
Approximation Algorithm for
Submodular Maximization under Submodular Cover

Naoto Ohsaka1 Tatsuya Matsuoka1

1NEC Corporation

Abstract

We study a new optimization problem called sub-
modular maximization under submodular cover
(SMSC), which requires to find a fixed-size set
such that one monotone submodular function f is
maximized subject to that another monotone sub-
modular function g is maximized approximately.
SMSC is preferable to submodular function max-
imization when one wants to maximize two ob-
jective functions simultaneously. We propose an
optimization framework for SMSC, which guar-
antees a constant-factor approximation. Our algo-
rithm’s key idea is to construct a new instance of
submodular function maximization from a given
instance of SMSC, which can be approximated
efficiently. Besides, if we are given an approxima-
tion oracle for submodular function maximization,
our algorithm provably produces nearly optimal so-
lutions. We experimentally evaluate the proposed
algorithm in terms of sensor placement and movie
recommendation using real-world data.

1 INTRODUCTION

Background. Submodularity is a property of set functions
arising in artificial intelligence applications, including in-
fluence maximization [Kempe et al., 2003], document sum-
marization [Lin and Bilmes, 2011], and sensor placement
[Krause et al., 2008b]. A set function f : 2V → R≥0 is said
to be submodular if f(S∪{e})−f(S) ≥ f(T∪{e})−f(T )
for all S ⊆ T ⊆ V and e ∈ V \ T , which is also known
as the “diminishing returns” property. One of the most
common optimization problems on submodular functions
is submodular function maximization (SFM); i.e., solving
max
S:|S|=k

f(S) for a monotone submodular function f . What

makes SFM attractive is that a simple greedy heuristic guar-
antees a (1 − 1/e)-factor approximation to the optimum

[Nemhauser et al., 1978].

In this paper, we study the following optimization problem
derived from two submodular functions:

Given two monotone submodular functions f :
2V → R≥0 and g : 2V → R≥0 and an approxi-
mation threshold β, we are asked to find a size-k
set S ⊆ V with |S| = k such that f(S) is maxi-
mized subject to that g(S) ≥ β · max

S′:|S′|=k
g(S′).

We call this problem submodular maximization under sub-
modular cover (SMSC), which can be thought of as an
extension of SFM constrained by g. SMSC is preferable
to SFM whenever one wants to maximize two objective
functions simultaneously. We shall present three examples
below to motivate SMSC. See Section 2 for the difference
of SMSC from existing problems.

• Sensor Placement: The effective allocation of a fixed
number of sensors can be determined by maximizing
the Shannon entropy f of the selected sensors, which
is an instance of SFM. Besides, we can express a more
complex demand with the second function g. Suppose
one wants to improve the sensor placement in operation
but does not want to modify the current placement
significantly as it would be time-consuming. Then, we
can define g as the similarity between a new placement
and the current placement. (See Section 5.1.)

• Movie Recommendation: A movie recommendation
problem involves extracting movies to be displayed
in recommender systems. The utility (e.g., diversity
and rating) of a set of movies is often expressed as a
monotone submodular function f . Suppose one wants
to include as many movies as possible from a fixed
set T of movies that an agency wants to advertise, for
example. We can use the second function g to describe
the requirement that many movies from T should be
included. (See Section 5.2.)
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• Information gain: Consider selecting the most infor-
mative subset of variables for a graphical model. In-
stead of the Shannon entropy, we can adopt the infor-
mation gain f , which is a more direct measure for the
value of information and defined as the expected re-
duction in uncertainty over the variables in the ground
set given the selected observations. The information
gain as a set function of the variable set is shown to
be monotone and submodular under mild assumptions
[Krause and Guestrin, 2005], which applies to attribute
selection for naive Bayes classifiers. By using the sec-
ond objective g, we can further impose a complex con-
straint introduced so far.

