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Abstract

Uncertainty estimation in deep models is essen-
tial in many real-world applications and has bene-
fited from developments over the last several years.
Recent evidence [Farquhar et al., 2020] suggests
that existing solutions dependent on simple Gaus-
sian formulations may not be sufficient. However,
moving to other distributions necessitates Monte
Carlo (MC) sampling to estimate quantities such
as the KL divergence: it could be expensive and
scales poorly as the dimensions of both the input
data and the model grow. This is directly related
to the structure of the computation graph, which
can grow linearly as a function of the number of
MC samples needed. Here, we construct a frame-
work to describe these computation graphs, and
identify probability families where the graph size
can be independent or only weakly dependent on
the number of MC samples. These families cor-
respond directly to large classes of distributions.
Empirically, we can run a much larger number of
iterations for MC approximations for larger archi-
tectures used in computer vision with gains in per-
formance measured in confident accuracy, stability
of training, memory and training time.

1 INTRODUCTION

Motivated by the need to provide measures of uncertainty in
the deployment of deep neural networks in mission critical
and medical applications, there has been a strong recent
interest in deep Bayesian learning. While deep Bayesian
learning provides many methods to estimate posterior dis-
tributions, Variational Inference (VI) is a convenient choice
for many problem settings [Blundell et al., 2015]. Many
libraries such as Tensorflow Probability [Dillon et al., 2017]
are also now available that offer a rich set of features.

Figure 1: MC sampling is significantly slower in existing
neural network libraries incorporating Gradient Accumula-
tion (GA). In contrast, our proposed MC reparameterization
reduces the compute time up to 14× for some networks.

Denote the observed data as (x, y), where x is an input
to the network, and y is a corresponding response (in au-
toencoder settings we may have y = x). When using
VI in Bayesian Neural Networks (BNNs), one considers
all weights W = (W 1, . . . ,WD) as a random vector
and approximates the true unknown posterior distribution
P (W |y, x) with an approximate posterior distribution Qθ
of our choice, which depends on learned parameters θ.
Let Wθ = (W 1

θ , . . . ,W
D
θ ) denote a random vector with

a distribution Qθ and pdf qθ. VI seeks to find θ such that
Qθ is as close as possible to the real (unknown) posterior
P (W |y, x), accomplished by minimizing the KL diver-
gence between Qθ and P (W |y, x). Given a prior pdf of
weights p, along with a likelihood term p(y|W,x), and a
common mean field assumption of independence for W d

andW d
θ , for d ∈ 1, . . . , D, i.e. p(W ) =

∏D
d=1 p

d(W d) and
qθ(Wθ) =

∏D
d=1 q

d
θ (W d

θ ),

θ∗ = arg min
θ

KL (qθ||p)− Eqθ [ln p(y|W,x)] (1)

KL (qθ||p) =

D∑
d=1

Eqdθ
[
ln qdθ (w)

]
− Eqdθ

[
ln pd(w)

]
(2)
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A key consideration in VI is the choice of prior p and the
approximate posterior qθ. This choice does not drastically
change the computation of the likelihood term p(y|W,x)
which is influenced more by the problem and the complex-
ity of the network instead of W (e.g., it is Gaussian for
regression problems). But it strongly impacts the compu-
tation of KL term. For example, a common choice for p,
and qθ is Gaussian, which allows calculating (2) in a closed
form. However, there is emerging evidence [Farquhar et al.,
2020, Fortuin et al., 2020] that the Gaussian assumption
may not work well on medium/large scale Bayesian NNs.
[Farquhar et al., 2020] attributes this to the probability mass
in high-dimensional Gaussian distributions concentrating
in a narrow “soap-bubble” far from the mean. Choosing a
correct distribution is an open problem [Ghosh and Doshi-
Velez, 2017, Farquhar et al., 2020, McGregor et al., 2019,
Krishnan et al., 2019], and unfortunately, more complex
distributions frequently lack closed form solutions for (2).

Numerical approximations. When the integrals for these
expectations cannot be solved in closed form, an approxi-
mation is used [Ranganath et al., 2014, Paisley et al., 2012,
Miller et al., 2017]. One strategy is Monte Carlo (MC)
sampling, which gives an unbiased estimator with variance
O( 1

M ) where M is number of samples. For a function g(·):

Eqθ [g(w)] =

∫
g(w)qθ(w)dw ≈ 1

M

M∑
i=1

g(wi),

where wi ∼ Qθ. (3)

Expected value terms in (2) can be estimated by applying the
scheme in (3) and in fact, even if a closed form expression
can be computed, with enough samples an MC approxima-
tion may perform similarly [Blundell et al., 2015]. Unfor-
tunately, MC procedures are costly, and may need many
samples (i.e., iterations) for a good estimation as the model
size grows: [Miller et al., 2017] shows this relationship for
small networks, and demonstrates that using fewer samples
leads to large variances in the approximation. In general, for
deep BNNs, computation of both KL and expectation of
log-likelihood requires numerical approximation with MC
sampling, but for now, we will only focus on the KL term.

