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A EVALUATION OF p(x?|yD)

The probability p(x?|yD) can be expressed as:

p(x?|yD) = p(f(x?) ≥ f(x) ∀x ∈ X ?|yD)

= p(Jx?fX? ≤ 0|yD)

where Jx? is a matrix of size |X ?| × |X ?| with 0 entries ex-
cept for Jii = 1, Jij = −1 if i 6= j where j is the index of
x? in X ?. As p(fX? |yD) is the p.d.f. of a multivariate Gaus-
sian (1), so is p(Jx?fX? |yD). Hence, p(Jx?fX? ≤ 0|yD)
can be computed efficiently.

B IMPORTANCE SAMPLING FROM
p(fX ? |yD,x

?)

Let f\? , (f(x′))>x′∈X?\{x?} denote the function values
at X ? \ {x?}. We have p(fX? |yD,x?) ∝ p(fX? ,x?|yD)
which equals

p(x?|f\?,yD)p(f\?|yD)p(f(x?)|x?, f\?,yD) .

We can first draw samples of fX? from the
p.d.f. p(f\?|yD)p(f(x?)|x?, f\?,yD), then weight
these samples with p(x?|f\?,yD). Sampling from
p(f\?|yD)p(f(x?)|x?, f\?,yD) is a 2-step process:

1. Drawing a sample of f\? from p(f\?|yD) which is the
p.d.f. of a multivariate Gaussian distribution.

2. Given a sample of f\?, drawing a sample of f(x?)
from p(f(x?)|x?, f\?,yD) which is a lower-truncated
Gaussian distribution (truncation of lower tail at f+ ,
maxx′∈X?\{x?} f(x′)).

*Equal contribution

The weight of a sample fX? is p(x?|f\?,yD) which can be
computed efficiently.

p(x?|f\?,yD)

=

∫
p(x?, f(x?)|f\?,yD) df(x?)

=

∫
p(x?|fX? ,yD)p(f(x?)|f\?,yD) df(x?)

=

∫
If(x?)≥f+p(f(x?)|f\?,yD) df(x?)

= 1− Φp(f(x?)|f\?,yD)

(
f+
)

where Φp(f(x?)|f\?,yD) (f+) is the c.d.f. of the GP predic-
tive belief p(f(x?)|f\?,yD) evaluated at f+, and If(x?)≥f+

is an indicator function such that it is 1 if f(x?) ≥ f+ and
0 otherwise.

C CLOSED-FORM EXPRESSION OF
p(yx|fX ? ,yD)

At a BO iteration, let z , [fX? ; yD]> be a column vec-
tor where the first |X ?| elements are fX? and the last |D|
elements are observations yD. Let t be a column vec-
tor where the first |X ?| inputs are X ? and the last |D|
inputs are observed inputs D. We have the expression:
p(yx|fX? ,yD) = N (yx;µ+

x , σ
2
x|X? + σ2

n) specified by

µ+
x , kxt

(
Ktt + σ2

nĨ
)−1

z (1)

σ2
x|X? , kxx − kxt

(
Ktt + σ2

nĨ
)−1

ktx (2)

where Ĩ is a matrix of size (|X ?| + |D|) × (|X ?| + |D|)
such that Ĩij = 1 if i = j > |X ?| and 0 otherwise. Note
that µ+

x and σx|X? are the mean and standard deviation of
p(f(x)|fX? ,yD), which are used in Section E.
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D EXPECTATION PROPAGATION
APPROXIMATION FOR p(fX ?|yD,x

?)

To approximate p(fX? |yD,x?), it is expressed as

p(fX? |yD,x?) ∝ p(fX? |yD)p(x?|fX? ,yD)

= p(fX? |yD)
∏

x′∈X?\{x?}

If(x?)≥f(x′)

= p(fX? |yD)
∏

x′∈X?\{x?}

Ic>
x′ fX?≥0

where c′x is a column vector of length |X ?| with 0 entries
except for the i-th entry of value −1, the j-th entry of value
1 where i and j are the indices of x′ and x? in X ?, respec-
tively; I is the indicator function.

The p.d.f. p(fX? |yD,x?) is approximated with a
Gaussian distribution by EP, i.e., p(fX? |yD,x?) ≈
N (fX? ;µep,Σep) , qep(fX? |yD,x?). As in PPES Shah
and Ghahramani [2015], to construct this Gaussian approx-
imation, each indicator term (involved I) is approximated
with a univariate scaled Gaussian p.d.f.:

qep(fX? |yD,x?) , N (fX? ;µep,Σep)

= N (fX? ; m̃, K̃)
∏

x′∈X?\{x?}

Z̃x′N (c>x′fX? ; µ̃x′ , τ̃x′)

where N (fX? ; m̃, K̃) denotes the GP predictive be-
lief of fX? given yD, the scale factor Z̃x′ and the
variance τ̃x′ are positive, µ̃x′ ∈ R. The parame-
ters {Z̃x′ , µ̃x′ , τ̃x′}x′∈X?\{x?} are call the site param-
eters, which are optimized such that the Kullback-
Leibler divergence of qep(fX? |yD,x?)/

∫
p̃(fX?) dfX?

from p(fX? |yD,x?) is minimized, i.e., their means and co-
variance matrices match. As {Z̃x′}x′∈X?\{x?} are indepen-
dent from fX? , we only optimize {µ̃x′ , τ̃x′}x′∈X?\{x?}.

