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1 PROBABILISTIC CONSTRUCTION OF ARCHIMEDEAN AND HIERARCHICAL
ARCHIMEDEAN COPULAS

Copulas can be derived from cumulative distribution functions (CDFs) via Sklar’s theorem, i.e. specify a joint CDF F , com-
pute univariate CDFs F1, · · · , Fd from the joint CDF, then obtain the copula as C(u) = F (F−1

1 (u1), · · · , F−1
d (ud)),u ∈

[0, 1]d. Sklar’s theorem also applies to survival functions, i.e. for joint survival function F̄ (x) = P (X1 > x1, · · · , Xd >
xd),x ∈ Rd, with univariate survival functions F̄1, · · · , F̄d where F̄j = P (Xj > xj), the copula which couples F̄ to
F̄1, · · · , F̄d is called the survival copula and is given as the copula C for which F̄ (x) = C(F̄1(x1), · · · , F̄d(xd)).

1.1 ARCHIMEDEAN COPULAS

We restate the probabilistic construction found in [Joe, 2014] Chapter 3.2, following [Marshall and Olkin, 1988]:

LetG1, · · · , Gd be univariate CDFs. LetQ ∼ FQ be a positive random variable with Laplace transform ϕQ, letX1, · · · , Xd

be dependent random variables that are conditionally independent given Q = q such that [Xj |Q = q] ∼ Gqj , q > 0.

The joint CDF is:

F (x1, · · · , xd) =

∫ ∞
0

Gq1(x1) · · ·Gqd(xd)dFQ(q) = ϕQ(− logG1(x1)− · · · − logGd(xd)), (1)

with univariate CDFs obtained from the joint CDF as:

Fj(xj) =

∫ ∞
0

Gqj(xj)dFQ(q) = ϕQ(− logGj(xj)), j ∈ {1, · · · , d}, (2)

and inverse:
F−1
j (uj) = G−1

j (exp{−ϕ−1
Q (uj)}), uj ∈ (0, 1), j ∈ {1, · · · , d}, (3)

such that the copula via Sklar’s theorem is:

C(u) = F (F−1
1 (u1), · · · , F−1

d (ud)) = ϕQ(ϕ−1
Q (u1) + · · ·+ ϕ−1

Q (ud)), u ∈ [0, 1]d. (4)

The multivariate extension of bivariate Archimedean copulas was introduced in [Kimberling, 1974] with the condition
that the above expression is a valid copula for any d whenever ϕ, known as the generator of the Archimedean copula, is
completely monotone, i.e. the Laplace transform of a positive random variable [Bernstein, 1929, Widder, 1941]. The mixture
representation with Laplace transform generators and an efficient algorithm for sampling from the mixture representation
was subsequently given in [Marshall and Olkin, 1988].

We restate the sampling algorithm found in [McNeil, 2008], following [Marshall and Olkin, 1988]:
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Consider (U1, · · · , Ud) = (ϕ(E1/M), · · · , ϕ(Ed/M)), where (E1, · · · , Ed) ∼ i.i.d. Exp(1) are independent and identi-
cally distributed unit exponentials and M ∼ FM is a positive random variable with Laplace transform ϕM .

P (U1 ≤ u1, · · · , Ud ≤ ud) =

∫ ∞
0

P (U1 ≤ u1, · · · , Ud ≤ ud|M = s)dFM (s)

=

∫ ∞
0

e−s(ϕ
−1(u1)+···+ϕ−1(ud)dFM (s)

= ϕM (ϕ−1
M (u1) + · · ·+ ϕ−1

M (ud)).

(5)

Thus an algorithm for sampling U ∼ C is to sample M ∼ FM with Laplace transform ϕM , sample (E1, · · · , Ed) ∼
i.i.d. Exp(1), then compute (U1, · · · , Ud) = (ϕM (E1/M), · · · , ϕM (Ed/M)).

1.2 HIERARCHICAL ARCHIMEDEAN COPULAS

A simple nested mixture representation involving Laplace transform generators was introduced in [Joe, 1997]. Conditions
for the nested copula to be a valid copula, called sufficient nesting conditions, was derived based on the composition
of an outer generator ϕ0 and an inner generator ϕ1 to get a completely monotone Laplace transform nested generator
e−ν0ϕ

−1
0 ◦ϕ1 , where ν0 is a positive random variable with Laplace transform ϕ0, such that ϕ0, ϕ1 and (ϕ−1

0 ◦ ϕ1)′ are
completely monotone.