How does M affect the KL approximation necessary for
large scale VI? Consider a standard Gaussian distribution
for the approximate posterior qθ and prior p for the weights
of an arbitrary BNN, and also consider an MC approxima-
tion of the KL term in (2). In this case, we have a closed
form solution for KL, which allows checking the approxi-
mation quality: the gap between the MC approximation K̂L
and the closed form KL.

(a) Figure 2 (left) shows this gap for different variances
of the approximate posterior for a BNN. While decreasing
the variance of the posterior distribution indeed reduces
the variance of an estimator, with such a small variance on
weights, the model is essentially deterministic. Clearly by

increasing M , we decrease the error. However, in current
DNNs, increasing the number of MC iterations not only
slows down computation, but severely limits GPU memory.
(b) Figure 2 (right) presents the maximum number of iter-
ations possible on a single GPU (Nvidia 2080 TI) with a
direct implementation of MC approximation for Bayesian
versions of popular DNN architectures: ResNet, DenseNet
and VGG (more details in §3). Extrapolating Figure 2, we
see clearly that Bayes versions of these networks will result
in large variances. This raises the question: is there a way
to increase the number of MC iterations for deep networks
without sacrificing performance, memory, or time?

Contributions. This work makes two contributions. (a) We
propose a new framework to construct an MC estimator
for the KL term, which significantly decreases GPU mem-
ory needs and improves runtime. Memory savings allow us
to run up to 1000× more MC iterations on a single GPU,
resulting in smaller variances of the MC estimators, improv-
ing both training convergence and final accuracy, especially
on subsets of data where the model is not confident. We
show feasibility for popular architectures including ResNets
[He et al., 2016], DenseNets [Huang et al., 2017], VGG
[Simonyan and Zisserman, 2014] and U-Net [Ronneberger
et al., 2015] – strategies for successfully training Bayesian
versions of many of these (deep) networks remain limited
[Dusenberry et al., 2020]. (b) From the user perspective, we
provide a simple interface for implementing and estimating
BNNs (Figure. 3). (c) On the technical side, we obtain a
scheme under which we can determine whether our repa-
rameterization can be applied. The result covers a broad
class of distributions used in VI as an approximate posterior
and prior. Inspired by the Pitman–Koopman–Darmois theo-
rem [Koopman, 1936], we show that our method is effective
when an exponential family is used as a prior on weights in
deep BNNs estimated via VI, and the approximate posterior
is modeled as location-scale or certain other distributions,
expanding the range of distributions that can be used.

2 RELATED WORK

In addition to VI, the literature provides a broad range of
ways to estimate posterior predictive distributions. Ensem-
ble methods [Lakshminarayanan et al., 2017, Pearce et al.,
2018, Newton et al., 2018] can be applied to common net-
works with minimal modifications; however, they require
many forward passes, often similar in terms of space/time
to a standard gradient accumulation schemes (we provide
a PyTorch code snippet in Figure 5). Figure 1 provides ex-
perimental results showing that gradient accumulation is
much slower. Other methods like Deterministic Variational
Inference [Wu et al., 2019] and Probabilistic Backpropaga-
tion [Hernández-Lobato and Adams, 2015], improve over
naïve MC implementations of VI, but often approximate the
posterior of a neural network with a Gaussian distribution.
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Figure 2: (left) Approximation error (log) of simulated KL for the single-parameter Bayesian Neural Network at different
variance values of approximate posterior distribution, (right) Maximum number of feasible MC iterations required for
training Bayesian versions of different neural networks on a single GPU .

model = AlexNet(n_classes=10, n_channels=3,
approx_post="Radial",
kl_method="repar",
n_mc_iter=1000)

Figure 3: Proposed MC reparameterization presented as an
API. Only a minimal change in an existing programming
interface is required to incorporate our method. See the
supplement for details.

However, [Farquhar et al., 2020] shows that Gaussians are
sensitive to hyperparameter choices, among other problems
during training. For this reason, a non-Gaussian distribution
can be used as an approximate posterior in the traditional
VI setup, but its lack of a closed form solution for the KL
term ends up needing MC approximation. This is where
our proposal offers value. Also, note some other issues that
emerge in Deterministic Variational Inference and Proba-
bilistic Backpropagation: (a) the methods need non-trivial
modification of the network to perform a moment matching
and (b) replacing the Gaussian assumption with another dis-
tribution requires new analytical solutions of closed forms.
This is more complicated than a MC approximation.

