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This is the supplementary material for “MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher
Learning”. Our supplementary material is organized into four main sections. In the first and second sections, we provide
complete proofs for our theory. The third section is dedicated to the clustering view of optimal transport with a link to our
imitation learning view, whilst the detail of network architecture, implementation specification, and further ablation studies
are presented in the fourth section.

1 THEORETICAL DEVELOPMENTS

In what follows, we present all proofs of our theory. Given a pair of data distribution PA and labeling function hA, we define
a distribution PA,hA over XA×Y4 including sample pair

(
x, hA (x)

)
by first sampling x ∼ PA and then computing hA (x).

Similarly, we can define another distribution PB,hB over XB × Y4 using the data distribution PB and the labeling function
hB . We now investigate the Wasserstein distance between PA,hA and PB,hB w.r.t the cost (metric) function d = λdX + dY .
Proposition 1 is crucial for us to develop an imitation learning view based on optimal transport.

Proposition 1. The WS distance of interest can be expressed as:

Wd

(
PA,hA ,PB,hB

)
= min
L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
= min
H:H#PB=PA

Ex∼PB

[
λdX (x, H (x)) + dY

(
hB (x) , hA (H (x))

)]
.

Proof. Observe first that for any UA ⊂ XA × Y4, we have PA,hA (UA) = PA (VA) where VA :={
x ∈ XA |

(
x, hA (x)

)
∈ UA

}
. Similarly, we have for any UB ⊂ XB × Y4 that PB,hB (UB) = PB (VB) where

VB :=
{
x ∈ XB |

(
x, hB (x)

)
∈ UB

}
.

Let K : supp
(
PA,hA

)
→ supp

(
PB,hB

)
(i.e., supp indicates the support of a distribution) be such that K#PA,hA = PB,hB .

We can express K as
K
(
x, hA (x)

)
:=
(
K1

(
x, hA (x)

)
,K2

(
x, hA (x)

))
,

with K1

(
x, hA (x)

)
∈ XB and K2

(
x, hA (x)

)
∈ Y∆. Define L (x) := K1

(
x, hA (x)

)
. We claim that L#PA = PB .

Indeed, let VB ⊂ XB be any measurable set and take UB := VB × Y4. Then by using the observation above and the fact
K#PA,hA = PB,hB , we obtain

PB (VB) = PB,hB
(UB) = PA,hA

(
K−1 (UB)

)
= PA,hA

(
L−1 (VB)× Y4

)
= PA

(
L−1 (VB)

)
.

Thus the claim is proved.

It also follows from K#PA,hA = PB,hB and the claim that K2 (x, hA (x)) = hB (L (x)), which gives

d
((
x, hA (x)

)
,K
(
x, hA (x)

))
= λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)
. (1)
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Therefore, we deduce that

Wd

(
PA,hA ,PB,hB

)
≥ min
L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
.

In order to prove the reverse inequality, let us consider any map L satisfying L#PA = PB . Define K
(
x, hA (x)

)
:=(

L(x), hB (L (x))
)
. Then (1) holds and K#PA,hA = PB,hB . To verify the latter, let UB ⊂ XB × Y4 be any measurable

set and take VB :=
{
x ∈ XB |

(
x, hB (x)

)
∈ UB

}
. Then as

K−1 (UB) =
{(

x, hA (x)
)
| L (x) ∈ VB

}
=
{(

x, hA (x)
)
| x ∈ L−1 (VB)

}
,

we have
PA,hA

(
K−1 (UB)

)
= PA

(
L−1 (VB)

)
= PB (VB) = PB,hB (UB) .

Thus it follows that

Wd

(
PA,hA ,PB,hB

)
≤ min
L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
.

By combining the above two inequalities, we obtain the equality

Wd

(
PA,hA ,PB,hB

)
= min
L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
.

Symmetrically, we achieve the other equality.