It is easy to see that SMSC is at least as hard as SFM;
i.e., we cannot approximate SMSC within a factor better
than (1−1/e) [Nemhauser and Wolsey, 1978]. On the other
hand, unlike the case of SFM, merely applying the greedy
heuristic on either f or g does not provide an accurate solu-
tion, which will be verified in our experimental evaluation in
Section 5. Further, we show that SMSC cannot be solved by
simply maximizing the sum of f and g, giving evidence that
SFM and SMSC are inherently different problems (Obser-
vation 3). The present study aims at developing an algorithm
for SMSC that has a provable approximation guarantee.

Our Contributions. In this paper, we develop an opti-
mization framework for SMSC. Our framework’s key idea
is to construct an instance of SFM from a given instance
of SMSC, which can be approximated efficiently. When
using the greedy heuristic to solve the SFM instance ap-
proximately, the proposed framework guarantees a constant-
factor bi-criteria approximation; namely, it returns a set
S in polynomial time such that f(S) ≥ 0.16f(S∗) and
g(S) ≥ 0.16β · max

S′:|S′|=k
g(S′), where S∗ is an optimal so-

lution for SMSC. Besides, we can enlist the help of oracles
to solve the SFM instance more accurately. Conceptually,
an approximation oracle returns a solution for SFM, which
approximates the optimum within a (1 − ε)-factor. Even
though such an oracle requires exponential time in the worst
case, the proposed framework with an approximation oracle
provably produces a set S such that f(S) ≥ (1− 3ε)f(S∗)
and g(S) ≥ (1− 3ε)β · max

S′:|S′|=k
g(S′).

We evaluate the proposed framework by performing exper-
iments on sensor placement and movie recommendation
using real-world data. We confirm that our proposed frame-
work outperforms the greedy heuristic significantly and runs
in a reasonable time.

Organization. Section 2 reviews existing studies on sub-
modular function optimization. Section 3 introduces basic
notions and presents the definition of submodular function
maximization and submodular maximization under submod-
ular coverage. Section 4 develops our framework for SMSC

and analyzes its approximation guarantee and time complex-
ity. Section 5 evaluates the proposed algorithm empirically
on sensor placement and movie recommendation.

2 RELATED WORK

2.1 SUBMODULAR FUNCTION MAXIMIZATION

Submodularity arises as a property of set functions in nu-
merous combinatorial notions, including coverage functions,
matroid rank functions, graph cuts, and entropy; see, e.g.,
Krause and Golovin [2014]. Optimization of submodular
functions has been actively studied, and we here review
monotone submodular function maximization under the size
constraint (SFM), which is included in SMSC as a special
case. The simple greedy algorithm, which runs in quadratic
time, achieves an approximation factor of 1− 1/e ≈ 0.63
[Nemhauser et al., 1978], and this is the best possible ap-
proximation factor because no polynomial-time algorithm
can achieve a better approximation factor [Nemhauser and
Wolsey, 1978, Feige, 1998]. More recently, nearly linear-
time approximation algorithms [Badanidiyuru and Vondrák,
2014, Mirzasoleiman et al., 2015] and approximation al-
gorithms for complex constraints [Călinescu et al., 2011,
Sviridenko, 2004] have been developed; see, e.g., the survey
of Buchbinder and Feldman [2018] for details.

Since there is still a need for more accurate or even exact so-
lutions for SFM beyond the theoretical limit of a (1− 1/e)-
factor, several heuristic algorithms have been developed.
Chen, Chen, and Weinberger [2015] developed the Filtered
Search algorithm for submodular maximization under the
knapsack constraint. Given an approximation threshold α,
Filtered Search performs a best-first search to find an α-
approximate solution. Sakaue and Ishihata [2018] improved
heuristic functions used in Filtered Search for bounding the
optimal value accurately. Uematsu, Umetani, and Kawahara
[2019] proposed an exact algorithm for SFM based on bi-
nary integer programming, which dates back to Nemhauser
and Wolsey [1981]. Those algorithms require exponentially
increasing steps in the worst case, but they can manage
moderately large problems in practice. Our optimization
framework can use such practically-efficient algorithms as
well as the greedy algorithm as a subroutine.