Our work is distinct from other works that also target MC
estimation in neural networks. For example, one may seek
to derive new estimators with an explicit goal of variance
reduction (e.g., [Miller et al., 2017]). Here, we do not obtain
a new estimator replacing the MC procedure with a smaller
variance procedure. Instead, we study a scheme that makes
the computation graph mostly independent of the number of
samples, and is applicable to ideas such as those in [Miller
et al., 2017] as well.

3 COMPUTATION GRAPHS FOR MC
ITERATIONS

Despite the ability to approximate the expectation in princi-
ple, the minimization in (1) via (3) is difficult for common

1 1 1

(a) AutoGrad implementation, dP = 9
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(b) dP = 3

Figure 4: Two computation graphs of the same MC ex-
pression

∑3
i=1(µ+ σξi)

2, with different parameterizations.
Filled squares represent elements of the vector function
n(θ), clear circles represent functions of auxiliary vari-
ables t(ξ), yellow circles represent the Hadamard product
n(θ) ◦ t(ξ). Clearly, parameterization affects the size of the
graph, and there exists parameterization (b) where the size
is independent of the number of MC iterations M . Note:
We slightly modify the computational graph presentation for
space and clarity. Actual computation graphs from PyTorch
convey the same message.
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Sampling: W (θ, ξ) Approximate Posterior p.d.f. qθ Prior p.d.f. p(w)

Scaling property family:
W (θ, ξ) = θξ
and related – Corollary 1

Exponential(θ) Standard Wald(θ) Exponential Standard Wald Rayleigh
Rayleigh(θ) Weibull(k, θ) Dirichlet Chi-squared Pareto
Erlang(k, θ) Gamma(k, θ) Inverse-Gamma Gamma Erlang
Error(a, θ, c) Log-Gamma(k, θ) Log-normal Error Weibull

Inverse-Gamma(k, θ) Inverse-Gaussian Normal

Location-Scale family:
W (θ, ξ) = µ+ σξ,
θ = (µ, σ)

Normal(µ, σ) Laplace(µ, σ) Logistic Exponential Normal
Logistic(µ, σ) Horseshoe(µ, σ) Laplace
Radial(µ, σ) Normal variations, e.g., Horseshoe, Radial

Corollary 2 Log-Normal(µ, σ) Dirichlet Pareto

Table 1: Summary list of approximate posterior distributions qθ and priors p(w), which allows to define a parameterization
tuple P for MC estimation, such that dP is independent of M . For every cell in “Sampling: W (θ, ξ)" we can select any
combination of qθ and p(w). Reference: Radial [Farquhar et al., 2020], Horseshoe [Ghosh and Doshi-Velez, 2017].

architectures, and relies on gradient computations at each
iterate. Standard implementations make use of automatic dif-
ferentiation based on computation graphs [Griewank, 2012].
Computation graphs are directed acyclic graphs, where
nodes are the inputs/outputs and edges are the operations. If
there is a single input to an operation that requires a gradient,
its output will also require a gradient. As noted in PyTorch
manual (cf. Autograd mechanics), a backward computation
is never performed for subgraphs where no nodes require
gradients. This allows us to replace such a subgraph with
one output node and to define the size of the computation
graph as the minimal number of nodes necessary to perform
backpropagation: the number of nodes which require gra-
dients. Modern neural networks lead to graphs where the
number of nodes range from a few hundred to millions. To
define the size of a graph, accounting for the probabilistic
nature of the MC approximation, we propose the following
construction.

Definition 1 Consider w as sampled based on a parameter
θ and an ancillary random variable ξ, i.e., w = W (θ, ξ).
If there exist functions G, n, and t such that a function
F (w1, . . . , wn) can be expressed asG(n(θ)◦t(ξ1, . . . , ξn)),
then we say P := (G,n, t) is a parameterization tuple for
the function F , where ◦ is the Hadamard product. Let dP
be the dimension of n ◦ t, corresponding to the number of
nodes requiring gradients with respect to θ.