Theorem 2. The following statements hold

i)Wd

(
PA,hA ,PB,hB

)
≥ λWdX

(
PA,PB

)
.

ii) Given XA = XB = X ,Wd

(
PA,hA ,PB,hB

)
= 0 if only if PA = PB and hA = hB .

iii) Consider the problem: minhA Wd

(
PA,hA ,PA,fA

)
, the optimal solution is hA∗ = fA obtained with the optimal mover

L∗ : L∗#PA = PA to be the identity map.

iv)Wd

(
PA,hA ,PA,fA

)
≤ L

(
hA, fA,PA

)
.

Proof. i) Using Proposition 1, we have

Wd

(
PA,hA ,PB,hB

)
= min
L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
≥ min
L:L#PA=PB

Ex∼PA [λdX (x, L (x))] = λWdX

(
PA,PB

)
.

ii) It is obvious that if PA = PB and hA = hB , thenWd

(
PA,hA ,PB,hB

)
= 0. For the converse, note that

Wd

(
PA,hA ,PB,hB

)
≥ λWdX

(
PA,PB

)
by statement (i). Thus,Wd

(
PA,hA ,PB,hB

)
= 0 implies thatWdX

(
PA,PB

)
= 0 and hence PA = PB . Next, let L∗ be the

optimal transport:
L∗ = argmin

L:L#PA=PB

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
.

Then thanks to Proposition 1, we have

Ex∼PA

[
λdX (x, L∗ (x)) + dY

(
hA (x) , hB (L∗ (x))

)]
= 0

which yield L∗ (x) = x and hence hA (x) = hB (x) almost everywhere w.r.t the measure PA.



iii) We have
min
hA

Wd

(
PA,hA ,PA,fA

)
= 0,

and the minimum value is attained at hA∗ = fA and L∗ = id. From ii, this optimal solution is unique.

iv) Using Proposition 1, we have:

Wd

(
PA,hA ,PA,fA

)
= min
L:L#PA=PA

Ex∼PA

[
λdX (x, L (x)) + dY

(
hA (x) , fA (L (x))

)]
.

Then by choosing L as the identity map (i.e., L(x) = x for all x), we obtain:

Wd

(
PA,hA ,PA,fA

)
≤ Ex∼PA

[
dY
(
hA (x) , fA (x)

)]
= L

(
hA, fA,PA

)
.

2 OUR PROPOSED METHOD

2.1 PROBLEM FORMULATION

In multi-source domain adaptation, we have K multiple source domains with collected data and labels, and single target
domain with only collected data. We wish to transfer a model learned on labeled source domains to an unlabeled target domain.

Let us denote the collected data and labels for the source domains by DSk =
{(
sxki , y

k
i

)}NS
k

i=1
with label yki ∈ {1, 2, ...,M}

and collected data without labels for the target domain DT = {txi}N
T

i=1.

For the sake of simplification, we denote the common space for source domains by XS . Note that if source domains have
different input spaces, we can resize either input images or use corresponding transformations to map them to a common
space. We further equip source domains with data distribution PS1:K whose density functions are pS1:K (x). Let us denote the
ground-truth labeling functions for source domains by fS1:K (·) ∈ Y∆, implying that pSk (y | x) = fSk (x, y) (i.e., fSk (x, y)
represents the y-th value of fSk (x)). Therefore, the joint distribution to generate data instance x and categorical label
y ∈ {1, ...,M} is pSk (x, y) = pSk (x) fSk (x, y) .

Regarding the target domain, we define its data space as X T , data distribution and density function as PT and pT (x),
respectively. We further define the ground-truth labeling function for the target domain by fT which subsequently implies
pT (y | x) = fT (x, y) for a categorical label y ∈ {1, ...,M}.

Given a discrete distribution π over {1, ...,K}, we define PSπ :=
∑K
k=1 πkPSk which is a mixture of PS1:K . For a data

instance x ∼ PSπ (i.e., we sample a hidden index t ∼ Cat(π) (i.e., the category distribution) and then sample x ∼ PSt ),
we further define fS as a labeling function such that fS (x) is identical to fSt (x). By this definition, fS can be viewed as
the ground-truth labeling function over the mixture distribution PSπ. Finally, the mixing proportion π can be the uniform
distribution [ 1

K , ...,
1
K ] or proportional to the number of training examples in the source domains (i.e., NS

1:K).