2.2 VARIANTS OF SUBMODULAR
OPTIMIZATION

We review the recent work on variants of submodular func-
tion optimization. Narasimhan and Bilmes [2005], Iyer and
Bilmes [2012] studied minimizing the difference between
two submodular functions (DS function); i.e., min

S
{f(S)−

g(S)}, where f and g are submodular. Narasimhan and
Bilmes [2005] proved that DS functions can express an
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arbitrary set function. Iyer and Bilmes [2012] proved a
multiplicative inapproximability result and designed algo-
rithms with an additive approximation guarantee. Iyer and
Bilmes [2013] considered two optimization problems: One
is the submodular cost submodular cover (SCSC) prob-
lem defined as min

S:g(S)≥c
f(S), and the other is the submod-

ular cost submodular knapsack (SCSK) problem defined
as max

S:f(S)≤b
g(S), for two monotone submodular functions

f and g. Both problems can be recast into DS function
minimization. Iyer and Bilmes [2013] developed bi-criteria
approximation algorithms for SCSC and SCSK, whose ap-
proximation factor depends on the size n of the ground set
V . Bai, Iyer, Wei, and Bilmes [2016] considered minimiz-
ing the ratio of two monotone submodular functions (RS
function), i.e., min

S
f(S)/g(S). RS function minimization

can be approximated using algorithms for DS minimiza-
tion, SCSC, or SCSK. Bai et al. [2016] proposed approx-
imation algorithms for RS function minimization, whose
approximation factor is 1/O(

√
n log n). Robust submod-

ular maximization (RSM) is defined as max
S:|S|=k

min
i∈[m]

fi(S)

for m monotone submodular functions f1, . . . , fm. Krause,
McMahan, Guestrin, and Gupta [2008a] gave an approxima-
tion algorithm whose output is logarithmically larger than
the optimal solution. Powers, Bilmes, Wisdom, Krout, and
Atlas [2016] considered RSM under the matroid constraint
and devised an algorithm that returns a feasible set that
maximizes not all but a certain fraction of the m functions.
Anari, Haghtalab, Naor, Pokutta, Singh, and Torrico [2019]
studied RSM under the matroid and knapsack constraint
and developed an approximation algorithm that returns a
(1− ε)-approximate solution of size O(k log m

ε ).

We finally differentiate this study from the previous work.

• Our problem SMSC can be expressed as
max

S:|S|=k,g(S)≥c
f(S) for some c, which belongs

to neither SCSC, SCSK, DS maximization, nor RS
minimization. The decision version of SMSC (see
Problem 4) is a special case of RSM; however, existing
algorithms for RMS do not satisfy the size constraint
[Krause et al., 2008a, Anari et al., 2019] or provide
explicit approximation guarantees [Powers et al.,
2016]. On the other hand, the proposed framework
produces a specified-size set that guarantees a constant-
factor bi-criteria approximation in polynomial time
(whenever the greedy heuristic is used as an oracle for
SFM).

• Furthermore, our framework allows utilizing a well-
engineered implementation for SFM as an approxima-
tion oracle, which is not necessarily the case for the
problems reviewed above. Though those implementa-
tions require exponential time in the worst case, our
experiments demonstrate that the proposed framework
with an approximation oracle provides a more accurate

solution than that with the greedy algorithm in a rea-
sonable running time. Our approximation framework
in Section 4 is inspired by the SATURATE algorithm
[Krause et al., 2008a].

3 PRELIMINARIES

Notations. For a positive integer n, let [n] denote the set
{1, 2, . . . , n}, and let V be a finite ground set of size n, e.g.,
V = [n]. We assume every set function f : 2V → R to be
nonnegative; i.e., f(S) ≥ 0 for all S ⊆ V . A set function
f : 2V → R≥0 is said to be monotone if f(S) ≤ f(T ) for
all S ⊆ T ⊆ V and submodular if f(S ∪ {e}) − f(S) ≥
f(T ∪ {e}) − f(T ) for all S ⊆ T ⊆ V and e ∈ V \ T .
Submodularity is equivalent to the following inequality:
f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all S, T ⊆ V .