To demonstrate the application of the Def. 1, as an example,
consider the computation graph for the MC approximation
of the function g(w) = w2 in (3) and given one weight
Wθ ∼ N(µ, σ2). Applying the reparameterization trick:
Wθ = µ+ σξ, ξ ∼ N(0, 1), the Python form is,

for i in range(M):
# sample 1 observation from N(0, 1)
sample = sampler_normal.sample()
w = mu * 1 + sigma * sample
loss += w^2 / M

The computation graph, a function of both the parameters
θ = (µ, σ) and of the auxiliary samples ξ1, ξ2, and ξ3,
generated by PyTorch/AutoGrad for M = 3 iterations of
this loop is shown in Figure 4a. According to Def. 1, dP = 9
and

n(θ) = (µ2, 2σµ, σ2, µ2, 2σµ, σ2, µ2, 2σµ, σ2),

t(ξ) = (1, ξ1, ξ
2
1 , 1, ξ2, ξ

2
2 , 1, ξ3, ξ

2
3),

G(n(θ) ◦ t(ξ)) = n1(θ)t1(ξ) + · · ·+ n9(θ)t9(ξ)

Naïvely, the graph size grows linearly O(M) with the
number of MC iterations, as in the direct implementation
(Fig. 4a). For Bayesian VI in DNNs, this is a problem. We
need to perform MC approximations of KL terms at every
layer. Also, [Miller et al., 2017] shows that iterating over a
large number of samples M might be important for conver-
gence. This constrains model sizes given limited hardware
resources. One might suspect that a “for” loop is a poor
way to evaluate this expectation and instead the expression
should be vectorized. Indeed, creating a vector of size M
and summing it will clearly help runtime. But the loop does
not change the computation graph; all trainable parameters
maintain the same corresponding connections to samples,
and rapidly exhaust memory.

But graphs for the same function can be constructed differ-
ently (see Fig. 4b). For the right parameterization tuple P ,
we can achieve dP = 3. This leads us to,

Remark 1 For computation graph of MC approximation∑M
i=1 g(wi) and specific g, there exists a parameterization

tuple P = (G,n, t), such that dP is independent of M .

For which class of distributions Qθ and functions g(·) can
we always construct reparameterizations of the MC estima-
tion (3), maintaining the size of the computation graph dP
as independent of number of iterations M? We explore this
in the next section.
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4 MC REPARAMETERIZATION
ENABLES FEASIBLE TRAINING

Our approach is partly inspired by a vast literature on known
distributional families and their use within VI. For example,
in VI, commonly one chooses distributions that fall within
exponential families (e.g., Gaussian, Laplace, Horseshoe).
With this assumption on the prior, we can express

p(w; ζ) = h(w)exp(η(ζ)′T (w)−A(ζ)) (4)

where ζ is a parameter defining w. The sufficient statis-
tics T (w) and natural parameters η(ζ) completely define a
specific distribution.

Relevance of PKD theorem. While the foregoing discus-
sion links our approach to well-known statistical concepts,
it does not directly yield our proposed scheme. To see this,
recall that the Pitman-Koopman-Darmois (PKD) theorem
states that for exponential families in (4), there exist suffi-
cient statistics such that the number of scalar components
does not increase as the sample size increases. However,
in approximating (2) with MC, we need to compute not
only terms containing the sufficient statistics T (w) but also
1
M

∑M
i=1 log h(wi). Regardless, even though the PKD re-

sult cannot be applied directly in our case, it still suggests
considering members of the exponential family as candi-
dates for Qθ. We derive technical results for the forms of
W (θ, ξ) and g(·), where the graph size is not affected by
MC sampling.

To approximate KL in (2), we need to compute MC estima-
tion (3) for g(w) = log qθ(w) (or log p(w)). Assume that
the factorization form (4) of distributions qdθ (w) (and simi-
larly pd(w)) and recall that the weights of NN are parameter-
ized as w ∼W (θ, ξ). Then, Eθ log qθ(w) is approximated
as:

1

M

∑
i=1

{log h(w(θ, ξi)) + η(θ)′T (w(θ, ξi))}−A(θ) (5)

To keep the graph size agnostic of M , we must handle the
initial two terms in (5). Checking distributions from Tab. 1,
our work reduces to functions of the form wk and log(w).

optimizer.zero_grad()
for _ in range(n_mc_iter):

output = model(inputs)
loss = computeLoss(output, targets)
loss.backward()

optimizer.step()

Figure 5: PyTorch implementation of “gradient accumula-
tion” technique, a standard method to collect gradient from
several different forward passes. Memory consumption is
equivalent to 1 forward pass, but time complexity is propor-
tional to number of forward passes.

Denote S as the dimension of θ, i.e., number of param-
eters defining the distribution Qθ. For example, for the
Exponential(λ): S = 1 and θ = (λ); for Gaussian(µ, σ):
S = 2 and θ = (µ, σ). Denote k to be a positive integer.

