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1 POSITIVE DEFINITE FM KERNELS

For a weighted undirected graph G = (V, E) with graph Laplacian L(G) = UΛUT . Frequency modulating kernels are
defined as

k((c, v), (c′, v′)‖ θ, β) = [

‖V ‖∑
i=1

[U ]:,if(λi, ‖ c− c′ ‖θ‖β)[U ]:,i]v,v′ (1)

where [U ]:,i are eigenvectors of L(G) which are columns of U and λi = [Λ]ii are corresponding eigenvalues. c and c′ are
continuous variables in RDC , θ ∈ RDC is a kernel parameter similar to the lengthscales in the RBF kernel. β ∈ R is a kernel
parameter from kernels derived from the graph Laplacian.

Theorem 1.1. If f(λ, ‖ c− c′ ‖θ‖β) defines a positive definite kernel on (c, c′) ∈ RDC ×RDC , then a FreMod kernel
defined with such f is positive definite jointly on (c, v).

Proof.

k((c, v), (c′, v′)‖ θ, β) =
[ ‖V ‖∑
i=1

[U ]:,if(λi, ‖ c− c′ ‖θ‖β)[U ]:,i
]
v,v′

=

‖V ‖∑
i=1

[U ]v,if(λi, ‖ c− c′ ‖θ‖β)[U ]v′,i (2)

Since a sum of positive definite(PD) kernels is PD, we prove PD of frequency modulating kernels by showing that
ki((c, v), (c′, v′)‖ θ, β) = [U ]v,if(λi, ‖ c− c′ ‖θ‖β)[U ]v′,i is PD.

Let us consider a ∈ RS , D = {(c1, v1), · · · , (cS , vS)}, then

aT


[U ]v1,if(λi, ‖ c1− c1 ‖θ|β)[U ]v1,i · · · [U ]v1,if(λi, ‖ c1− cS ‖θ|β)[U ]vS ,i
[U ]v2,if(λi, ‖ c2− c1 ‖θ|β)[U ]v1,i · · · [U ]v2,if(λi, ‖ c2− cS ‖θ|β)[U ]vS ,i

... · · ·
...

[U ]vS ,if(λi, ‖ cS − c1 ‖θ|β)[U ]v1,i · · · [U ]vS ,if(λi, ‖ cS − cS ‖θ|β)[U ]vS ,i

a

= (a ◦[U ]:,i)
T


f(λi, ‖ c1− c1 ‖θ‖β) · · · f(βλi, ‖ c1− cS ‖θ|β)
f(λi, ‖ c2− c1 ‖θ‖β) · · · f(βλi, ‖ c2− cS ‖θ|β)

... · · ·
...

f(λi, ‖ cS − c1 ‖θ‖β) · · · f(βλi, ‖ cS − cS ‖θ|β)

 (a ◦[U ]:,i) (3)

where ◦ is Hadamard(elementwise) product and [U ]:,i = [[U ]v1,i, · · · , [U ]vS ,i]
T .

By letting a′ = a ◦[Ui]πi(v:),n, since f(λi, ‖ c− c′ ‖θ‖β) is PD, we show that ki((c, v), (c′, v′)‖ θ, β) =
ui,vf(λi, ‖ c− c′ ‖θ‖β)ui,v′ is PD.
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2 NONNEGATIVE VALUED FM KERNELS

Theorem 2.1. For a connected and undirected graph G = (V, E) with non-negative weights on edges, define a kernel
k(v, v′) = [Uf(Λ)UT ]v,v′ where U and Λ are eigenvectors and eigenvalues of the graph Laplacian L(G) = UΛUT . If f is
any non-negative and strictly decreasing convex function on [0,∞), then K(v, v′) ≥ 0 for all v, v′ ∈ V .

Proof. For a connected and weighted undirected graph G = (V, E), the graph Laplacian L(G) has exactly one 0 eigenvalue
and the corresponding eigenvector 1/

√
D[1, · · · , 1]T when | V | = D.

We show that
min
v,v′

kG(v, v′) = min
p,q=1,··· ,D

[Uf(Λ)UT ]p,q ≥ 0 (4)

for an arbitrary connected and weighted undirected graph G = (V, E) where | V | = D and L(G) = UΛUT .