Submodular Function Maximization and Optimization
Oracles. We define submodular function maximization as
follows.

Problem 1 (SFM). Given a monotone submodular function
f : 2V → R≥0 and a solution size k ∈ [n], the problem
of submodular function maximization (SFM) asks to find
a size-k set that has the maximum function value; i.e., to
compute argmax

S⊆V :|S|=k
f(S).

Hereafter, we denote the optimum for SFM on f by OPTf ;
i.e., OPTf , max

S⊆V :|S|=k
f(S). We say that a set S ⊆ V

with |S| = k is an α-approximation for SFM on f if
f(S) ≥ αOPTf . Theoretically, the greedy algorithm
shown in Algorithm 1 delivers a (1− 1/e)-approximation
by evaluating f forO(nk) subsets [Nemhauser et al., 1978].
This is the best possible approximation factor because no
polynomial-time algorithm can achieve a (1 − 1/e + ε)-
approximation for any ε > 0 [Nemhauser and Wolsey, 1978,
Feige, 1998].

In this paper, we assume access to “oracles” for SFM. An α-
approximation oracle for α ∈ [0, 1] is an abstract machine
that returns an α-approximation for SFM, i.e., S ⊆ V with
|S| = k such that f(S) ≥ αOPTf , in a single step. While
we cannot obtain (1 − 1/e + ε)-approximation in polyno-
mial time, the recent development of practically-efficient
algorithms [Sakaue and Ishihata, 2018, Chen et al., 2015,
Uematsu et al., 2019] encourages to adopt such oracles. Our
framework’s efficiency will be measured by the number of
oracle calls because the empirical running time of a “single
step” depends on its implementation. Note that the greedy
algorithm is a (1− 1/e)-approximation oracle that runs in
polynomial time.

Submodular Maximization under Submodular Cover.
We now define the central problem referred to as submodular
maximization under submodular cover as follows.
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Algorithm 1 Greedy algorithm for SFM.

Input: monotone submodular function f : 2V → R≥0;
solution size k.

1: S0 ← ∅.
2: for all i = 1 to k do
3: Si ← Si−1 ∪

{
argmax
e∈V \Si−1

f(Si−1 ∪ {e})
}

.

4: return set Sk.

Problem 2 (SMSC). Given two monotone submodular func-
tions f : 2V → R≥0 and g : 2V → R≥0, an approximation
threshold β, and a solution size k ∈ [n], the problem of sub-
modular maximization under submodular cover (SMSC)
asks to find a size-k solution S ⊆ V with |S| = k such that
S is a β-approximation to SFM on g and f(S) is maximized,
i.e., to compute the following:

argmax
S⊆V :|S|=k

f(S) subject to g(S) ≥ βOPTg . (1)

Since SMSC with β = 0 includes SFM as a special case,
we cannot approximate SMSC within a (1−1/e+ ε)-factor
in polynomial time. We develop in Section 4 an optimization
framework for SMSC given access to oracles for SFM,
which successfully circumvents the theoretical barrier in
practice.

Failed Attempt based on Lagrangian Formulation. We
here describe a failed attempt based on the Lagrangian
formulation. Given two monotone submodular functions
f : 2V → R≥0 and g : 2V → R≥0, let us consider a
monotone submodular function Fλ : 2V → R≥0 defined
as Fλ(S) , f(S) + λg(S) for all S ⊆ V , where λ ≥ 0
is a parameter. Note that the conversion from SMSC to
the Lagrangian formulation using Fλ can be regarded as
transforming the Ivanov formulation to the Tikhonov for-
mulation [Oneto et al., 2016]. We denote the size-k set that
maximizes Fλ(S) by Sλ. It is easy to see that f(Sλ) is a
nonincreasing function of λ and g(Sλ) is a nondecreasing
function of λ. One might thus think of performing a bisec-
tion search on λ to find the minimum value of λ such that
g(Sλ) ≥ βOPTg , in the hope that Sλ is optimal to SMSC.
However, we show that this strategy does not work due to
the following observation; in particular, SMSC cannot be
approximated by merely maximizing Fλ for any λ ≥ 0,
which means that SMSC is inherently different from SFM.