Theorem 1 If W (θ, ξ) = η(θ)T (ξ) (S = 1), then there
exists a parameterization tuple P with dP = 1 for the
following functions g(w): wk, log(w), and 1

wk
.

Corollary 1 If W (θ, ξ)′ = f(W (θ, ξ)) and W (θ, ξ) =
η(θ)T (η), then Theorem 1 applies to W (θ, ξ)′ and
g(W (θ, ξ)′) if g(w′(w)) is: wk, log(w), and 1

wk
.

Theorem 2 If W (θ, ξ) =
∑S
s=1 ηs(θ)Ts(ξ), and g(w) =

wk, then there exists a parameterization tuple P with

dP =

(
k + S − 1

S − 1

)
. (6)

Remark 2 As long as dP < M , it is possible to create
a computation graph of a smaller size by reparameteri-
zation, compared to a direct implementation of the MC
approximation. Note that for a small M it is still pos-
sible for a parameterization tuple to generate a graph
larger than a naïve implementation. For example, con-
sider

∑M
i=1(µ + σξ)2. When M = 1, the naïve construc-

tion would have dP = 2, (n = (µ, σ), t = (1, ξ), while
a “nicer” tuple may have dP = 3 independent of M
(n = (µ2, 2µσ, σ2), t = (1, ξ, ξ2)).

Corollary 2 If W (θ, ξ)′ = f(W (θ, ξ)) and W (θ, ξ) =∑S
s=1 ηs(θ)Ts(η), where S ≥ 2, then Theorem 2 applies to

W (θ, ξ)′ and g(W (θ, ξ)′) if g(w′(w)) = wk.

Relevance of results: (1) Thm. 1 can be applied when
W (θ, ξ) represents a distribution with scaling property: any
positive real constant times a random variable having this
distribution comes from the same distributional family. (2)
Thm. 2 can be applied, when W (θ, ξ) is a member of the
location-scale family. (3) Corollaries 1 and 2 are useful
when random variables can be presented as a transforma-
tion of other distributions, e.g. LogNormal(µ, σ2) can be
generated as exp(N(µ, σ2)). Table 1 summarizes the choice
of qθ and p for Bayesian VI, which lead to the computation
graph size dP being independent of M in MC estimation.

Although Theorem 2 does not suggest that there are no
nice parameterization tuples for the case where g(w) =
logw, 1/wk, empirically we did not find tuples that allow
for dP to be independent of M . But it is interesting to
consider an approximation which does allow for this inde-
pendence.
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Figure 6: For maximum possible number of MC iterations for a given model via the direct MC method, we show: (a) Model
size (dashed blue line indicates GPU capacity, 11GB), (b) Training time. For some networks, our method occupies less than
25% of memory and 5 times faster.

4.1 TAYLOR APPROXIMATED MONTE CARLO

Our results extend to the generic polynomial case where
g(w) = pK(w), an arbitrary polynomial of degree K:

Corollary 3 If W =
∑S
s=1 ηs(θ)Ts(ξ), and g(w) =

pK(w), then there exists parameterization tuple P , such
that for any M iterations

dP =

(
K + S

S

)
− 1. (7)

So, can we find a parameterization tuple for any g(w) that
we can approximate via a polynomial Taylor expansion?

Theorem 3 Let W =
∑S
s=1 ηs(θ)Ts(X), S ≥ 2. If an

approximation of g(w) uses K Taylor terms, then Cor. 3
applies.

Practical implications. If one is limited to running a maxi-
mum number of MC iterations Mmax, such an approxima-
tion of g(w) allows a tradeoff between accuracy of running
justMmax iterations for the real g(w) versus approximating
g(w) with K(Mmax) terms and running M �Mmax iter-
ations instead, since dp is independent of M . This strategy
may not work for approximating non-polynomial functions,
and is a “fall-back” that could be used for arbitrary distribu-
tions.

Example 1. Let W = µ + σξ =⇒ S = 2 and g(w) =
logw, then

M∑
i=1

g(wi) =

M∑
i=1

log(wi) ≈
M∑
i=1

K∑
k=0

1

k!
(µ+ σξi − 1)k

where we take the Taylor expansion of log(w) around w =
1. This is clearly a polynomial function of order K, and

applying Corollary 3, we have dP = 1
2 (K + 1)(K + 2)− 1

interactions. For example, if one is able to run just 9 direct
MC iterations, it is possible to approximate g(w) with K =
3 terms, allowing any number of MC iterations M .