2.2 MULTI-SOURCE EXPERT TEACHER

Using the labeled source training sets DS1:K , we can train qualified domain expert classifier hS1:K (i.e., hSk (x) ∈ Y∆

represents the prediction probability of hSk for a data instance x) with good generalization capacity (e.g., L
(
hSk , f

S
k ,PSk

)
≤ ε

for some small ε > 0). The next arising question is how to combine those domain experts to achieve a multi-source expert
teacher hS that can work well on PSπ (i.e., L

(
hS , fS ,PSπ

)
≤ ε). We leverage the domain experts to achieve a more powerful

multi-source expert teacher by a weighted ensembling as follows:

hS (x, y) =

K∑
k=1

πkp
S
k (x, y)∑K

j=1 πjp
S
j (x, y)

hSk (x, y) , (2)

where y ∈ {1, 2, ...,M}, and hSk (x, y) and hS (x, y) specify the y-th values of hSk (x) and hS (x) respectively.

The following theorem shows that the multi-source domain expert teacher hS can work well on the mixture joint distribution
PSπ. More specifically, it works better than the worst domain expert on its source domain, hence if each domain expert is
an ε-qualified classifier (i.e., L

(
hSk , f

S
k ,PSk

)
≤ ε), the multi-source expert teacher hS is also an ε-qualified classifier (i.e.,

L
(
hS , fS ,PSπ

)
≤ ε).



Theorem 3. If dY can be decomposed as dY (α,β) :=
∑M
i=1 βi` (αi) where α,β ∈ Y∆ and ` is a convex function, the

following statements hold true:

i) L
(
hS , fS ,PSπ

)
≤ max1≤k≤K L

(
hSk , f

S
k ,PSk

)
.

ii) If each domain expert is an ε-qualified classifier (i.e., L
(
hSk , f

S
k ,PSk

)
≤ ε), the multi-source expert teacher hS is also an

ε-qualified classifier (i.e., L
(
hS , fS ,PSπ

)
≤ ε).

Proof. i) We have

L
(
hS , fS ,PSπ

)
= Ex∼PS

π

[
dY
(
hS (x) , fS (x)

)]
=

K∑
k=1

πk

∫
dY
(
hS (x) , fSk (x)

)
dPSk

=

K∑
k=1

πk

∫
dY
(
hS (x) , fSk (x)

)
dPSk =

K∑
k=1

πk

∫ M∑
i=1

fSk (x, i) `
(
hS (x, i)

)
dPSk

=

M∑
i=1

∫ K∑
k=1

πkp
S
k (y = i | x) `

(
hS (x, i)

)
dPSk =

M∑
i=1

∫
`
(
hS (x, i)

) K∑
k=1

πkp
S
k (y = i | x) pSk (x) dx

=

M∑
i=1

∫
`
(
hS (x, i)

)
pSπ (x, y = i) dx =

M∑
i=1

∫
`

(
K∑
k=1

πkp
S
k (x, y = i)∑K

j=1 πjp
S
j (x, y = i)

hSk (x, i)

)
pSπ (x, y = i) dx

≤
M∑
i=1

∫ K∑
k=1

πkp
S
k (x, y = i)∑K

j=1 πjp
S
j (x, y = i)

`
(
hSk (x, i)

)
pSπ (x, y = i) dx (thanks to the convexity of `)

=

M∑
i=1

∫ K∑
k=1

πkp
S
k (x, y = i)

pSπ (x, y = i)
`
(
hSk (x, i)

)
pSπ (x, y = i) dx

=

M∑
i=1

∫ K∑
k=1

πkp
S
k (x, y = i) `

(
hSk (x, i)

)
dx =

K∑
k=1

πk

M∑
i=1

∫
`
(
hSk (x, i)

)
pSk (x, y = i) dx

=

K∑
k=1

πk

M∑
i=1

∫
`
(
hSk (x, i)

)
pSk (y = i | x) pSk (x) dx

=

K∑
k=1

πk

∫ M∑
i=1

`
(
hSk (x, i)

)
fSk (x, i) dPSk =

K∑
k=1

πk

∫
dY
(
hSk (x) , fSk (x)

)
dPSk

=

K∑
k=1

πkL
(
hSk , f

S
k ,PSk

)
≤ max

1≤k≤K
L
(
hSk , f

S
k ,PSk

)
.