As the product of Gaussian p.d.f. leads to a Gaussian p.d.f.,
we have

Σep =

K̃−1 +
∑

x′∈X?\{x?}

1

τ̃x′
cx′c>x′

−1 (3)

µep = Σep

K̃−1m̃ +
∑

x′∈X?\{x?}

µ̃x′

τ̃x′
cx′

 . (4)

To update the site parameters, we first compute the cavity
distributions

p\x′(fX?) ,
qep(fX? |yD,x?)

Z̃x′N (c>x′fX? ; µ̃x′ , τ̃x′)
.

Note that in the next step, we would like to approximate
the distribution of c>x′fX? , so we only require the cavity
distribution of the r.v. c>x′fX? which is denoted as:

p\x′(c>x′fX?) ,
p̃(c>x′fX?)

Z̃x′N (c>x′fX? ; µ̃x′ , τ̃x′)

where p̃(c>x′fX?) = N (c>x′fX? ; c>x′µep, c
>
x′Σepcx′). Let the

Gaussian mean and variance of p\x′(c>x′fX?) are µ\x′ and
τ\x′ , respectively, we have

τ\x′ =
((

c>x′Σepcx′
)−1 − τ̃−1x′

)−1
µ\x′ = τ\x′

(
c>x′µep

c>x′Σepcx′
− µ̃x′

τ̃x′

)
.

Next, the projection step of EP is to do moment
matching of Z̃x′N (c>x′fX? ; µ̃x′ , τ̃x′)p\x′(c>x′fX?) with
Ic>

x′ fX?≥0 p\x′(c>x′fX?). We use the derivatives of the zeroth

moment to compute moments of Ic>
x′ fX?≥0 p\x′(c>x′fX?),

denoted as µ̂x (mean) and τ̂x (variance). The zeroth moment
is computed as:

Ẑx′ ,
∫

Ic>
x′ fX?≥0 p\x′(c>x′fX?) d

(
c>x′fX?

)
=

∫
Ic>

x′ fX?≥0 N (c>x′fX? ;µ\x′ , τ\x′) d
(
c>x′fX?

)
= Φ(βx′) where βx′ ,

µ\x′

√
τ\x′

∂Ẑx′

∂µ\x′
=

Φ(βx′)

∂µ\x′
=
φ(βx′)
√
τ\x′

(5)

∂Ẑx′

∂τ\x′
=

Φ(βx′)

∂τ\x′
= −1

2

µ\x′√
τ3\x′

φ(βx′) (6)

where φ and Φ are the p.d.f. and c.d.f. of the standard Gaus-
sian distribution, respectively. On the other hand, we can
express the derivatives of Ẑx′ as:

∂Ẑx′

∂µ\x′
=

∂

∂µ\x′

∫
Ic>

x′ fX?≥0 N (c>x′fX? ;µ\x′ , τ\x′) d
(
c>x′fX?

)
= Ẑx′

µ̂x′

τ\x′
− Ẑx′

µ\x′

τ\x′

= Φ(βx′)
µ̂x′

τ\x′
− Φ(βx′)

µ\x′

τ\x′
(7)

∂Ẑx′

∂τ\x′
=

∂

∂τ\x′

∫
Ic>

x′ fX?≥0 N (c>x′fX? ;µ\x′ , τ\x′) d
(
c>x′fX?

)
=

1

2
Ẑx′

µ̂2
x′ + τ̂x′

τ2\x′
− Ẑx′

µ\x′

τ2\x′
µ̂x′ +

1

2
Ẑx′

µ2
\x′

τ2\x′
− 1

2

Ẑx′

τ\x′

=
1

2
Φ(βx′)

µ̂2
x′ + τ̂x′

τ2\x′
− Φ(βx′)

µ\x′

τ2\x′
µ̂x′

+
1

2
Φ(βx′)

µ2
\x′

τ2\x′
− 1

2

Φ(βx′)

τ\x′
. (8)

Equating (5) with (7), and (6) with (8), we have

µ̂x′ =
√
τ\x′

φ(βx′)

Φ(βx′)
+ µ\x′

τ̂x′ = −µ\x′
√
τ\x′

φ(βx′)

Φ(βx′)
− µ̂2

x′ + 2µ\x′ µ̂x′ − µ2
\x′ + τ\x′ .



Then, we update the site parameters to get
the moments of Z̃x′N (c>x′fX? ; µ̃x′ , τ̃x′) =
Ic>

x′ fX?≥0 p\x′(c>x′fX?)/p\x′(c>x′fX?) as

τ̃x′ =
(
τ̂−1x′ − τ−1\x′

)−1
µ̃x′ = τ̃x′

(
τ̂−1x′ µ̂x′ − τ−1\x′µ\x′

)
.