4.2 APPLYING REPARAMETERIZATION IN
BAYESIAN NN

Recall that training a Bayesian NN via VI requires the ap-
proximation of both the KL term and expected value of
log-likelihood in (2). While it is clear how MC reparameter-
ization can be applied to approximate the KL term, what
can we say about the likelihood term? In general, this term
cannot be handled by the ideas described so far although
some practical strategies are possible.

Usually, estimating the expectation of the likelihood term is
based on [Kingma and Welling, 2013, Kingma et al., 2015],
where for every data item b in the minibatch (of size B),
one MC sample is selected, which results in B different
samples – in fact, [Kingma and Welling, 2013] suggests that
the number of samples per data item can be set to one if
the minibatch size is “large enough” which we will discuss
more shortly. If a large B is feasible, then our scheme might
not contribute substantially in estimating the likelihood term.
However, if B is small, then our scheme can provide some
empirical benefits, described next.

Let (x, y) be the observed data and (xb, yb) be the observed
b-th data point. Let w correspond to the weights of NN
with L layers. We can use w(l, ·) to index the weights of
layer l. Note that we can draw a unique sample of w for
each data point b which we denote as w(l, b). When M
samples are drawn for b, these will be indexed by wi(l, b)
for i = 1, · · · ,M . Notice thatw1(l, b) is the same asw(l, b).
In the forward pass, ulb is the output for the b-th data point
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and uLb is the output of the last layer for data point xb.

Observation 1 (Likelihood form in BNN) Consider the
following form for regression and classification tasks,
Regression: Consider y ∼ N(uL, σ̂), where σ̂ is fixed.
Then,

log p (yb | w, xb) = log

(
1√
2π

exp

(
−1

2

(
yb − uLb

)2))
= log

1√
2π
− 1

2
y2b − ybuLb +

1

2
(uLb )2.

Classification: Consider a binary classification problem.
Then, y ∼ Bern (p), where p = 1

1+exp(−uL) . Thus,

log p (yb | w, xb) = log
(
pyb(1− p)1−yb

)
=− log

(
1 + e−u

L
b

)
− (1− yb)uLb

=− log(2) +
uLb
2
−
(
uLb
)2

4
+O

((
uLb
)3)

− (1− yb)uLb .

Based on the above description, let us assume that the final
layer output uL corresponds to a convolution or a fully
connected layer with no activation function. Then, the log-
likelihood term in a regression and classification setup can
be expressed as

log p(yb|w, xb) = polynomial(uL−1b w(L)).

SGVB Estimator. Following [Kingma and Welling, 2013],
the Eqθ [log p(y|w, x)] term for the minibatch (of size B)
can be written as

S1 :=
1

B

B∑
b=1

Eqθ [log p(yb|w, xb)] .

To approximate the expectation, we use 1 sample
w(·, b) for each data point (xb, yb), which results in
S1 = 1

B

∑B
b=1 log p(yb|w(·, b), xb). Substituting in

polynomial(uL−1b w(L, b)) into log p(yb|w(·, b), xb) leads
to the following form for variance V (S1),

1

B
( V (w(L, b))E

[(
uL−1b

)2]
+ V (uL−1b )E2 [w(L, b)] ) ,

(8)
plus higher order terms which decreases as B grows. By ef-
ficiently evaluating the KL term, we can utilize the memory
savings to increase the batch size B and thus, to decrease
the variance of S1.

MC Reparameterization estimator of likelihood. The
above strategy is practically sufficient. However, if B is
limited by hardware, we can use the memory savings for
more MC samples (higher M ) for improving the estimate
of the log likelihood term. This reduces the variance of first
term in (8) by a factor of M , but the scheme described is
restricted to the last layer.

5 EXPERIMENTS: BAYESIAN
DENSENET, U-NET, AND OTHER
NETWORKS

We perform experiments on Bayesian forms of several archi-
tectures and show that training is feasible. While we expect
some drop in overall accuracy compared to a determinis-
tic version of the network, these experiments shed light on
the benefits/ limitations of increasing MC iterations. Since
model uncertainty is important in scientific applications, we
also study the feasibility of training such models for classi-
fying high-resolution brain images from a public dataset.

Setup. For deterministic comparisons, we run several vari-
ations of PreActResNet [He et al., 2016] and Densenet
[Huang et al., 2017] (9 in total) on CIFAR10. For brain
images, we use a simple modification of 3D U-Net [Ron-
neberger et al., 2015]. Since our method is most relevant
when a closed form for KL is unavailable, we select the
approximate posterior to be a Radial distribution, where
samples can be generated as: µ + σ ∗ ξ

||ξ|| ∗ |r|, where
ξ ∼MVN(0, I), r ∼ N(0, 1) and the prior of our weights
is a Normal distribution. This satisfies the conditions of
Thm. 2, allowing us to find a parameterization tuple that
does not grow with respect to M : we can run 1000+ MC
iterations with almost no additional GPU memory cost com-
pared to 1 MC iteration. Another reason for choosing the
Radial distribution as our approximate posterior qθ is be-
cause Gaussian-approximate posteriors do not perform well
in high-dimensional settings [Farquhar et al., 2020]. Empiri-
cally, we find this to be the case as well; we were not able
to train any models with a standard Gaussian assumption
without any ad-hoc fixes such as pretraining, burn-in, or
KL-reweighting (common in many implementations).

