′)0.9
· f((1− ε′)0.9, ε′) = 1− (1 + ε′)(1− ε′)0.9[(1+ε′)2−1] − (1− ε′)1+0.9[(1−ε′)2−1] ,

which tends to 1 as ε′ → 1−. This implies (b).

We now show (c). First note that f(0) = 0 and f(1) = −1.

When ε′ = 1, f(t) = t− 2t4. In this case, we have f(t) > 0 for t ∈ (0, 2−1/3) and f(t) < 0 for t ∈ (2−1/3, 1).

When 1 < ε′ ≤ 2, by Lemma 7, we have f ′(t) = 1 + (ε′ − 1)3t(ε
′−1)2−1 − (ε′ + 1)3t(ε

′+1)2−1 being strictly decreasing
on t ∈ (0, 1). Therefore the function f(t) is concave. Since limt→0+ f ′(t) > 0, f(0) = 0 and f(1) = −1 < 0, the result
follows by concavity.

When 2 < ε′, again since f(0) = 0 and f(1) = −1, it suffices to show f is strictly increasing and then strictly decreasing
on t ∈ (0, 1). Note that since limt→0+ f ′(t) = 1 > 0 and limt→1− f

′(t) < 0, it then suffices to show f ′(t) is increasing and
then decreasing on (0, 1). To show this, it suffices to show that if f ′′(t̂) = ∂

∂tf(t̂) < 0 for some t̂ ∈ (0, 1), then f ′′(t) < 0

for all t ∈ [t̂, 1). Now, since

f ′′(t̂) < 0⇔
(ε′ − 1)3

[
(ε′ − 1)2 − 1

]
(ε′ + 1)3 [(ε′ + 1)2 − 1]

< t̂(ε
′+1)2−(ε′−1)2 ,

and t̂(ε
′+1)2−(ε′−1)2 < t(ε

′+1)2−(ε′−1)2 for all t ≥ t̂, we conclude that f ′′(t) < 0 for all t ∈ [t̂, 1). So we are done.



Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let tj = e−v
2
j for all j ∈ [d]. By Lemma 3 and Lemma 4, we have

dLn
dn

= W
∑
j∈[d]

µ(j)
∂L(vj , ε

′
j)

∂vj
· dvj
dn

=
2W√
π

∑
j∈[d]

µ(j)f(tj , ε
′
j) ·

µ(j)

2
√

2σ(j)
√
n
,

=
W√
2nπ

∑
j∈[d]

µ2(j)

σ(j)
f(tj , ε

′
j) .

(6)

By part (a) of Lemma 5, when ε < δ1 minj∈[d] µ(j), we have for all j ∈ [d], it holds that ε′j < δ1 and thus f(tj , ε
′
j) < 0 for

all t ∈ (0, 1). Combining it with (6) yields dLn
dn < 0.

When maxj∈[d] µ(j) ≤ ε, we have for all j ∈ [d], it holds that 1 < ε′j . It follows from part (c) of Lemma 5 that for
all j ∈ [d], there exists τ2(ε′j) such that f(tj , ε

′
j) > 0 ∀ tj ∈ (0, τ2(ε′j)). Pick τ2 = minj τ2(ε′j). Then for all j ∈ [d],

we have f(tj , ε
′
j) > 0 when tj < τ2. Since tj = e−v

2
j = exp(−nµ

2(j)
2σ2(j) ), when exp(−nµ

2(j)
2σ2(j) ) < τ2, or equivalently

n > 2 log
(

1
τ2

)
maxj∈[d]

σ2(j)
µ2(j) , we have dLn

dn > 0 .