For a connected graph, there is only one zero eigenvalue

0 = λ1 < λ2 ≤ · · · ≤ λD where λi = [Λ]i,i (5)

and the corresponding eigenvector is given as

U1,q =
1√
D

(q = 1, · · · , D). (6)

From the definition of eigendecomposition, we have

UTU = UUT = I. (7)

Importantly, from the definition of the graph Laplacian

[UΛUT ]p,q ≤ 0 when p 6= q. (8)

For a given diagonal matrix Λ such that 0 = λ1 < λ2 ≤ · · · ≤ λD where λi = [Λ]i,i, we solve the following minimization
problem

min
[U ]p,i,[U ]q,i

f(0)

D
+

D∑
i=2

f(λi)[U ]p,i[U ]q,i (9)

with the constraints

D∑
i=2

λi[U ]p,i[U ]q,i ≤ 0(p 6= q),

D∑
i=2

[U ]2p,i =

D∑
i=2

[U ]2q,i = 1− 1

D
,

D∑
i=2

[U ]p,i[U ]q,i = − 1

D
(p 6= q) (10)

When p = q, eq.9 is nonnegative because f is nonnegative valued. From now on, we consider the case p 6= q.

Lagrange multiplier is given as

LKKT ([U ]p,i, [U ]q,i, η, a, b, c) =
f(0)

D
+

D∑
i=2

f(λi)[U ]p,i[U ]q,i + η
( D∑
i=2

λi[U ]p,i[U ]q,i

)
+a
( D∑
i=2

[U ]2p,i − (1− 1

D
)
)

+ b
( D∑
i=2

[U ]2q,i − (1− 1

D
)
)

+ c
( D∑
i=2

[U ]p,i[U ]q,i +
1

D

)
(11)

with η ≥ 0.

The stationary conditions are given as

∂LKKT
∂[U ]p,i

= f(λi)[U ]q,i + ηλi[U ]q,i + c[U ]q,i + 2a[U ]p,i = 0 (12)

∂LKKT
∂[U ]q,i

= f(λi)[U ]p,i + ηλi[U ]p,i + c[U ]p,i + 2b[U ]q,i = 0 (13)



from which, we have

(f(λi) + ηλi + c)[U ]q,i = −2a[U ]p,i (14)
(f(λi) + ηλi + c)[U ]p,i = −2b[U ]q,i (15)

By using
D∑
i=2

∂LKKT
∂[U ]p,i

[U ]p,i =

D∑
i=2

∂LKKT
∂[U ]q,i

[U ]q,i = 0 (16)

we have a = b.

From eq.(14) and eq.(15), we get

((f(λi) + ηλi + c)2 − 4ab)[U ]q,i = 0 (17)

((f(λi) + ηλi + c)2 − 4ab)[U ]p,i = 0 (18)

If i ∈ {i|(f(λi) + ηλi + c)2− 4ab 6= 0}, we have [U ]p,i = [U ]q,i = 0. On the other hand, if (f(λi) + ηλi + c)2− 4ab = 0,
then we have f(λi) + ηλi + c = −2a or f(λi) + ηλi + c = 2a because a = b.

We define three index sets

I0 = {i|(f(λi) + ηλi + c)2 − 4a2 6= 0} (19)
I+ = {i|f(λi) + ηλi + c+ 2a = 0} − {1} (20)
I− = {i|f(λi) + ηλi + c− 2a = 0} (21)

from eq.(14) and eq.(15), we have

i ∈ I0 ⇒ [U ]p,i = [U ]q,i = 0 (22)
i ∈ I+ ⇒ [U ]p,i = [U ]q,i (23)
i ∈ I− ⇒ [U ]p,i = −[U ]q,i (24)

With these conditions, the constraints can be expressed as∑
i+∈I+

λi+ [U ]2p,i −
∑
i−∈I−

λi− [U ]2p,i ≤ 0,
∑
i+∈I+

[U ]2p,i+ =
1

2
− 1

D
,

∑
i−∈I−

[U ]2p,i− =
1

2
(25)

We divide cases according to the number of solutions g(λ) = f(λ) + ηλ can have. i) f(λ) + ηλ can have at most one
solution, ii) f(λ) + ηλ may have two solutions. Note that g(λ) is convex as sum of two convex functions. Since a convex
function can have at most two zeros unless it is constantly zero, these two cases are exhaustive. When η = 0, f(λ) is strictly
decreasing function and, thus g(λ) has at most one solution. Also, when η ≥ −f ′(0) = maxλ−f ′(λ), f ′(λ) + η is positive
except for λ = 0 and g(λ) has at most one solution.

Case i) f(λ) + ηλ can have at most one solution. (η = 0 or η ≥ −f ′(0) = maxλ−f ′(λ))

Let us denote λE the unique solution of f(λi) + ηλi + c+ 2a = 0 and λN the unique of f(λi) + ηλi + c− 2a = 0.