Finally, we update the parameters µep and Σep by (3) and (4).
The process is repeated for all x′ ∈ X ? \ {x?} until conver-
gence.

E CLOSED-FORM EXPRESSION OF
p(f(x)|yD,x

?)

We can express the predictive posterior distribution
p(f(x)|yD,x?) as:

p(f(x)|yD,x?)

=

∫
p(f(x)|fX? ,yD,x

?)p(fX? |yD,x?) dfX?

=

∫
p(f(x)|fX? ,yD)p(fX? |yD,x?) dfX?

≈
∫
p(f(x)|fX? ,yD)qep(fX? |yD,x?) dfX?

=

∫
N (f(x);µ+

x , σ
2
x|X?)N (fX? ;µep,Σep) dfX? .

where p(f(x)|fX? ,yD) , N (f(x);µ+
x , σ

2
x|X?); µ+

x and
σ2
x|X? are defined in Eq. 1 and Eq. 2, respectively.

Let r , K−1+ ktx, a , rX? , and b , r>DyD where rX? and
rD are the first |X ?| and the last |D| elements of the column
vector r. Then, we have

µ+
x = a>fX? + b

p(f(x)|yD,x?) ≈
∫
N (f(x); a>fX? + b, σ2

x|X?)

×N (fX? ;µep,Σep) dfX?

= N (f(x); a>µep + b, σ2
x|X? + a>Σepa) .

Hence,

p(yx|yD,x?) ≈ N (f(x); a>µep + b, σ2
x|X? + a>Σepa + σ2

n)

, qep(yx|yD,x?) .

F AN EXAMPLE ON EXPLOITATION VS.
EXPLORATION OF DIFFERENT TES
APPROXIMATION METHODS

Fig. 1 shows an example where TESsp and TESep select
different inputs. In particular, TESep selects an input where
the GP posterior mean of its function value is higher than
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Figure 1: An example: TESep exploits more than TESsp. The
top plot shows the GP posterior mean as a solid blue line,
uncertainty (variance) as dashed green lines, and data points
as blue points. The dotted red lines show the positions of
X ?. The red crosses indicate the maximizers of acquisition
functions.
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Figure 2: Plot of TESep against the batch size for n = 5.

that of the input TESsp selects. Scrutinizing more carefully
on the acquisition function values f(0) and f(2), we ob-
serve that the difference in values of TESsp is smaller than
that of TESep. In these cases, it means that TESep has a
stronger preference to a larger mean function value than
TESsp. Hence, it is observed in these cases that TESep ex-
ploits more than TESsp.

G TESEP OF DIFFERENT BATCH SIZES

Note that α?(yD,B) is the information gain about x?

through observing yB. Thus, it is comparable between
batches of different sizes. Given the size of X ? as 5, Fig. 2
shows the maximum TESep value (i.e., maximum infor-
mation gain) for different batch sizes. We observe that in-
creasing the batch size to be larger than |X ?| only yields
an insignificant amount of TESep. Therefore, the size of
X ? should be at least the batch size to make the most out
of the observations yB. Besides, we can select the batch
size adaptively at each BO iteration based on a trade-off
between the increase in the information gain and the cost of
an observation.
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(a) Branin. (b) Hartmann-3D.

Figure 3: Additional BO results.

H ADDITIONAL EXPERIMENT
RESULTS

Fig. 3 shows the average of the results over 10 random
runs for 2 synthetic functions: Branin defined in [0, 1]2,
and Hartmann-3D defined in [0, 1]3 [Lizotte, 2008]. As our
optimization problem is maximization and these synthetic
functions are often minimized, we take the negative values
of these functions as objective functions. In these experi-
ments, the noise variance is fixed to σ2

n = 10−4. Note that
unlike the synthetic function we sample from a GP posterior,
the assumption of using an isotropic SE kernel1 might be
violated in these synthetic functions. However, the empir-
ical results in Fig. 3 still show a reasonable performance.
Overall, TES acquisition functions outperform others, but
the difference is less obvious in the Branin function. It could
be because Branin is a simple function to optimize (i.e.,
having 3 local maxima in a 2-dimensional input space). In
the Hartmann-3D experiment, EI outperforms PES, which
could be because PES explores more than EI as explained
by Hernández-Lobato et al. [2014].

Additionally, the box plots of IR in the last iteration of
random experimental runs are shown in Figs. 4, 5, and 6.

1A kernel kxx′ is isotropic if it depends on |x− x′| only.
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Figure 4: Box plots of BO with |B| = 1.
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(a) The CIFAR-10. (b) The face attack function.

Figure 5: Box plots of batch BO results for CIFAR-10 and
the face attack function. |B| = 20.
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Figure 6: Box plots of batch BO (i.e., |B| > 1) results for
the GP sampled function, Hartmann-4D, and log10P.
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