Note that we define pSπ (x, y = i) :=
∑K
k=1 πkp

S
k (x, y = i) =

∑K
k=1 πkp

S
k (y = i | x) pSk (x).

ii) It is trivial from (i).

In what follows, we present how to train the multi-source expert teacher hS . Our workaround to train hS comes from the
following theoretical observation. Assume that we have K distributions R1:K with density functions r1:K (z). We form a
joint distribution D of a data instance z and label t ∈ {1, ...,K} by sampling an index t ∼ Cat(π), sampling x ∼ Rt, and
collecting (z, t) as a sample from D. With this setting, we have the following corollary.

Corollary 4. If we train a source domain discriminator C to classify samples from the joint distribution D using the
cross-entropy loss (i.e., CE (·, ·)), the optimal source domain discriminator C∗defined as

C∗ = argminCE(z,t)∼D [CE (C (z) , t)]

satisfies C∗ (z) =
[

πiri(z)∑
j πjrj(z)

]K
i=1

.



Proof. We have

E(z,t)∼D [CE (C (z) , t)] =

K∑
t=1

πt

∫
CE (C(z), t) rt (z) dz

= −
∫ K∑

t=1

log C (z, t)πtrt (z) dz.

Given z, we now find C∗ = [C∗t ]
K
t=1 subjected to ‖C∗‖1 = 1 and C∗ ≥ 0 to maximize

max
C:‖C‖1=1

K∑
t=1

log Ctπtrt (z) .

The Lagrange function is as follows:

L =

K∑
t=1

log Ctπtrt (z)− λ

(
K∑
t=1

Ct − 1

)
.

Setting the derivatives to 0, we obtain

∂L
∂Ct

=
πtrt (z)

Ct
− λ = 0, t = 1, ...,K.

Note that
∑K
t=1 Ct = 1, we arrive at

C∗t =
πtrt (z)∑
j πjrj (z)

, t = 1, ...,K.

Finally, we reach the conclusion.

Inspired by the statement (ii) in Theorem 2, recall that fT is the ground-truth labeling function on the target domain, we
propose to learn a classifier hT on this domain to further minimize with the aim to obtain hT = fT :

min
hT
Wd

(
PT,hT ,PT,fT

)
.

To proceed our theory, we assume that dY is a metric over Y∆, which together with the metric dX forms the metric
d = λdX+dY , implying thatWd (P·,·,P·,·) is a proper metric. We can thus bound the quantity of interestWd

(
PT,hT ,PT,fT

)
as

Wd

(
PT,hT ,PT,fT

)
≤ Wd

(
PT,hT ,PπS,hS

)
+Wd

(
PπS,hS ,PπS,fS

)
+Wd

(
PπS,fS ,PT,fT

)
, (3)

where PπS,fS , a joint distribution over XS × Y∆, consists of pairs (x, y∆) in which x ∼ PSπ and y∆ = fS (x).

In the upper-bound in (3),Wd

(
PπS,fS ,PT,fT

)
is constant. We employ the multi-source expert teacher hS as in Section

5.2, which can operate well on PSπ as long as we can train good domain experts hS1:K . Noting thatWd

(
PπS,hS ,PπS,fS

)
is

upper-bounded by L
(
hS , fS ,PSπ

)
(thanks to the statement (iii) in Theorem 2), we arrive at the following optimization

problem:
min
hT

{
Wd

(
PT,hT ,PπS,hS

)
+ L

(
hS , fS ,PSπ

)}
. (4)

The optimization problem in (4) is in line with the context of imitation learning for which the teacher classifier hS has
been trained effectively on the mixture source domain (i.e., PSπ) and the student classifier hT tries to imitate the teacher
on the target domain. Specifically, Proposition 1 implies finding the optimal transport map H∗: H∗#PT = PSπ so that for



any x ∼ PT , hT (x) should mimic the prediction of the expert teacher hS over H∗ (x) ∼ PSπ . This observation forms the
foundation of our proposed Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning (MOST).