Therefore λi+ = λE , ∀i+ ∈ I+ and λi− = λN , ∀i− ∈ I−. The minimization objective becomes

f(0)

D
+

D∑
i=2

f(λi)[U ]p,i[U ]q,i =
f(0)

D
+ f(λE)

∑
i+∈I+

[U ]2p,i − f(λN )
∑
i−∈I−

[U ]2p,i

=
f(0)

D
+
(1

2
− 1

D

)
f(λE)− 1

2
f(λN ) (26)

The inequality constraint becomes

D∑
i=2

λi[U ]p,i[U ]q,i =
f(0)

D
+ λE

∑
i+∈I+

[U ]2p,i+ − λN
∑
i−∈I−

[U ]2p,i− =
(1

2
− 1

D

)
λE − 1

2
λN ≤ 0 (27)



Since λE , λN ∈ {λ2, · · · , λD}, there is maximum value with respect to the choice of λE , λN . We consider continuous
relaxation of the minimization problem with respect to λE , λN . By showing that the objective is nonnegative when
λE ≥ 0, λN ≥ 0, we prove our claim. When we consider continuous optimization problem over λE , λN , the minimum
is obtained when the inequality constraint becomes equality constraints. If

(
1
2 −

1
D

)
λE − 1

2λ
N < 0 by increasing λE by

δ > 0 so that
(

1
2 −

1
D

)
(λE + δ)− 1

2λ
N = 0, f(λE) is decreased to f(λE + δ), thus the minimum is obtained when the

inequality constraint is equality. When η > 0, the inequality constraint automatically becomes an equality constraint by the
slackness condition of the Karush-Kuhn-Tucker conditions.

With the inequality condition the objective becomes

f(0)

D
+
(1

2
− 1

D

)
f(λE)− 1

2
f
(

(1− 2

D
)λE

)
(28)

taking derivative with respect to λE , we have(1

2
− 1

D

)(
f ′(λE)− f ′((1− 2

D
)λE)

)
(29)

By the convexity of f , the derivative is always nonnegative with respect to λE ≥ 0.

Since

lim
λE→0

f(0)

D
+
(1

2
− 1

D

)
f(λE)− 1

2
f((1− 2

D
)λE) = 0 (30)

The minimum is nonnegative.

Case ii) f(λ) + ηλ may have two solutions. (0 < η < −f ′(0) = maxλ−f ′(λ))

By the slackness condition, the inequality constraint becomes an equality constraint. Since f(λ) + ηλ is convex, it has at
most two solutions. Let us denote λE1 < λE2 two solutions of f(λ) + ηλ + c + 2a = 0 and λN1 < λN2 two solutions of
f(λ) + ηλ+ c− 2a = 0 Then

f(λE1 ) + ηλE1 + c+ 2a = 0 (31)

f(λE2 ) + ηλE2 + c+ 2a = 0 (32)

f(λN1 ) + ηλN1 + c− 2a = 0 (33)

f(λN2 ) + ηλN2 + c− 2a = 0 (34)

The objective becomes

f(0)

D
+ f(λE1 )

∑
i+∈I+:λi+=λE1

[U ]2p,i+ + f(λE2 )
∑

i+∈I+:λi+=λE2

[U ]2p,i+

− f(λN1 )
∑

i−∈I−:λi−=λN1

[U ]2p,i− − f(λN2 )
∑

i−∈I−:λi−=λN2

[U ]2p,i− (35)

with the constraints ∑
i+∈I+:λi+=λE1

[U ]2p,i+ +
∑

i+∈I+:λi+=λE2

[U ]2p,i+ =
1

2
− 1

D
(36)

∑
i−∈I−:λi=λN1

[U ]2p,i− +
∑

i−∈I−:λi=λN2

[U ]2p,i− =
1

2
(37)

λE1
∑

i+∈I+:λi+=λE1

[U ]2p,i+ + λE2
∑

i+∈I+:λi+=λE2

[U ]2p,i+ − λ
N
1

∑
i−∈I−:λi−=λN1

[U ]2p,i− − λ
N
2

∑
i−∈I−:λi−=λN2

[U ]2p,i− = 0 (38)

Let
AE =

∑
i+∈I+:λi+=λE1

[U ]2p,i+ ∈ [0,
1

2
− 1

D
], AN =

∑
i−∈I−:λi−=λN1

[U ]2p,i− ∈ [0,
1

2
] (39)



Then the objective becomes

f(0)

D
+ f(λE1 )AE + f(λE2 )(

1

2
− 1

D
−AE)− f(λN1 )AN − f(λN2 )(

1

2
−AN ) (40)

Taking derivatives

∂

∂AE
⇒ f(λE1 )− f(λE2 ) > 0 (41)

∂

∂AN
⇒ −f(λN1 ) + f(λN2 ) < 0 (42)

(43)

Thus the minimum is obtained at the boundary point where AE = 0 and AN = 1
2 which falls back to Case i) whose

minimum is bounded below by zero.

Remark. Theorem 3.2 holds for weighted undirected graphs, that is, for any arbitrary graph with arbitrary symmetric
nonnegative edge weights.

Remark. Note that in numerical simulations, you may observe small negative values (≈ 10−7) due to numerical instability.