Observation 3. For any approximation threshold β in (0, 34 )
and a solution size k = 1, there exists two monotone sub-
modular functions f and g and such that the following
conditions are satisfied:

• an optimal solution S∗ for SMSC defined by f, g, β, k
satisfies that f(S∗) > 0 and g(S∗) > 0;

• for any λ ≥ 0 and ε ∈ [0, 15 ), invoking a (1 − ε)-
approximation oracle for SFM on Fλ yields a set S

that satisfies at least either of f(Sλ) = 0 or g(Sλ) = 0;
i.e., Sλ has no positive approximation guarantee for
SMSC.

Proof. Let V , [3], β ∈ (0, 34 ), (a1, a2, a3) , (1, 0, 32),
and (b1, b2, b3) , (15, 15β , 0). We define a set function f :

2V → R≥0 such that f(S) ,
∑
i∈S ai for each S ⊆ V ,

a set function g : 2V → R≥0 such that g(S) ,
∑
i∈S bi

for each S ⊆ V , and a set function Fλ : 2V → R≥0 such
that F (S) , f(S) + λg(S) for each S ⊆ V . Consider an
instance of SMSC defined by f, g, β, k = 1. An optimal
solution S∗ for the SMSC instance is {1}, which satisfies
that f(S∗) = 1 and g(S∗) = 15. On one hand, if λ ≥ 1,
then we have that Fλ({1})Fλ({2}) ≤

4
5 . On the other hand, if λ < 1,

then we have that Fλ({1})Fλ({3}) ≤
1
2 . Therefore, for any λ ≥ 0, a

(1− ε)-approximation oracle for ε ∈ [0, 15 ) does not choose
{1} but either {2} or {3}, which meet the second property
in the statement.

4 PROPOSED FRAMEWORK

In this section, we develop an optimization framework
for SMSC, which guarantees a “bi-criteria approximation.”
Here, a solution S ⊆ V with |S| = k is said to be a [σ, ρ]-
approximation to SMSC for some σ, ρ > 0 if it holds that
f(S) ≥ σf(S∗) and g(S) ≥ ρβOPTg, where S∗ is an
optimal solution to SMSC.

Our framework produces a [1− 3ε, 1− 3ε]-approximation
for SMSC if we are given a (1 − ε)-approximation ora-
cle for SFM (Theorem 6). The number of oracle calls is
bounded by O(log ε−1). Furthermore, we prove that if we
adopt the greedy algorithm (Algorithm 1) as a (1 − 1/e)-
approximation oracle, the proposed framework returns a
[0.16, 0.16]-approximation for SMSC in polynomial time
(Theorem 7).

Since an implementation of (1 − ε)-approximation ora-
cles becomes faster empirically as the value of ε increases
[Sakaue and Ishihata, 2018], we can trade between the ac-
curacy and efficiency by adjusting the value of ε.

4.1 DECISION VERSION AND ITS BI-CRITERIA
APPROXIMATION

Before designing our framework, we consider the following
decision problem:

Problem 4. Given two monotone submodular functions f :
2V → R≥0 and g : 2V → R≥0, approximation thresholds
α and β, and a solution size k ∈ [n], find S ⊆ V with
|S| = k that is an α-approximation to SFM on f (i.e.,
f(S) ≥ αOPTf ) and a β-approximation to SFM on g
(i.e., g(S) ≥ βOPTg) simultaneously, or declare that there
cannot be such a solution.
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Algorithm 2 Bi-criteria approximation algorithm for Prob-
lem 4 with an approximation SFM oracle.

Input: (1 − ε)-approximate optimum OPT′f and OPT′g;
approximation thresholds α and β.