Proposition 1 further means that among the transport maps H transporting PT to PSπ , which incurs a minimal label shift and
enables the student hT easiest to imitate its teacher hS . Inspired by the statement (iv) in Theorem 2 (i.e.,Wd

(
PπS,hS ,PT,hT

)
is lower-bounded by λWdX

(
PSπ,PT

)
– the discrepancy gap between the mixture of source distributions and the target one),

to reduce the data shift, we propose to map both
(
XS ,PSπ

)
and

(
X T ,PT

)
to a common joint space via two generators GS

and GT and solve the following optimization problem:

min
hT ,GT

{
L
(
hS ◦GS , fS ,PSπ

)
+Wd

(
QT,hT ,QπS,hS

)}
, (5)

where QT,hT is similar to PT,hT but on the joint space and consists of the pairs
(
GT (x) , hT

(
GT (x)

))
for x ∼ PT and

QπS,hS is similar to PπS,hS but on the joint space and consists of the pairs
(
GS (x) , hS

(
GS (x)

))
for x ∼ PS . Note that both

hS and hS1:K now act on GS (·).

Theorem 5. Let hS∗ ◦GS∗ be the optimal teacher and hT∗ , G
T
∗ be the optimal solutions of the optimization problem in (5).

Assume that GT , hT are in the families having infinite capacity (i.e., those can approximate any continuous function up to
any level of precision, e.g., neural nets), we have1

min
hT ,GT

Wd

(
PG

T

T,hT ,PG
T

T,fGT
T

)
≤ L

(
hS∗ ◦GS∗ , fS ,PSπ

)
+Wd

(
PG

S
∗

S,fS
∗
,PG

T
∗

T,fT
∗

)
, (6)

where fS∗ := f
GS
∗

S and fT∗ := f
GT
∗

T .where fS∗ := f
GS
∗

S and fT∗ := f
GT
∗

T .

Proof. Let fG
T

T be the induced ground-truth labeling function over the joint space for which fG
T

T predicts GT (x) as same
as fT predicts x for x ∼ PT . Let fG

S

S be the induced ground-truth labeling function over the joint space for which fG
S

S

predicts GS (x) as same as fS predicts x for x ∼ PSπ . We have the following inequality

Wd

(
PG

T

T,hT ,PG
T

T,fGT
T

)
≤ Wd

(
PG

T

T,hT ,PG
S

S,hS

)
+Wd

(
PG

S

S,hS ,PG
S

S,fGS
S

)
+Wd

(
PG

S

S,fGS
S

,PG
T

T,fGT
T

)
(1)

≤ Wd

(
PG

T

T,hT ,PG
S

S,hS

)
+ L

(
hS , fG

S

S ,PGS
π

)
+Wd

(
PG

S

S,fGS
S

,PG
T

T,fGT
T

)
(2)
= Wd

(
PG

T

T,hT ,PG
S

S,hS

)
+ L

(
hS ◦GS , fS ,PSπ

)
+Wd

(
PG

S

S,fGS
S

,PG
T

T,fGT
T

)
, (7)

where PGS

S,hS consists of the pairs
(
GS (x) , hS

(
GS (x)

))
for which x ∼ PSπ, PGS

S,fGS
S

consists of the pairs(
GS (x) , fG

S

S

(
GS (x)

))
for which x ∼ PSπ, PGT

T,fGT
T

consists of the pairs
(
GT (x) , fG

T

T

(
GT (x)

))
for which x ∼ PT ,

PGT

T,hT consists of the pairs
(
GT (x) , hT

(
GT (x)

))
for which x ∼ PT , and PGS

π = GS#PSπ .