When δ2 · maxj∈[d] µ(j) < ε < minj∈[d] µ(j), we have for all j ∈ [d], it holds that δ2 < ε′j < 1. Then by part (b) of
Lemma 5, for all j ∈ [d], ∃ τ1(ε′j) and τ2(ε′j) such that

f(tj , ε
′
j)


< 0 ∀t ∈ (0, τ1(ε′j)) ,

> 0 ∀t ∈ (τ1(ε′j), τ2(ε′j)) ,

< 0 ∀t ∈ (τ2(ε′j), 1) ,

(7)

where τ1(ε′j)→ 0+ as ε′j → 1− and τ2(ε′j) >
1
3 , for all j ∈ [d]. Let τ2 = maxj∈[d] τ2(ε′j) >

1
3 , τ1 = minj∈[d] τ1(ε′j) and

τ̂1 = maxj∈[d] τ1(ε′j). Note that since limε′j→1− τ1(ε′j) = 0, without loss of generality we can assume τ̂1 < 1
3 . It follows

from (7) that for all j ∈ [d]

f(tj , ε
′
j)


< 0 ∀t ∈ (0, τ1) ,

> 0 ∀t ∈
(
τ̂1,

1
3

)
,

< 0 ∀t ∈ (τ2, 1) .

(8)

Denote γ = µ(j)
σ(j) for all j ∈ [d] since this ratio is fixed. Then we have tj = exp

(
−µ

2(j)n
2σ2(j)

)
= exp(−γ2n/2). Therefore

we can choose N4 = log(τ−1
1 ) ·

(
2
γ2

)
, N3 = log(τ̂−1

1 ) ·
(

2
γ2

)
, N2 = log(3) ·

(
2
γ2

)
and N1 = log(τ−1

2 ) ·
(

2
γ2

)
where

N1 < N2 < N3 < N4 and the result follows from (6) and (8).

Proof of Corollary 2. From the proof of Theorem 1, in this simplified case we have τ1 = τ̂1 and τ2 = τ2(ε′j) for all j. It
follows that the thresholds N1, N2, N3, and N4 in Theorem 1 satisfy N1 = N2, and N3 is no longer needed and can be
replaced by N4. Therefore only two thresholds are needed in Corollary 2. We denote the two thresholds as N1 and N2.

It remains to show limε→µ−0
N2(ε) − N1(ε) = +∞. From part (b) of Lemma 5 and (6), we know the derivative dLn

dn is

positive when t := exp(−nµ
2
0

2σ2
0

) ∈ (τ1, τ2), or equivalently n ∈
(

log( 1
τ2

)
2σ2

0

µ2
0
, log( 1

τ1
)

2σ2
0

µ2
0

)
. By (b) of Lemma 5, we know

τ1 → 0+ as ε→ µ−0 while τ2 is bounded away from 0. This shows limε→µ−0
log( 1

τ1
)− log( 1

τ2
) = +∞ and completes the

proof.

2 PROOF OF LEMMA

In this section we give the proof of Lemma 3.



Let f∗ ∈ S2, i.e., f∗ is a minimizer of
∑n
i=1 max||x̃i−xi||∞<εH

(
−yi(t̃i − f(s̃i))

)
with the smallest `1 norm. To show S2

is nonempty and such f∗ does exist, we specify the form of f∗. We claim that f∗ can take the following form

f∗(s) =

N∑
j=1

αj1[s ∈ Ij ], (9)

where Ij = (j − ε, j + ε), j ∈ [N ]. Indeed, by definition of H , we know that the value of f∗ outside those intervals Ij’s
won’t change the value of H

(
−yi(t̃i − f(s̃i))

)
. Therefore in order to attain the smallest possible `1 norm, we must have

f∗(s) = 0 for all s /∈ ∪jIj .

Note that by letting ε < 1/2, any two intervals have no overlap. To see why f∗ is a constant function over each interval
Ij , we consider three possible cases of the dataset {(xi, yi), i ∈ [n]}. For the first case, suppose that those data points
with s = j contain only positive points. Then in order to correctly classify these points with ε perturbation, we must have
f∗(s) ≤ µ− ε for all s ∈ Ij . In order to minimize ||f∗||1, we would take αj = min{0, µ− ε}. Similarly, if those points
purely consist of negative points, then αj = max{0, −µ + ε}. For the second case, suppose that those data points with
s = j contain both positive and negative points. Suppose the number of positive points exceeds the number of negative
points. Then to correctly classify the positive points, we have f∗(s) ≤ µ− ε for all s ∈ Ij . To correctly classify the negative
points, we have f∗(s) ≥ −µ+ ε for all s ∈ Ij . If −µ+ ε ≤ 0 ≤ µ− ε, then αj = 0. Otherwise, if −µ+ ε > µ− ε, then
f∗ can never simultaneously classify both classes correctly. It will choose to correctly classify the class with more points,
which is the positive class. Then αj = µ− ε. On the other hand, if negative class has more points, then αj = −µ+ ε. If the
two class have equal number of points at s = j, then αj can be either −µ+ ε or µ− ε. For the third case, assume no point
in the training set has s = j. Then αj = 0.