1: invoke approximation oracle to find (1 − ε)-
approximation Ŝ to Eq. (2).

2: if (objective value of Ŝ for Eq. (2) ) ≥ 2(1− ε) then
3: return Ŝ.
4: else
5: declare “not found.”

Observe that Problem 4 is a special case of robust submodu-
lar maximization in which two monotone submodular func-

tions f1 and f2 are given by f1(S) = min
{

1,
f(S)

αOPTf

}
and f2(S) = min

{
1,

g(S)

βOPTg

}
, and the objective is

max
S:|S|=k

min{f1(S), f2(S)}. Once an approximate solver for

Problem 4 is designed, we can repeatedly use it to perform
a bisection search on an approximation threshold α to solve
SMSC.

Algorithm 2 describes an approximation algorithm for Prob-
lem 4 given access to a (1 − ε)-approximation oracle for
SFM. Our algorithm approximately solves the following
problem:

max
S⊆V :|S|=k

min

{
1,

f(S)

αOPT′f

}
+ min

{
1,

g(S)

βOPT′g

}
,

(2)

where OPT′f (resp. OPT′g) is a (1− ε)-approximate opti-
mum for SFM on f (resp. g); i.e., OPT′f ≥ (1− ε) OPTf
and OPT′g ≥ (1 − ε) OPTg. Since submodularity is pre-
served under taking nonnegative linear combinations1 and
truncation,2 Eq. (2) is an instance of SFM. Solving Eq. (2)
approximately by invoking an approximation oracle, Algo-
rithm 2 returns the resulting solution Ŝ if Ŝ has an objective
value in Eq. (2) at least 2(1− ε), and otherwise, we declare
that there exists no feasible solution. Algorithm 2 has the
following bi-criteria approximation guarantee.

Lemma 5. Given a (1− ε)-approximation oracle for SFM,
Algorithm 2 returns a bi-criteria approximation S ⊆ V
with |S| = k to Problem 4 such that f(S) ≥ (1 − 3ε +
2ε2)αOPTf and g(S) ≥ (1 − 3ε + 2ε2)βOPTg, or it
correctly declares that there cannot be a feasible solution,
by invoking a single call of the oracle.

Proof. Suppose there exists a feasible solution S∗ ⊆ V
with |S∗| = k such that f(S∗) ≥ αOPTf and g(S∗) ≥

1If g1, . . . , gm : 2V → R are monotone submodular, and
α1, . . . , αm ≥ 0, then so is f(S) =

∑
i∈[m] αig(S).

2If g : 2V → R is monotone submodular, then so is f(S) =
min{g(S), c} for any constant c.

βOPTg (i.e., the answer is “yes”). The optimum of Eq. (2)
is then equal to 2; a (1− ε)-approximation Ŝ to Eq. (2) must
satisfy that

min

{
1,

f(Ŝ)

αOPT′f

}
+ min

{
1,

g(Ŝ)

βOPT′g

}
≥ 2(1− ε).

In this case, f(Ŝ) is bounded from below as follows.

f(Ŝ) ≥ αOPT′f

[
2(1− ε)−min

{
1,

g(Ŝ)

βOPT′g

}]
≥ αOPT′f [2(1− ε)− 1]

≥ αOPTf (1− ε)(1− 2ε)

≥ (1− 3ε+ 2ε2)αOPTf .

g(Ŝ) is similarly bounded from below by (1 − 3ε +
2ε2)βOPTg . Consequently, Ŝ is a [1−3ε+2ε2, 1−3ε+2ε2]-
approximation to Problem 4.

On the other hand, when Ŝ has an objective value strictly
less than 2(1 − ε), we can safely ensure that f(S) <
αOPTf or g(S) < βOPTg for all S ⊆ V with |S| =
k.

