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A SUPPLEMENTARY MATERIAL

A.1 DETAILS OF THE EXPERIMENTS

In all the experiments set of B-splines of degree 2 with
knots uniformly distributed over the distribution support
was used as basis functions for rank-1 feature maps. In all
the experiments, Riemannian optimization with the optimal
learning rate was used if not stated otherwise. In Section 5.3
Adam optimizer from PyTorch was used with default pa-
rameters. Sampling from TTDE was performed with 30
binary search iterations. In all the experiments, the batch
size was 210 elements per iteration. For all toy and model ex-
amples, we used infinite data generators. In real-world data
experiments in Section 5.4, the rank r of the TTDE was 64,
and the number of basis functions m was 128. Implemen-
tation of FFJORD was taken from https://github.
com/rtqichen/ffjord, implementations of GLOW,
Real NVP and MAF were taken from https://github.
com/ikostrikov/pytorch-flows and used with
parameters recommended by authors.

The first three components of the distribution used in Sec-
tion 5.3 are depicted on Figure 1. Other d− 3 components
are standard Gaussian noise.

A.2 EXISTING MEASURES OF DISCREPANCY

KL-divergence is a popular measure of discrepancy between
two distributions, and, during training, is presented in the
form of the maximum likelihood problem:

KL(p ‖ qθ) = −Ex∼p(x) log qθ(x) + const.

Different models were built to optimize this kind of discrep-
ancy (including autoregressive models [Ryder et al., 2018],
normalizing flows [Kobyzev et al., 2020], energy-based
models [LeCun et al., 2006]). The main downside of the
maximization of the likelihood is that it explicitly depends
on the partition function of the approximation. Thus either

Figure 1: Visualization of the first three dimensions of the
model distribution used in this work. It consists of 7 identical
Gaussian distributions shown with different colours. Other
d− 3 dimensions are standard Gaussian noise.

the models should be constructed in such a way that the
partition function could be efficiently calculated, or expen-
sive Monte-Carlo methods should be used to approximate
it during the optimization. We can not use KL-divergence
to train TTDE because, although it has a tractable partition
function, function in tensor-train format is not guaranteed
to be positive.

Fisher discrepancy loss does not depend on the partition
function of the approximation:

L(p, qθ)

= Ex∼p(x) ‖∇ log p(x)−∇ log qθ(x)‖2

= Ex∼p(x) ‖∇ log qθ(x)‖2 − Ex∼p(x) ∆ log qθ(x) + const.

Here const depends only on p and does not depends on qθ.
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Because of the gradient of the logarithm, the normalization
constant cancels out. The downside of this loss is that for
complex models like neural networks, the Laplace operator
is hard to calculate from both computational and numerical
stability points. This loss can be used to train TTDE if we
parameterize log p(x) instead of parameterizing p(x) with
the tensor-train model. However, in that case, we would lose
the ability to calculate partition function and cumulative
density function and thus would not be able to exact sample.

Different versions of adversarial loss were created and suc-
cessfully used to learn complex distributions like images
or speech. They use a separate model as a critic during the
training process. Consider the following two variants for
vanilla GAN and WGAN, respectively:

L(p, qθ) =

= max
D

{
Ex∼p(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))]

}
,

L(p, qθ) =

= max
D

{
Ex∼p(x) [D(x)]− Ez∼pz(z) [D(G(z))]

}
.

Generator G maps latent variable z with known distribution
pz to the sample space x, and discriminator D tries to dis-
tinguish between real samples and generated samples. In
these cases, qθ is defined implicitly. Separate choice of the
critic architecture, instability of the optimization of the min-
max problem, and the intractability of the implicit density
function qθ are the problems that come with the power of
adversarial models.

A.3 RIEMANNIAN OPTIMIZATION

Orthogonalization. Left- and right-orthogonalization of
the tensor-train decomposition is three sets of matrices: set
of left-orthogonal cores U1, . . . ,Ud, set of right-orthogonal
cores V 1, . . . ,V d and set of unrestricted cores S1, . . . ,Sd,
such that

G1 ×1
2 · · · ×1

d Gd = (1)

U1 ×1
2 · · ·U i−1 ×1

i Si ×1
i+1 V i+2 · · · ×1

d V d

for each i, where left-orthogonality means

〈Uk[:, :, i], Uk[:, :, j]〉 = δij ,

and right-orthogonality means

〈Vk[i, :, :], Vk[j, :, :]〉 = δij .

Tangent space. Given the left- and right-
orthogonalization of the given tensor-train decomposition

of tensor X , tangent space TX(M) in that point could be
constructed as follows:

TX(M) ={
T = U1 ×1

2 · · ·Ui−1 ×1
i S

δ
i ×1

i+1 Vi+1 · · · ×1
d Vd,

where 1 ≤ i ≤ d, Sδi ∈ Rri−1×m×ri

}
.

Although tensor T is presented as a sum of d tensors of
rank r, they share common cores. Because of that, T can be
represented with rank 2r:

T =[
U1 Sδ1

] [ V2
Sδ2 U2

]
· · ·
[
Vd−1
Sδd−1 Ud−1

] [
Sδd
Vd

]

Automatic differentiation. If we define operator

TX(Sδ1 , · · · , Sδd) =

d∑
i=1

U1 ×1
2 · · ·Ui−1 ×1

i S
δ
i ×1

i+1 Vi+1

that maps delta-cores
{
Sδi
}d
i=1

into the point in tangent
plane, then for any function g(X) : Rn1×···×nd → R pro-
jection of the true gradient ∇(X) onto the tangent plane
TX(M) could be efficiently calculated as follows:

PTX(M)∇g(X) = TX(S̃δ1 , · · · , S̃δd),

where

S̃δi =
∂

∂Sδi
g(TX(Sδ1 , · · · , Sδd)

∣∣∣∣
Sδ1=S1,Sδ2=O2,··· ,Sδd=Od

.

Here S1 is defined in (1), and Oi is core with all elements
equal to zero. All S̃δi could be calculated using automatic
differentiation of function g ◦ TX .
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