We have now specified the form that f∗ ∈ S2 can take, which also indicates that S2 is nonempty. We now show for all
sufficiently small λ, S(λ) = S2.

First we show S(λ) ⊆ S2. Let f ∈ S(λ). We want to show f ∈ S and ||f ||1 ≤ ||f̂ ||1 for all f̂ ∈ S. Suppose on the contrary
that f /∈ S. Then by definition of H , there exists f∗ ∈ S s.t.

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f∗(s̃i))

)
≤

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f(s̃i))

)
− 1/2

and since S2 is nonempty we can further assume f∗ satisfies

||f∗||1 ∈ arg min
f̂∈S

||f̂ ||1.

Since f ∈ S(λ), we then have λ||f ||1 ≤ λ||f∗||1 − 1/2, which implies ||f∗||1 ≥ 1/2λ. From above analysis we know
f∗ must take the form of Eq. (9) where αj ≤ |µ − ε|, and Ij has length equal to 2ε. This implies ||f∗||1 ≤ 2Nε|µ − ε|.
Therefore, if we pick λ < 1

4Nε|µ−ε| , then such f∗ cannot exist. Therefore, for all sufficiently small λ, we have f ∈ S.

Now we show ||f ||1 ≤ ||f̂ ||1 for all f̂ ∈ S. Suppose on the contrary that there exists f∗ ∈ S such that ||f∗||1 < ||f ||1.
However, since we have already shown

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f∗(s̃i))

)
=

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f(s̃i))

)
,

this would contradict the fact that f ∈ S(λ). Therefore we have S(λ) ⊆ S2.

To see S2 ⊆ S(λ) for all sufficiently small λ, we again pick λ < 1
4Nε|µ−ε| . Note that since ||f∗||1 ≤ 2Nε|µ − ε| for all

f∗ ∈ S2, we have λ||f∗||1 < 1
2 . Now suppose on the contrary that there exists f /∈ S2 such that

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f(s̃i))

)
+ λ||f ||1 <

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f∗(s̃i))

)
+ λ||f∗||1.

Since f∗ ∈ S2, we must have λ||f ||1 < λ||f∗||1 < 1
2 . Now, if

∑n
i=1 max||x̃i−xi||∞<εH

(
−yi(t̃i − f(s̃i))

)
≤∑n

i=1 max||x̃i−xi||∞<εH
(
−yi(t̃i − f∗(s̃i))

)
, this would contradict the fact that f∗ is in arg minS ||f ||1. Therefore we



must have
∑n
i=1 max||x̃i−xi||∞<εH

(
−yi(t̃i − f(s̃i))

)
>
∑n
i=1 max||x̃i−xi||∞<εH

(
−yi(t̃i − f∗(s̃i))

)
. However, by

definition of H , this implies

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f(s̃i))

)
+ λ||f ||1 ≥

n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f∗(s̃i))

)
+

1

2
+ λ||f ||1

≥
n∑
i=1

max
||x̃i−xi||∞<ε

H
(
−yi(t̃i − f∗(s̃i))

)
+ λ||f∗||1,

which is a contradiction. Therefore S2 ⊆ S(λ). Altogether we have S(λ) = S2.

3 PROOF OF THEOREM

In this section, we give the proof of Theorem 4.

The proof follows from the Lemma 3 and its proof. By Lemma 3, we have S(λ) = S2 and we can consider the equivalent
definition that f rob

n ∈ S2. From the proof of Lemma 3, we know f rob
n must take the form of (9). Since |αj | ≤ |µ− ε|, when

ε < 2µ, we have |αj | < µ and thus |f rob
n (s)| < µ for all s ∈ R. For such f rob

n , we have H
(
−y
(
t− f rob

n (s)
))

= 0 for all
(x, y) = (s, t, y) in the support of D2N . This implies Ln = 0 for all n.