4.2 ALGORITHM DESCRIPTION

Algorithm 3 describes the proposed framework for SMSC
with an approximation SFM oracle. Our algorithm first
computes (1− ε)-approximate optimum OPT′f and OPT′g
by invoking a (1 − ε)-approximation SFM oracle. It then
performs a bisection search on an approximation thresh-
old α starting with a range [αmax, αmin] , [0, 1], which
requires to solve Problem 4 by Algorithm 2. It terminates
the bisection search if we have that (1− ε4)αmax > αmin,
and returns a solution obtained by running Algorithm 2 on
(OPT′f ,OPT′g, αmin, β), where we use the value of αmin

obtained during the last iteration of the bisection search.
The following theorem presents the approximation guaran-
tee and the number of oracle calls of Algorithm 3.

Theorem 6. Given a (1− ε)-approximation SFM oracle,
Algorithm 3 provides a [1 − 3ε, 1 − 3ε]-approximation to
SMSC, by invoking the oracle O(log ε−1) times.

Proof. When the algorithm terminates, the following holds
by Lemma 5: f(S) ≤ αmax OPTf for any S ⊆ V with
|S| = k such that g(S) ≥ βOPTg, and g(Ŝ) ≥ (1− 3ε+

2ε2)βOPTg ≥ (1−3ε)βOPTg , where Ŝ is the algorithm’s
return. We then have that

f(Ŝ) ≥ (1− 3ε+ 2ε2)αmin OPTf (3)

≥ (1− 3ε+ 2ε2)(1− ε4)αmax OPTf (4)
≥ (1− 3ε) max

S⊆V :|S|=k,g(S)≥βOPTg
f(S). (5)

796



Algorithm 3 Optimization framework for SMSC with an
approximation SFM oracle.

Input: two monotone submodular functions f : 2V →
R≥0 and g : 2V → R≥0; approximation threshold β;
solution size k.

1: invoke (1− ε)-approximation SFM oracle on f, k and
g, k to compute a (1− ε)-approximate optimum OPT′f
and OPT′g , respectively; i.e., OPT′f ≥ (1− ε) ·OPTf
and OPT′g ≥ (1− ε) ·OPTg .

2: αmin ← 0 and αmax ← 1.
3: while (1− ε4)αmax > αmin do
4: ᾱ = αmin+αmax

2 .
5: call Algorithm 2 on (OPT′f ,OPT′g, ᾱ, β).
6: if [1 − 3ε + 2ε2, 1 − 3ε + 2ε2]-approximation to

Problem 4 was found then
7: αmin ← ᾱ.
8: else
9: αmax ← ᾱ.

10: return a solution Ŝ obtained by calling Algorithm 2 on
(OPT′f ,OPT′g, αmin, β).

Hence, Ŝ is a [1− 3ε, 1− 3ε]-approximation to SMSC. The
number of oracle calls is equal to the number of iterations
plus a constant, which is bounded by O(log ε−1).

4.3 POLYNOMIAL-TIME
[0.16, 0.16]-APPROXIMATION

Obviously, the greedy algorithm (Algorithm 1) is a
polynomial-time oracle for SFM with the best approxima-
tion guarantee. We show that Algorithm 3 with the greedy
algorithm returns a [0.16, 0.16]-approximation for SMSC.

Theorem 7. Given the greedy algorithm (Algorithm 1) as
an approximation oracle for SFM, Algorithm 3 provides
a [0.16, 0.16]-approximation to SMSC in polynomial time,
by evaluating two input monotone submodular functions for
at most O(nk) subsets.

Proof. According to the proof of Theorem 6, Algorithm 3
with a (1− ε)-approximation oracle returns a set Ŝ such that

g(Ŝ) ≥ (1− 3ε+ 2ε2)βOPTg,

f(Ŝ) ≥ (1− 3ε+ 2ε2)(1− ε4)f(S∗),

where S∗ is an optimal solution for SMSC. Since a greedy
algorithm is a (1 − 1/e)-approximation oracle for SFM,
we have that (1 − 3/e + 2/e2)(1 − 1/e4) ≥ 0.16, which
proves the approximation factor. The number of function
evaluations is bounded by O(nk) because a single call of
the greedy algorithm requires O(nk) time and the number
of iterations in the bisection search is O(log e), which is a
constant.