We note that the derivation in (1) is from the statement (iv) in Theorem 2 and to reach (2), we derive as follows:

L
(
hS , fG

S

S ,PG
S

π

)
=

∫
dY

(
hS (y) , fG

S

S (y)
)
dPG

S

π =

∫
dY

(
hS
(
GS (x)

)
, fG

S

S (GS (x))
)
dPSπ

=

∫
dY
(
hS
(
GS (x)

)
, fS (x)

)
dPSπ = L

(
hS ◦GS , fS ,PSπ

)
,

where the second identity is due to GS#PSπ = PGS

π .

To proceed, we first observe that

min
hS ,hT ,GS ,GT

{
Wd

(
PG

T

T,hT ,PG
S

S,hS

)
+ L

(
hS ◦GS , fS ,PSπ

)}
= min
hS ,GS

{
L
(
hS ◦GS , fS ,PSπ

)}
, (8)

1We define fG as the induced labeling function over the joint space such that fG predicts G (x) as same as f predicts x.



where we consider hS in the family of expert teachers (i.e., those which are a combination of the domain experts).

Indeed, let
(
h̄S , ḠS

)
:= argmin

hS,GS

L
(
hS ◦GS , fS ,PSπ

)
. Thanks to the infinite capacity of the families, we can choose the

generator ḠT and the target classifier h̄T such that ḠT#PT = ḠS#PS and h̄T = h̄S (i.e.,Wd

(
PḠT

T,h̄T ,PḠ
S

S,h̄S

)
= 0).

Then we have

min
hS ,GS

{
L
(
hS ◦GS , fS ,PSπ

)}
=Wd

(
PḠ

T

T,h̄T ,PḠ
S

S,h̄S

)
+ L

(
h̄S ◦ ḠS , fS ,PSπ

)
≥ min
hS ,hT ,GS ,GT

{
Wd

(
PG

T

T,hT ,PG
S

S,hS

)
+ L

(
hS ◦GS , fS ,PSπ

)}
.

Therefore, (8) holds as the reverse inequality is obvious.

Now let hS∗ , h
T
∗ , G

S
∗ , G

T
∗ be the optimal solutions of the left side of (8). Then by (8), we must have
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T
∗

T,hT
∗
,PG

S
∗

S,hS
∗

)
+ L

(
hS∗ ◦GS∗ , fS ,PSπ

)
= min
hS ,GS

L
(
hS ◦GS , fS ,PSπ

)
.

This implies thatWd

(
PG

T
∗

T,hT
∗
,PG

S
∗

S,hS
∗

)
= 0 and

(
hS∗ , G

S
∗
)

= argmin
hS,GS

L
(
hS ◦GS , fS ,PSπ

)
. From Theorem (2), we see that

the first identity means that GS∗#PSπ = GT∗#PT and hT∗ = hS∗ .

To further proceed, we refer to the triangle inequality in (7) as
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)
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T
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T

)
.

Taking a minimization and usingWd
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∗
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∗
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∗
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)
= 0, we obtain
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3 CLUSTERING VIEW OF OPTIMAL TRANSPORT

We now present the clustering view of optimal transport which assists us to intuitively explain the training of teacher and
student. Let us start with the clustering view of optimal transport.

Let P and Q be two discrete distributions defined as

P :=
1

m

m∑
i=1

δui andQ :=
1

n

n∑
j=1

δvj ,

where δx indicates a Dirac measure cantered at x.

Without loss of generality, we can assume that n ≤ m and consider the Wasserstein distanceWd (P,Q) w.r.t a metric d. The
following theorem characterizes the clustering view of optimal transport.



Table 1: Small, medium and large network architecture of MOST. The Leaky ReLU (lReLU) parameter a is set to 0.1. K and
M denote the number of source domains and the number of classes respectively.