Assume 2µ < ε < 1/2. Then |αj | can take the value of either 0 or |µ − ε| > |µ|. When αj = 0, f rob
n can classify both

the positive and negative points at location s = j correctly. When |αj | > µ, then f rob
n can only classify one of the two

classes correctly. Note that αj = 0 if and only if there is no point with s = j in the training set. Let the random variable
Z ∈ 0 ∪ [N ] denote the cardinality of the set {j ∈ [N ] : si 6= j for all i ∈ [n]}, which is a function of the training set
{(xi, yi)}ni=1. Then the generalization error can be written as

Ln = E
{(xi,yi)}ni=1

i.i.d.∼D2N

N − Z
N

= 1−
E{(xi,yi)}ni=1

Z

N
.

Note that E{(xi,yi)}ni=1
Z decreases as n increases. Therefore Ln < Ln+1 for all n.

4 FURTHER DETAILS ON GAUSSIAN MIXTURE WITH 0-1 LOSS

4.1 PROOF OF PROPOSITION

Here we give the proof of Proposition 5.

Proof of Proposition 5:. By (1), it suffices to show that under the 0-1 loss

n∑
i=1

max
x̃i∈B∞xi (ε)

1[yi(x̃i − w) < 0] =

n∑
i=1

yi1[x′i < w] . (10)

Conditioning on whether there exists x̃i ∈ B∞xi (ε) such that 1[yi(x̃i − w) < 0] = 1 or not, one can deduce that

arg max
x̃i∈B∞xi (ε)

1[yi(x̃i − w) < 0] ⊇ arg min
x̃i∈B∞xi (ε)

yi(x̃i − w) = {x′i} ,

and it follows that

n∑
i=1

max
x̃i∈B∞xi (ε)

1[yi(x̃i − w) < 0] =

n∑
i=1

1[yi(x
′
i − w) < 0] =

n∑
i=1

yi1[x′i < w] .



4.2 TEST LOSS AND OPTIMAL TIEBREAK

To find the optimal tiebreaking in hingsight, we need to minimize the test loss over the model parameter w, which is given
by Proposition 9.

Proposition 9. The test loss of classifier w is given by

E(x,y)∼DN [1[y(x− w) < 0]] =
1

2
+

1

2

(
Φ

(
w − µ
σ

)
− Φ

(
w + µ

σ

))
, (11)

where Φ is the CDF of the standard normal distribution. Furthermore, the minimizer of (11) is w = 0.

Proposition 9 indicates that the optimal tiebreak in hindsight chooses the point closest to 0 (i.e., the point with the
minimum absolute value) from (the closure of) the interval where w∗ lies. This is because w = 0 minimizes the
test loss in (11), and one can see that (11) increases as |w| increases. Indeed, the derivative of (11) is given by

1
2σ
√

2π

(
exp(− (w−µ)2

2σ )− exp(− (w+µ)2

2σ )
)

, which is negative for w < 0 and positive for w > 0.

Proof of Proposition 9:. Conditioning on y = ±1, we have

E(x,y)∼DN [1[y(x− w) < 0]]

= P(y = 1) · Ex|y=1 [1[y(x− w) < 0]] + P(y = −1) · Ex|y=−1 [1[y(x− w) < 0]]

=
1

2
· Ex∼N (µ,σ)[1[x− w < 0]] +

1

2
· Ex∼N (−µ,σ)[1[x− w > 0]]

=
1

2
· Pz∈N (0,1)

(
z <

w − µ
σ

)
+

1

2
· Pz∈N (0,1)

(
z >

w + µ

σ

)
=

1

2
· Φ
(
w − µ
σ

)
+

1

2
·
[
1− Φ

(
w + µ

σ

)]
.

Since the derivative is 1
2σ
√

2π

(
exp(− (w−µ)2

2σ )− exp(− (w+µ)2

2σ )
)

, we see that w∗ = 0 minimizes the above quantity.
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