Remark. In numerical simulations, the convexity condition does not appear to be necessary for complete graphs where
maxp 6=q[L(G)]p,q < −ε for some ε > 0. For complete graphs, the convexity condition may be relaxed, at least, in a
stochastic sense.

Corollary 2.1.1. The random walk kernel derived from normalized Laplacian Smola and Kondor [2003] and the diffusion
kernels Kondor and Lafferty [2002], the ARD diffusion kernel Oh et al. [2019] and the regularized Laplacian kernel Smola
and Kondor [2003] derived from normalized and unnormalized Laplacian are all positive valued kernels.

Proof. The condition that off-diagonal entries are nonpositive holds for both normalized and unnormalized graph Laplacian.
Therefore for normalized graph Laplacian, the proof in the above theorem can be applied without modification. The positivity
of kernel value also holds for kernels derived from normalized Laplacian as long as it satisfies the conditions in Thm.3.2.

Remark. In numerical simulations with nonconvex functions and arbitrary connected and weighted undirected graphs,
negative values easily occur. For example, the inverse cosine kernel Smola and Kondor [2003] does not satisfies the convexity
condition and has negative values.

3 EXAMPLES OF FM KERNELS

In this section, we first review the definition of conditionally negative definite(CND) and relations between positive
definite(PD). Utilizing relations between PD and CND and properties of PD and CND, we provide an example of a flexible
family of frequency modulating functions.

Definition 3.1 (3.1.1 [Berg et al., 1984]). A symmetric function k : X ×X → R is called a conditionally negative
definite(CND) kernel if ∀n ∈ N, x1, · · · , xn ∈ X a1, · · · , an ∈ R such that

∑n
i=1 ai = 0

n∑
i,j=1

aik(xi, xj)aj ≤ 0 (44)

Please note that CND requires the condition
∑n
i=1 ai = 0.

Theorem 3.1 (3.2.2 [Berg et al., 1984]). K(x, x′) is conditionally negative definite if and only if e−tK(x,x′) is positive
definite for all t > 0.

As mentioned in p.75 [Berg et al., 1984], from Thm. 3.1, we have

Theorem 3.2. K(x, x′) is conditionally negative definite and K(x, x′)) ≥ 0 if and only if (t + K(x, x′))−1 is positive
definite for all t > 0.



Theorem 3.3 (3.2.10 [Berg et al., 1984]). If K(x, x′) is conditionally negative definite and K(x, x) ≥ 0, then (K(x, x′))a

for 0 < a < 1 and logK(x, x′) are conditionally negative definite.

Theorem 3.4 (3.2.13 [Berg et al., 1984]). K(x, x′) = ‖x− x′‖p is conditionally negative definite for all 0 < p ≤ 2.

Using above theorems, we provide a quite flexible family of frequency modulating functions

Proposition 1. For S ∈ (0,∞), a finite measure µ on [0, S] and µ-measurable τ : [0, S]→ [0, 2] and ρ : [0, S]→ N,

f(λ, ‖ c− c′ ‖θ|α, β) =

∫ S

0

1

(1 + βλ+ α‖ c− c′ ‖τ(s)θ )ρ(s)
µ(ds) (45)

is a frequency modulating function.

Proof. First we show that

fp,t(λ, ‖ c− c′ ‖θ|α, β) =
1

(1 + βλ+ α‖ c− c′ ‖tθ)p
(46)

is a frequency modulating function for t ∈ (0, 2] and p ∈ N.

Property FM-P1 on fp,t) fp,t(λ, ‖ c− c′ ‖θ|α, β) is positive valued and decreasing with respect to λ.

Property FM-P2 on fp,t) ‖ c− c′ ‖θ is conditionally negative definite by Thm.3.4 Then by Thm.3.2, 1
(1+βλ+α‖ c− c′ ‖tθ)

is positive definite with respect to c and c′. Since the product of positive definite kernels is positive definite,
fp,t(λ, ‖ c− c′ ‖θ|α, β) is positive definite.

Property FM-P3 on fp,t) Let hp,t = fp,t(λ, ‖ c− c′ ‖θ|α, β)− fp,t(λ, ‖c̃− c̃′‖θ|α, β), then

hp,tλ =
∂hp,t

∂λ
= −pβ

( 1

(1 + βλ+ α‖ c− c′ ‖tθ)p+1
− 1

(1 + βλ+ α‖c̃− c̃′‖tθ)p+1

)
hp,tλλ =

∂2hp,t

∂λ2
= p(p+ 1)β2

( 1

(1 + βλ+ α‖ c− c′ ‖tθ)p+2
− 1

(1 + βλ+ α‖c̃− c̃′‖tθ)p+2

)
(47)

For ‖ c− c′ ‖θ < ‖c̃− c̃′‖θ, h > 0, hλ < 0 and hλλ > 0, therefore this satisfies the frequency modulation principle.