Architecture Small Large
Input size 2048 32× 32× 3

Generator GS1:K , G
T

(Share weights)

instance normalization
256 dense, ReLU 3× 3 conv. 64 lReLU
dropout, p = 0.5 3× 3 conv. 64 lReLU

Gaussian noise, σ = 1 3× 3 conv. 64 lReLU
2× 2 max-pool, stride 2

dropout, p = 0.5
Gaussian noise, σ = 1
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU

2× 2 max-pool, stride 2
dropout, p = 0.5

Gaussian noise, σ = 1

Classifier hS1:K , h
T

M dense, softmax 3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
global average pool
M dense, softmax

Source domain
discriminator C

K dense, ReLU 100 dense, ReLU
K dense, ReLU

φ
1 dense, linear 100 dense, ReLU

1 dense, linear

Theorem 6. Consider the following optimization problem:

min
v1:n

Wd (P,Q) .

Let v∗1:n and Q∗ := 1
n

∑n
j=1 δv∗j be its optimal solution and T ∗ be the optimal transport map as

T ∗ = argminT :T#P=Q∗
m∑
i=1

d (ui, T (ui)) .

Furthermore, let c∗1:n and σ∗ denote the optimal solution of the following clustering problem

min
c1:n,σ∈Π(m,n)

m∑
i=1

d
(
ui,vσ(i)

)
,

where Π (m,n) is the set of surjective maps from {1, ...,m} to {1, ..., n}. We then have c∗1:n = v∗1:n and T ∗ (ui) = v∗σ∗(i).

Proof. The proof is quite obvious from the definition of optimal transport and the fact that T#P = Q means T (ui) =
vσ(i),∀i = 1, ..., n for some σ ∈ Π (m,n).

4 IMPLEMENTATION SPECIFICATION AND ADDITIONAL EXPERIMENTAL RESULTS

4.1 DATA PREPARATION AND PREPROCESSING

Digits-five consists of five-digit datasets: MNIST (mt), MNIST-M (mm), USPS (up), SVHN (sv), Synthetic Digits (sy).
There are 10 classes corresponding to digits ranging from 0 to 9 in each domain. We resize the resolution of digit images to
32× 32, and normalize the value of each pixel to the range of [−1, 1].



Table 2: The experimental settings in all transfer tasks. The batch size column denotes the total batch sizes of all source
domains in each iteration. α, β, γ are trade-off parameters of LWS ,Lpl,Lclus respectively in our final objective function
(11).

dataset domains classes pretrained model input size batch size iterations learning rate λ update φ (times) ε α β γ
Digits-five 5 10 None 32× 32 200 80000 2× 10−4 10.0 5 0.1 0.1 {0.1, 1.0} {0.0, 0.1}

Office-Caltech10 4 10 ResNet-101 224× 224 60 20000 1× 10−4 10.0 5 0.1 0.1 0.1 0.1
Office-31 3 31 AlexNet 227× 227 62 20000 1× 10−4 10.0 5 0.1 0.1 0.1 0.1

Office-Caltech10 is categorized in four different domains: Amazon (A), Caltech (C), DSLR (D), and Webcam (W) with 10
common classes and 2533 images in total. The resolutions of images are resized to 224× 224 for finetuning pre-trained
ResNet-101.

Office-31 contains 4,110 images with 31 classes, and is categorized into three domains: Amazon (A), DSLR (D), and
Webcam (W). To perform finetuning on AlexNet, we resized the resolutions of images in this dataset to 227× 227.

4.2 ARCHITECTURE/HYPERPARAMETERS

4.2.1 Network architecture

We use a small network to finetune pretrained AlexNet and ResNet-101, while a larger network is employed to train on digit
images. These network types are described in Table 1. We empirically find that using a shared-weight generator improves
the imitation learning capability of the student to the teacher since target and source samples are closer in the joint space. To
reduce the overfitting, excluding dense layers in φ network, we add the batch normalization layers on top of convolutional
and dense layers. Finally, we implement our MOST in Python using TensorFlow (version 1.9.0), an open-source software
library for Machine Intelligence developed by the Google Brain Team. All experiments are run on a computer with an
NVIDIA Tesla V100 SXM2 with 16 GB memory.