Parameter settings/hardware. All experiments used
Nvidia 2080 TIs. The code was implemented in PyTorch,
using the Adam optimizer [Kingma and Ba, 2014] for all
models, with training data augmented via standard transfor-
mations: normalization, random re-cropping, and random
flipping. All models were run for 100 epochs.

5.1 TIME AND SPACE CONSIDERATIONS

We first examine whether our MC-reparameterization leads
to meaningful benefits in model size or runtime. We should
expect a competitive advantage in model size as the number
of MC iterations grows, which may come at the cost of sig-
nificantly increased runtime. To allow ease of comparison,
we fix the batch size for all models to be 32. We determine
the maximum number of MC iterations able to run on a sin-
gle GPU for a given model via the classical direct method.
For DenseNet-121, we are able to run 89 MC iterations,
while for VGG-16 we are only able to run 5 MC iterations.

Figure 6 shows a comparison of computational performance
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Figure 7: Confidence Set Accuracy and Confidence Sets on CIFAR-10 for a variety of ResNet and DenseNet models with
100 MC iterations (not previously possible). Both ResNet and Densenet achieve accuracy of more than 90% with 100%
confidence, but ResNet is 100% confident on almost 90% of the data.

between our method and the direct approach. (a) With our
construction, we significantly reduce model size on the
GPU (Fig. 6a). For smaller models like DenseNet, for the
same number of MC iterations our method uses less than
25% of GPU memory, which allows for a significant in-
crease in batch size. Since the size of the computation
graph in our construction is independent of M , for the mem-
ory used in Fig. 6a we are able to run for M = 1000 or
more. (b) The significant reduction of model size on the
GPU results in a reduction of training time per batch, up to
5× (Figure 6b); the generated computation graph has fewer
parameters (nodes on the path) during backpropagation.

5.2 PREDICTION CONFIDENCE/ACCURACY
AND HOW MANY MC ITERATIONS?

For our next set of experiments, we run a Bayesian version
of PreActResNet and DenseNet with 100 MC iterations,
which is feasible.

(a) We evaluate the accuracy concurrently with the confi-
dence of the prediction, offered directly by the model.
We expect that the model has a higher accuracy for those
samples where it highly confident. This is indeed the
case – Figure 7 shows the accuracy for varying levels of
confidence over the entire validation set for a number of
models. At high confidence levels, all models perform
well, competing strongly with state of the art results. Ad-
ditionally, we observe the proportion of data for which
the model is confident is large (Figure 7 right). We can
see that Bayesian model is at least 75% confident on
85%–95% of data.

(b) One issue in Bayesian networks is evaluating the ex-
pected drop in accuracy (compared to its deterministic
versions), a behavior common in both shallow and deep
models [Wenzel et al., 2020]. Figure 7 (left) reassures
us that the drop in performance for a number of widely
used architectures is not that significant even when the
model is not confident.

(c) To understand the effect of increasing the number of
MC iterations, we run replications of experiment on
ResNet-50 for 3 different number of MC iterations,

Figure 8(left): 1 iteration (black), 17 iterations – max-
imum possible on GPU with the traditional method –
(blue), and 100 iterations (red) possible to run due to our
method. In all cases, as the threshold increases, model
confidence increases and as expected, the accuracy does
as well. However, we see that training with 100 MC
iterations, consistently provides higher accuracy for the
entire range of confidences. In contrast, with 1 MC itera-
tion, accuracy has higher variance for the non-confident
set.