Now we show that

f(λ, ‖ c− c′ ‖θ|α, β) =

∫ S

0

1

(1 + βλ+ α‖ c− c′ ‖τ(s)θ )ρ(s)
µ(ds) (48)

satisfies all 3 conditions.

Property FM-P1) Trivial from the definition.

Property FM-P2) Since a measurable function can be approximated by simple functions [Folland, 1999], we approximate
f(λ, ‖ c− c′ ‖θ|α, β) with following increasing sequence

fn(λ, ‖ c− c′ ‖θ|α, β) =

2n∑
i=1

n∑
j=1

µ(Ai,j)

(1 + βλ+ α‖ c− c′ ‖
i−1
2n 2

θ )j
(49)

where Ai,j = {s| i− 1

2n
2 < ρ(s) ≤ i

2n
2, τ(s) = j}

Each summand µ(Ai,j)/(1 +βλ+α‖ c− c′ ‖
i−1
2n 2

θ )j is positive definite as shown above and sum of positive definite kernels
is positive definite. Therefore, fn(λ, ‖ c− c′ ‖θ|α, β) is positive definite. Since the pointwise limit of positive definite
kernels is a kernel [Fukumizu, 2010], we show that f(λ, ‖ c− c′ ‖θ|α, β) is positive definite.

Property FM-P3) If we show that ∂
∂λ and

∫
µ(ds) are interchangeable, from the Condition #3 on fp,t, we show that

f(λ, ‖ c− c′ ‖θ|α, β) satisfies the frequency modulating principle.

Let h = f(λ, ‖ c− c′ ‖θ|α, β)− f(λ, ‖c̃− c̃′‖θ|α, β). There is a constant A > 0 such that∣∣∣hτ(s),ρ(s)(λ+ δ)− hτ(s),ρ(s)(λ)

δ

∣∣∣ < ∣∣∣∂hτ(s),ρ(s)
∂λ

∣∣∣+A <
∣∣∣∂h0,1
∂λ

∣∣∣+A (50)



For a finite measure,
∣∣∣∂h0,1

∂λ

∣∣∣+A is integrable. Therefore, ∂
∂λ and

∫
µ(ds) are interchangeable by dominated convergence

theorem [Folland, 1999]. With the same argument, ∂2

∂λ2 and
∫
µ(ds) are interchangeable.

Now, we have

hλ =
∂h

∂λ
=

∫ S

0

∂hτ(s),ρ(s)

∂λ
µ(ds)

hλλ =
∂2h

∂λ2
=

∫ S

0

∂2hτ(s),ρ(s)

∂λ2
µ(ds)

From the Condition #3 on fp,t, hλ < 0 and hλλ > 0 follow and thus we show that f(λ, ‖ c− c′ ‖θ|α, β) satisfies the
frequency modulating principle.

f(λ, ‖ c− c′ ‖θ|α, β) is a frequency modulating function.

Proposition 2. If kH : H×H → R on a RKHSH is bounded above by u > 0, then for any δ > 0

f(λ, kH(h, h′)|α, β) =
1

δ + u+ βλ− kH(h, h′)
(51)

is positive definite on (h, h′) ∈ H×H.

Proof. The negation of a positive definite kernel is conditionally negative definite by Supp. Def. 3.1. Also, by definition,
a constant plus a conditionally negative definite kernel is conditionally negative definite. Therefore, u − kH(h, h′) is
conditionally negative definite.

Using Supp. Thm.3.2, we show that 1/(δ + u+ βλ− kH(h, h′)) is positive definite on (h, h′) ∈ H×H.

4 EXPERIMENTAL DETAILS

In this section, we provide the details of each component of BO pipeline, the surrogate model and how it is fitted to evaluation
data, the acquisition function and how it is optimized. We also provide each experiment specific details including the search
spaces, evaluation detail, run time analysis and etc. The code used for the experiments will be released upon acceptance.

4.1 ACQUISITION FUNCTION OPTIMIZATION

We use Expected Improvement (EI) acquisition function [Donald, 1998]. Since, in mixed variable BO, acquisition function
optimization is another mixed variable optimization task, we need a procedure to perform an optimization of acquisition
functions on mixed variables.

Acquisition Function Optimization Similar to [Daxberger et al., 2019], we alternatively call continuous optimizer
and discrete optimizer, which is similar to coordinate-wise ascent, and, in this case, it is so-called type-wise ascent. For
continuous variables, we use L-BFGS-B [Zhu et al., 1997] and for discrete variables, we use hill climbing [Skiena,
1998]. Since the discrete part of the search space is represented by graphs, hill climbing is amount to greedy as-
cent in neighborhood. We alternate one discrete update using hill climbing call and one continuous update by calling
scipy.optimize.minimize(method = "L-BFGS-B",maxiter = 1).