4.2.2 Hyperparameters

In the loss LWS , a number of parameters are crucial to make the cross-domain imitation possible such as λ and ε. Specifically,
λ is set to 10.0 on all transfer tasks, while the coefficient ε specifies the shape of joint density for the optimal transport
plan and is set to 0.1 in all settings. Finally, we apply Adam optimizer (β1 = 0.5, β2 = 0.999) with Polyak averaging. The
learning rate along with the number of training iterations are depicted in Table 2.

4.3 ADDITIONAL ABLATION STUDY

4.3.1 Parameter Sensitivity

We evaluate the effects of the trade-off parameters α, β, γ in Figure 1. We search all α, β and γ in the grid of
{0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0} and report the test accuracy on two transfer tasks “→A” and “→C” on Office-Caltech10.
The results show that the model yields the stable performance when α from 0.005 to 0.5, β from 0.05 to 5.0, and γ from
0.005 to 0.1. We find that our MOST can achieve high performance when α = β = γ = 0.1, hence we suggest to pick this
value on most of our experiments.

4.3.2 Feature visualization

We visualize the features of ResNet-101 and our methods on “→C” tasks by t-SNE in Figure 2. Figure 2a shows that
ResNet-101 classifies quite well on the mixture of source domains (A, D, W) but poorly on the target domain (C), while the
representation in Figure 2b is generated by our method with better alignment. MOST represents the ability of reducing the
data shift and label shift between two domains to exactly achieve 10 clusters corresponding to 10 classes of Office-Caltech10.



(a) α (β = γ = 0.1) (b) β (α = γ = 0.1) (c) γ (α = β = 0.1)

Figure 1: Test accuracy (%) when tweaking α, β and γ on transfer tasks “→A” and “→C”.

(a) ResNet-101 (b) MOST

Figure 2: The t-SNE visualization of the transfer task “→C” with label and domain information. Each color denotes a class
while the circle and cross markers represent the mixture of source and target data respectively.

4.3.3 Effect of parameters on imitation learning

The loss LWS is introduced in Section 5.4.2 of the main paper. In this section, we further investigate sensitivity of two
parameters, λ1 and λ2, in d

(
GS
(
xS
)
, GT

(
xT
))

to testify the imitation ability of MOST. They are trade-off parameters of
dX(., .) and dY(., .), respectively as follows:

LWS = max
φ

{
EPT

[
−ε log

(
EPS

π

[
exp

{
φ(GS(xS))−d(GS(xS),GT (xT ))

ε

}])]
+ EPS

π

[
φ
(
GS
(
xS
))]}

,

where d
(
GS
(
xS
)
, GT

(
xT
))

= λ1

∥∥GT (xT )−GS (xS)∥∥ + λ2dY
(
hT
(
GT
(
xT
))
, hS

(
GS
(
xS
)))

, while xT ∼
PT ,xS ∼ PSπ. Adjusting λ1 and λ2 helps to mitigate the data shift and label shift effectively. Figure 3a and 3b por-
tray the model performance with a diverse range of values λ1 and λ2, respectively. After searching them in the grid of
{0.01, 0.1, ..., 100.0}, we observe from Figure 3 that our model is more sensitive to λ2 since it directly controls the imitation
capability of the student. In general, the training process of MOST is stable with λ1 = 10.0 and λ2 = 1.0.

4.3.4 Choosing the mixing proportion π

This ablation study aims to testify the effect of choosing the mixture weights π. We conduct experiments on two scenarios:
i) π is a uniform distribution

[
1
K , ...,

1
K

]
(U), and ii) π is proportional to the number of training examples in the source

domains (i.e., NS
1:K) (P). The experimental results in Table 3 show the competitive results between two approaches, which

means that the imitation capability is not affected by changing the mixture distribution PπS,hS in (8).



(a) λ1 (λ2 = 1.0) (b) λ2 (λ1 = 10.0)

Figure 3: Test accuracy (%) when tweaking λ1 and λ2 on “→mm” task.

Table 3: Results (%) of different choices of π on Office-Caltech10.

Settings →W →D →C →A Avg
P 99.7 100.0 95.1 96.5 97.8
U 100.0 100.0 95.7 96.3 98.0
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