We illustrate with a simple three-dimensional example found in [McNeil, 2008], following [Joe, 1997]. Consider the
hierarchical Archimedean copula:

C(u1, u2, u3) = ϕ0(ϕ−1
0 (u1) + ϕ−1

0 ◦ ϕ1(ϕ−1
1 (u2) + ϕ−1

1 (u3))), (6)

where ϕ0, ϕ1 are Laplace transform generators of Archimedean copulas. We would like to express the above as a mixture of
conditionally independent CDFs. Let G0 be a distribution with Laplace transform ϕ0:

C(u1, u2, u3) = ϕ0(ϕ−1
0 (u1) + ϕ−1

0 ◦ ϕ1(ϕ−1
1 (u2) + ϕ−1

1 (u3))) (7)

=

∫ ∞
0

e−ν0ϕ
−1
0 (u1)e−ν0ϕ

−1
0 ◦ϕ1(ϕ−1

1 (u2)+ϕ−1
1 (u3))dG0(ν0)

=

∫ ∞
0

F ν00 (u1)C01(F ν00 (u2), F ν00 (u3); ν0)dG0(ν0),

where F0(·) := e−ϕ
−1
0 (·) and F ν00 is a valid CDF for any ν0 > 0. In addition, C01(·; ν) is an Archimedean copula with

Laplace transform generator ϕ01(·; ν0) = e−ν0ϕ
−1
0 ◦ϕ1(·) and generator inverse ϕ−1

01 (·; ν0) = ϕ−1
1 ◦ ϕ0(− log(·)/ν0), such

that C01(·; ν0) taking marginals F ν00 (u2) and F ν00 (u3) as inputs gives:

C01(F ν00 (u2), F ν00 (u3); ν0) = ϕ01(ϕ−1
01 (F ν00 (u2); ν0) + ϕ−1

01 (F ν00 (u3); ν0); ν0) (8)

= e−ν0ϕ
−1
0 ◦ϕ1(ϕ−1

1 ◦ϕ0(− log(e−ν0ϕ
−1
0 (u2))/ν0)+ϕ−1

1 ◦ϕ0(− log(e−ν0ϕ
−1
0 (u3))/ν0))

= e−ν0ϕ
−1
0 ◦ϕ1(ϕ−1

1 (u2)+ϕ−1
1 (u3)).

The completely monotone property of the Laplace transform generator ϕ01(·; ν) = e−νϕ
−1
0 ◦ϕ1(·) then implies (ϕ−1

0 ◦ ϕ1)′

is completely monotone. In addition, letting G01(·; ν0) be a distribution with Laplace transform ϕ01(·; ν0), we express the
hierarchical Archimedean copula as a nested mixture of conditionally independent CDFs:

C(u1, u2, u3) =

∫ ∞
0

F ν00 (u1)C01(F ν00 (u2), F ν00 (u3); ν0)dG0(ν0) (9)

=

∫ ∞
0

F ν00 (u1)

∫ ∞
0

e−ν01ϕ
−1
01 (F

ν0
0 (u2))e−ν01ϕ

−1
01 (F

ν0
0 (u3))dG01(ν01; ν0)dG0(ν0)

=

∫ ∞
0

F ν00 (u1)

∫ ∞
0

e−ν01ϕ
−1
1 (u2)e−ν01ϕ

−1
1 (u3)dG01(ν01; ν0)dG0(ν0)

=

∫ ∞
0

∫ ∞
0

F ν00 (u1)F ν011 (u2)F ν011 (u3)dG01(ν01; ν0)dG0(ν0),



where F1(·) := e−ϕ
−1
1 (·) and F ν011 is a valid CDF for any ν01 > 0.

This construction and condition were restated for nesting to arbitrary depth in [McNeil, 2008].

Based on the mixture representation, McNeil [2008] also provided algorithms for sampling nested Clayton and nested
Gumbel copulas. It was also showed that Clayton and Gumbel copulas are unfortunately not compatible for nesting.
The challenge was to find combinations of known distributions with ϕ0, ϕ1 and e−ν0ϕ

−1
0 ◦ϕ1 as their Laplace transforms.

Sampling using McNeil [2008]’s algorithm for nested Ali-Mikhail-Haq, nested Frank, nested Joe, more parametric families
and numerical inversion of Laplace transform was by [Hofert, 2008]. It was subsequently recognized in [Hering et al., 2010]
that the sufficient nesting condition for (ϕ−1

0 ◦ ϕ1)′ to be completely monotone can be satisfied by letting ϕ1 = ϕ0 ◦ ψ1,
where ψ1 is the Laplace exponent, with completely monotone derivative, in the Laplace transform of Lévy subordinators.