Spray Points Acquisition functions are highly multi-modal and thus initial points with which the optimization of
acquisition functions starts have an impact on exploration-exploitation trade-off. In order to encourage exploitation, spray
points [Snoek et al., 2012, Garnett et al., 2010, Oh et al., 2018], which are points in the neighborhood of the current
optimum (e.g, optimum among the collected evaluations), has been widely used.

Initial points for acquisition function optimization On 50 spray points and 100000 randomly sampled points, acquisition
values are computed, and the highest 40 are used as initial points to start acquisition function optimization.



4.2 JOINT OPTIMIZATION OF NEURAL ARCHITECTURE AND SGD HYPERPARAMETER

Discrete Part of the Search Space The discrete part of the search space, A, is modified from the NASNet search
space [Zoph and Le, 2016]. Each block consists of 4 states S1, S2, S3, S4 and takes two inputs S−1, S0 from a previous
block. For each state, two inputs are chosen from the previous states, Then two operations are chosen and the state finishes
its process by summing up two results of the chosen operation For example, if two inputs S−1, S2 and two operations
OP

(1)
3 , OP (2)

3 are chosen for S3, we have (S−1, S2)
S3−→ OP

(1)
3 (S−1) +OP

(2)
3 (S2).

Operations are chosen from 8 types below

• ID

• Conv1× 1

• Conv3× 3

• Conv5× 5

• Separable Conv3× 3

• Separable Conv5× 5

• Max Pooling3× 3

• Max Pooling5× 5

Two inputs for each state are chosen from states with smaller subscript(e.g Si is allowed to have Sj as an input if j < i). By
choosing S4 and one of S1, S2, S3 as outputs of the block, the configuration of a block is completed.

In MODLAP, it is required to specify graphs for discrete variables. For graphs representing operation types, we use complete
graphs. For graphs representing inputs of each states, we use graphs which reflect the ordering structure. In a graph
representing inputs of each state, each vertex is represented by a tuple, for the graph representing inputs of S3, it has a vertex
set of {(−1, 0), (−1, 1), (−1, 2), (0, 1), (0, 2), (1, 2)}. For example, choosing (−1, 0) means S3 takes S−1(input 1 of the
block) and S0(input 2 of the block) as inputs of the cell and choosing (0, 2) means S3 takes S0(input 2 of the block) and
S2(cell 2) as inputs. There exists an edge between vertices as long as one input is shared and two distinct inputs differ by
one. For example, there is an edge between (−1, 0) and (−1, 1) because −1 is shared and |0− 1| = 1 and there is no edge
between (−1, 0) and (−1, 2) because |0− 1| 6= 1 even though −1 is shared. Note that in the graph representing inputs for
S4, we exclude the vertex (−1, 0) to avoid the identity block. For graphs representing outputs of the block, we use the path
graph with 3 vertices since we restrict the output is one of (1, 4), (2, 4), (3, 4). By defining graphs corresponding variables
in this way, a prior knowledge about the search space can be infused and be of help to Bayesian optimization.

Continuous Part of the Search Space The space of continuous hyperparametersH comprises 6 continuous hyperparame-
ters of the SGD with a learning rate scheduler: learning rate, momentum, weight decay, learning rate reduction factor, 1st
reduction point ratio1 and 2nd reduction point ratio. The ranges for each hyperparameter are given in Supp. Table 1.

Table 1: SGD Hyperparameter Range

SGD hyperparameter Transformation Range

Learning Rate log [log(0.001), log(0.1)]
Momentum · [0.8, 1.0]

Weight Decay log [log(10−6), log(10−2)]
Learning Rate Reduction Factor · [0.1, 0.9]

1st Reduction Point Ratio · [0, 1]
2nd Reduction Point Ratio · [0, 1]

For a given learning rate l, learning rate reduction factor γ, 1st reduction point ratio r1 and 2nd reduction point ratio r2, then
learning rate scheduling is given in Supp. Table 2.

Table 2: Learning Rate Scheduling. In the experiment, the number of epochs E is set to 25.

Begin Epoch(<) (≤)End Epoch Learning Rate

0 E × r1 l
E × r1 E × (r1 + (1− r1)r2) l · γ

E × (r1 + (1− r1)r2) E l · γ2

Evaluation For a given block configuration a ∈ A, the model is built by stacking 3 blocks with downsampling between
blocks. Note that there are two inputs and two outputs of the blocks. Therefore, the downsampling is applied separately to
each output. The two outputs of the last block are concatenated after max pooling and then fed to the fully connected layer.