5.3 NEUROIMAGING: PREDICTIVE
UNCERTAINTY IN BRAIN IMAGING
ANALYSIS

While we demonstrated advantages of our reparameteriza-
tion in traditional image classification settings and bench-
marks – mostly as a proof of feasibility – a real need for
BNNs is in scientific/biomedical domains: where high con-
fidence and accurate predictions may inform diagnosis/treat-
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Figure 8: (left) Replicated Confidence Set Accuracy on
CIFAR-10 for Resnet-50 with different number of MC it-
erations: 1 (black), 17 (blue, maximum allowed on GPU
with standard method) and 100 (red). With M = 100 the
accuracy is higher for any confidence. (right) Distributions
of Confidence Set Size for a number of replications, with 1
MC iteration (black) and 100 MC iterations (red). With 100
MC iterations variance is smaller.
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Confidence

0.5 0.6 0.7 0.8 0.9 1

m = 1 63.07± 1.47 62.14± 1.59 63.01± 0.64 64.13± 4.15 59.59± 4.40 60.71± 15.15
m = 100 64.39± 4.59 66.23± 4.19 66.05± 1.00 67.77± 4.00 66.82± 1.24 87.50± 17.68

∆ 1.33 4.09 3.04 3.64 7.23 26.79

Table 2: Average validation accuracy per model confidence for 2 values of MC iterations. ∆ = A100 − A1, where Ai is
validation accuracy for i MC iterations. With 100 MC iterations we got on average much better results, especially when
prediction is highly confident.

Conv3D_Block(1, 16)
MaxPool3d((3,3,3))
Conv3D_Block(16, 32, stride=1)
MaxPool3d((2,2,2))
Conv3D_Block(32, 64, stride=1)
MaxPool3d((2,2,2))
Conv3D_Block(64, 128, stride=3),
MaxPool3d((2,2,2))
Conv3D_Block(128, 256, stride=3)
Linear(256, 2)

Figure 9: Structure of the model we used for ADNI classifi-
cation.

ment. To evaluate applicability, we focus on a learning task
with brain imaging data.

Data. Data used in our experiments were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be
found in [ADNI, 2020a]. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD).
For up-to-date information, see [ADNI, 2020b]. Classify-
ing healthy and diseased individuals via their MR images,
similar to ADNI, is common in the literature However, over-
fitting when using deep models remains an issue for two
reasons: small dataset size and a large feature space. Here,
we look at a specific setting where we have 388 individuals
with pre-processed MR images of size 105 × 127 × 105.
Preprocessing. All MR images were registered to MNI
space using SPM12 with default settings.

Network. We use a slightly modified version of the encoder
from an off-the-shelf 3D U-Net architecture [Ronneberger
et al., 2015], demonstrated in Figure 9, to learn a classifier
for cognitively normal (CN) and Alzheimer’s Disease (AD)

subjects. We note that while this architecture is not competi-
tive with those which achieve state-of-the-art classification
accuracy on ADNI, our aim here is to demonstrate feasi-
bility of training deep Bayesian models in this setting and
evaluate the value of accurate confidence estimation.

We train the model on 300 individuals, and validate on the re-
maining 88. Additional experimental details can be found in
the appendix. Since the input to the network is a mini-batch
of high dimensional images, when we take into account
the memory already needed by a deterministic model, we
already reach the limits of the GPU memory. While we
cannot perform more than 1 MC iteration with the standard
method, we can successfully perform more than 100 with
our scheme. We evaluate the consistency of performance
with several runs of training when we are allowed to use
1 versus 100 MC iterations. (a) Table 2 shows the average
validation accuracy for the choice of MC iterations and their
difference. We see that for every confidence threshold, train-
ing with 100 MC iterations provides higher accuracy on
average. This is especially noticeable on a high confident
set, where the difference approaches 26.7%. (b) In addition
to accuracy, it is important to understand how consistent the
estimation is. Figure 8 (right) demonstrates the distribution
of the size of confident set. While on average, the size of the
“confident set” of the two models is similar, the variance is
significantly smaller when we use a larger number of MC
iterations, consistent with our hypothesis in §1. In cases
where this confidence needs to be measured as accurately
as possible, one obtains benefits over a single MC iteration.

6 CONCLUSIONS

While a broad variety of neural network architectures are
used in vision and medical imaging, successfully training
them in a Bayesian setting poses challenges. Part of the
reason has to do with distributional assumptions. Moving to
a broader class of distributions involves MC estimations but
direct implementations pose serious demands on memory
and run-time. In this work, we identify that different compu-
tation graphs can be constructed for different parameteriza-
tions of the target function. Specifically when one is attempt-
ing a Monte Carlo approximation, these graphs can grow
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linearly with the number of MC iterations needed, which
is undesirable. By directly characterizing the parameteri-
zations that lead to different graphs, we analyze situations
where it is possible for graphs to be constructed independent
of this sampling rate (number of MC iterations). Evaluating
our parameterization empirically, we find that it is feasible
to run a large number of MC iterations for large networks
in vision, with a nominal drop in accuracy (compared to
deterministic versions). The code is available at https:
//github.com/vsingh-group/mcrepar.
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