We restate the probabilistic construction with Lévy subordinators from [Hering et al., 2010]:

For each ‘time’ t ≥ 0, the Laplace transform of a Lévy subordinator Λt, i.e. a non-decreasing Lévy processes such as the
compound Poisson process, is given as:

E[e−xΛt ] = e−tψ(x), (10)

where ψ(x) is the Laplace exponent.

Consider (
E1,1

Λ1(M) , · · · ,
E1,d1

Λ1(M) , · · · , · · · , · · · ,
EJ,1

ΛJ (M) , · · · ,
EJ,dJ
ΛJ (M) ), where Ej,i ∼ i.i.d. Exp(1), Λj are Lévy subordinators

with Laplace exponents ψj , and Λj are evaluated at a common ‘time’ t = M , where M is a positive random variable with
Laplace transform ϕ0. The hierarchical Archimedean copula is then constructed using the survival analog of Sklar’s theorem.

The joint survival function is:

P (
Ej,i

Λj(M)
> xj,i for allj, i) = E[

J∏
j=1

dJ∏
i=1

e−Λj(M)xj,i ]

= E[

J∏
j=1

e−Λj(M)
∑dJ
i=1 xj,i ]

= E[

J∏
j=1

e−Mψj(
∑dj
i=1 xj,i)]

= E[e−M
∑J
j=1 ψj(

∑dj
i=1 xj,i)]

= ϕ0(

J∑
j=1

ϕ−1
0 ◦ (ϕ0 ◦ ψj)(

dj∑
i=1

xj,i)),

(11)

and each component Ej,i
Λj(M) has survival function:

P (
Ej,i

Λj(M)
> x) = E[e−xΛj(M)] = E[e−Mψj(x)] = (ϕ0 ◦ ψj)(x). (12)

Using the survival analog of Sklar’s theorem, given the above univariate survival functions, the hierarchical Archimedean
copula C with outer generator ϕ0 and inner generators ϕj = ϕ0 ◦ ψj , we recover the above joint survival function.

2 EXPERIMENT DETAILS

Following the experiment setup in [Ling et al., 2020], the commonly-used copulas were the Clayton, Frank and Joe copulas,
each governed by a single parameter and chosen to be 5, 15, and 3 respectively. Each dataset had 2000 train and 1000 test
points. The real-world data were the Boston housing, Intel-Microsoft (INTC-MSFT) stocks and Google-Facebook (GOOG-
FB) stocks. Each dataset was divided into train and test points in a 3:1 ratio, then rank-normalized to get approximately
uniform margins.

Similar to the experiment parameters in [Ling et al., 2020], the tolerance for Newton’s root-finding method was 1e-10. The
generative neural network was a multilayer perceptron of comparable size, 2 hidden layers, each of width 10. We used



U(0, 1) as the input source of randomness, default weight initialization, LeakyReLU intermediate activations and exp(.)
output activation. For training with maximum likelihood, we used the same optimization parameters: stochastic gradient
descent (SGD) with learning rate 1e-5 and momentum 0.9 on sum of log-likelihoods. For training with goodness-of-fit, we
used SGD with learning rate 1e-3 and momentum 0.9. For adversarial training, we used Adam [Kingma and Ba, 2015]
with learning rate 1e-4, momentum 0.9 and betas (0.5, 0.999). The discriminative neural network had a single hidden
layer of width 20, default weight initialization, LeakyReLU intermediate activations and sigmoid(.) output activation. All
training methods used the same batch size of 200 and converged within 10k epochs. We reported the results at 10k epoch.
Experiments were conducted using PyTorch, on a 2.7 GHz Intel Core i7 with 16 GB of RAM.

To reduce computation complexity during training, we used a smaller number L = 100 samples from the generative neural
network to approximate the Laplace transforms. To increase inference accuracy for evaluation, we used a larger number
L = 1000 samples from the generative neural network to approximate the Laplace transforms.

2.1 ENFORCING STRUCTURAL PROPERTIES

Compared to vanilla GAN [Goodfellow et al., 2014], our generating network must satisfy an Archimedean copula. We show
this via the training progression for learning a Clayton copula in Figure 1.

Figure 1: Training progression at epochs 0, 500, 5000 and 10000, for learning a Clayton copula. Samples from our copula,
shown on top, must satisfy an Archimedean copula, while that from a vanilla GAN, shown below, may not.
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