The model is trained with the hyperparameter h ∈ H on a half of FashionMNIST [Xiao et al., 2017] training data for 25
epochs and the validation error is computed on the rest half of training data. To reduce the high noise in validation error, the
validation error is averaged over 4 validation errors from models trained with different random initialization. With the batch
size of 32, each evaluation takes 12∼21 minutes on a single GTX 1080 Ti depending on architectures

Regularized Evolution Hyperparameters RE has hyperparameters, the population size and the sample size. We set to 50
and 15, respectively, to make those similar to the optimal choice in [Real et al., 2019, Oh et al., 2019]. Accordingly, RE
starts with a population with 50 random initial points. In each run of 4 runs, the first 10 initial points of 50 random initial
points are shared with 10 initial points used in GP-BO.

Another hyperparameter is the mutation rule. In addition to the mutation of architectures used in [Real et al., 2019], for
continuous variables, a randomly chosen single continuous variable is mutated by Gaussian noise with small variance. In
each round, one continuous variable and one discrete variable are altered.

Wall-clock Run Time The total run time of MODLAP(200), 61.44 ± 4.09 hours, is sum of 9.27 ± 2.60 hours for BO
suggestions and 52.16 ± 1.79 hours for evaluations. BO suggestions were run on Intel Xeon Processor E5-2630 v3 and
evaluations were run on GTX 1080 Ti.

In the actual execution of RE, two different types of GPUs were used, GTX 1080 Ti(fast) and GTX 980(slow). Therefore, the
evaluation time for RE is estimated by assuming that RE were also run on GTX 1080 Ti(fast) only. During the total run time
of MODLAP(200), 61.44± 4.09 hours, RE is estimated to collects 230 evaluations. 230 ≈ 61.44/52.16× (200− 10) + 10
where 10 is adjusted because the evaluation time for 10 random initial points was not measured.

Since in both RE and BOHB, we assume zero seconds to acquire new hyperparameters and only consider times spent for
evaluations, the wall-clock runtime of BOHB is estimated to be equal to wall-clock runtime of RE.

5 EXPERIMENT: RESULTS

In this section, in addition to the results reported in Sec. 5, we provide additional results.

On 3 synthetic problems and 2 hyperparameter optimization problems, along with the frequency modulation, we also
compare other kernel combinations such as the kernel addition and the kernel product as follows.

PRODLAP : kRBF × kLap ADDLAP : kRBF + kLap MODLAP : Eq.5 with f = fLap

PRODDIF : kRBF × kDif ADDDIF : kRBF + kDif MODDIF : Eq.5 with f = fDif

where kRBF is the RBF kernel and

kLap(v,v
′) =

P∏
p=1

| Vp |∑
i=1

[Up]vp,i
1

1 + βpλ
p
i

[Up]v′p,i kDif (v,v
′) =

P∏
p=1

| Vp |∑
i=1

[Up]vp,i exp(−βpλ
p
i )[U

p]v′p,i (52)

We make following observations with this additional comparison. Firstly, MODDIF which does not respect the similarity
measure behavior, sometimes severely degrades BO performance. Secondly, the kernel product often performs better than
the kernel addition. Thirdly, MODLAP shows the equally good final results as the kernel product and finds the better solution
faster than the kernel product consistently. This can be clearly shown by comparing the area above the mean curve of BO
runs using different kernels. The area above the mean curve of BO using MODLAP is larger than the are above the mean
curve of BO using the kernel product. Moreover, the gap between the area from MODLAP and the area from kernel product
increases in problems with larger search spaces. Even on the smallest search space, Func2C, MODLAP lags behind the kernel
product up to around 90th evaluation and outperforms after it. The benefit of MODLAP modeling complex dependency
among mixed variables is more prominent in higher dimension problems.

On the joint optimization of SGD hyperparameters and architecture, we show the additional result where RE and BOHB are
continued 600 evaluations.



5.1 FUNC2C

Method Mean±Std.Err.
SMAC +0.0060± 0.0387
TPE −0.1917± 0.0053
AddDif −0.1167± 0.0472
ProdDif −0.2060± 0.0002
ModDif −0.0662± 0.0463
AddLap −0.1669± 0.0127
ProdLap −0.2060± 0.0001
ModLap −0.2063± 0.0000
CoCaBO-0.0 −0.1594± 0.0130
CoCaBO-0.5 −0.2025± 0.0018
CoCaBO-1.0 −0.1861± 0.0090

5.2 FUNC3C

Method Mean±Std.Err.
SMAC +0.1194± 0.0723
TPE −0.4068± 0.1204
AddDif −0.3979± 0.1555
ProdDif −0.7100± 0.0106
ModDif −0.0977± 0.0742
AddLap −0.3156± 0.1125
ProdLap −0.7213± 0.0005
ModLap −0.7215± 0.0004
CoCaBO-0.0 −0.6730± 0.0274
CoCaBO-0.5 −0.7202± 0.0016
CoCaBO-1.0 −0.7139± 0.0051

5.3 ACKLEY5C

Method Mean±Std.Err.
SMAC +2.3809± 0.1648
TPE +1.8601± 0.1248
AddDif +0.0040± 0.0015
ProdDif +0.0152± 0.0044
ModDif +0.0008± 0.0003
AddLap +0.0042± 0.0018
ProdLap +0.0177± 0.0038
ModLap +0.0186± 0.0057
CoCaBO-0.0 +1.4986± 0.2012
CoCaBO-0.5 +1.3720± 0.2110
CoCaBO-1.0 +1.8114± 0.2168



5.4 SVM HYPERPARAMETER OPTIMIZATION

Method Mean±Std.Err.
SMAC +4.7588± 0.1414
TPE +4.3986± 0.1632
AddDif +4.9463± 0.4960
ProdDif +4.1857± 0.0017
ModDif +4.1876± 0.0012
AddLap +4.5600± 0.2014
ProdLap +4.1856± 0.0012
ModLap +4.1864± 0.0015
CoCaBO-0.0 +4.4122± 0.1703
CoCaBO-0.5 +4.1957± 0.0040
CoCaBO-1.0 +4.1958± 0.0037

5.5 XGBOOST HYPERPARAMETER OPTIMIZATION

Method Mean±Std.Err.
SMAC +0.1215± 0.0045
TPE +0.1084± 0.0007
AddDif +0.1046± 0.0001
ProdDif +0.1045± 0.0003
ModDif +0.1071± 0.0013
AddLap +0.1048± 0.0007
ProdLap +0.1044± 0.0001
ModLap +0.1038± 0.0003
CoCaBO-0.0 +0.1184± 0.0062
CoCaBO-0.5 +0.1079± 0.0010
CoCaBO-1.0 +0.1086± 0.0008

5.6 JOINT OPTIMIZATION OF SGD HYPERPARAMETERS AND ARCHITECTURE.

Method(#Eval.) Mean±Std.Err.
BOHB(200) 7.158× 10−2±1.0303× 10−3

BOHB(230) 7.151× 10−2±9.8367× 10−4

BOHB(600) 6.941× 10−2±4.4320× 10−4

RE(200) 7.067× 10−2±1.1417× 10−3

RE(230) 7.061× 10−2±1.1329× 10−3

RE(400) 6.929× 10−2±6.4804× 10−4

RE(600) 6.879× 10−2±1.0039× 10−3

ModLap(200) 6.850× 10−2±3.7914× 10−4

ModLap(230) 6.826× 10−2±2.2317× 10−4

ModLap(300) 6.826× 10−2±2.2317× 10−4



6 EXPERIMENT: ABLATION STUDY

We run a regression task on 3 different UCI datasets.

Table 3: Regression Datasets

Dataset # of points Continuous Dim. Categorical Dim.
Meta-data 528 16 3
Servo 167 2 2
Optical Intercon. Net. 640 2 2

On 20 different random splits (training:test=8:2), negative log likelihood(NLL) and RMSE on test set are reported in Table 4.

Table 4: Regression

NLL Meta-data Servo Optical Intercon. Net.
AddDif 16.0224± 3.9906 4.2362± 0.6115 7.5504± 0.4867
ProdDif 9.5198± 3.7116 0.9579± 0.4758 0.2132± 0.2050
ModDif 5.9377± 1.9872 503.9973± 486.4679 10.0005± 0.2934
AddLap 1.6805± 0.1847 3.7083± 0.5001 7.5568± 0.4897
ProdLap 1.3236± 0.3539 0.7008± 0.3385 0.2135± 0.1928
ModLap 1.1218± 0.2987 1.0790± 0.4607 0.1521± 0.2265

RMSE Meta-data Servo Optical Intercon. Net.
AddDif 1.0223± 0.1601 0.5696± 0.0310 0.2577± 0.0052
ProdDif 1.1537± 0.1654 0.3023± 0.0408 0.1413± 0.0060
ModDif 1.4074± 0.2027 0.7308± 0.0910 0.7881± 0.0069
AddLap 1.0199± 0.1588 0.5709± 0.0311 0.2577± 0.0052
ProdLap 1.0898± 0.1642 0.2971± 0.0405 0.1417± 0.0059
ModLap 1.0920± 0.1626 0.3046± 0.0412 0.1400± 0.0063

In terms of NLL, which takes into account uncertainty, ModLap is the best in Meta-data and Optical Intercon. Net. In Servo,
ProdLap/ProdDif perform the best, so we conjecture that this dataset has an approximate product structure. In terms of
RMSE, ModLap and ProdLap are equally good. We conclude that the frequency modulation has the benefit beyond the
addition/product of good basis kernels. Also, the importance of respecting the similarity measure behavior is observed on
the regression task.
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