5 EXPERIMENTS

We evaluate the proposed framework by performing exper-
iments on sensor placement and movie recommendation
using real-world data. In particular, the purpose of this sec-
tion is to answer the following questions:

• How does the value of β affect the approximation qual-
ity in terms of f?

• How efficient is Algorithm 3?

• Does Algorithm 3’s solution S satisfy the requirement
that g(S) ≥ βOPTg?

We compare the following algorithms.

• Approx(0.99) : Algorithm 3 with a 0.99-approximation
oracle for SFM, which guarantees a [0.97, 0.97]-
approximation while requiring exponential time in the
worst case.

• Approx(0.8) : Algorithm 3 with a 0.8-approximation
oracle for SFM, which guarantees a [0.4, 0.4]-
approximation while requiring exponential time in the
worst case.

• Approx(Gr) : Algorithm 3 with the greedy algo-
rithm for SFM, which guarantees a [0.16, 0.16]-
approximation and runs in polynomial time.

• Greedy(f ) and Greedy(g) : We run the greedy algo-
rithm on f and g, which does not have any approxima-
tion guarantee.

We implemented the above-described algorithms in Python
3.6. For an approximation oracle for SFM, we implemented
Uematsu et al.’s algorithm ICG using the Gurobi Optimizer
ver. 9.0.1 [Gurobi Optimization, LLC, 2020]. We conducted
all experiments on a Linux server with an Intel Xeon E5-
2699 2.30GHz CPU and 792GB memory.

5.1 SENSOR PLACEMENT

We applied the proposed framework to the sensor place-
ment problem, which requires allocating a small number of
sensors so that the expected uncertainty is most effectively
reduced.

Setup. We used the publicly-available Intel Lab data
[Madden, 2014], which contains a log of approximately
2.3 million readings regarding temperature, humidity, and
light for 65,536 epochs collected from n = 54 sensors in
the Intel Berkeley Research Laboratory between February
28th and April 5th. We replaced missing readings for each
sensor using linear interpolation and used temperature mea-
surements every 512 epochs. This data also includes the x
and y coordinates of each installation location.
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Figure 1: Sensor placement results, where Sβ denotes the solution of SMSC with β.

We designed two monotone submodular functions f and g
as follows. Consider the following scenario: One is going
to improve the sensor placement in operation but does not
want to modify the current placement significantly as it
would require time and effort. We can apply SMSC to
such scenarios by setting so that f captures the expected
uncertainty of a new sensor placement S and g captures the
similarity between S and the current sensor placement, say,
T . We first design f : 2V → R≥0 based on entropy, which
has been adopted in the literature [Ohsaka and Yoshida,
2015, Krause et al., 2008b, Sharma et al., 2015]. Let V =
[n], and for each i ∈ V , let Xi be the random variable
representing the temperature measurement collected from
a sensor located at the i-th location, and let Ω = {Xi}i∈V .
The Shannon entropy of X ⊆ Ω is defined as

H(X) , −
∑

x∈dom(X)

Pr[x] · log2 Pr[x],

where dom(X) denotes the set of possible outcomes of
X , and Pr[x] is the probability of observing an outcome x.
The Shannon entropy H(·) is known to be monotone and
submodular [Fujishige, 1978]. Since the conditional entropy
of Ω having observed S is H(Ω | X) = H(Ω)−H(X), to
reduce the uncertainty of Ω, it suffices to find a set having
the largest entropy H(X). Hence, we define f such that
f(S) , H({Xi}i∈S).

We then designed a similarity function g : 2V → R≥0 based
on maximum-weight bipartite matching. Here, a matching
between two sets S and T is defined as a pair setM ⊆ S×T
in which no two pairs share the first or second element. The
weight of a matching M is defined as

∑
(i,j)∈M wi,j , where

wi,j is a similarity score between i ∈ S and j ∈ T . Then,
the maximum-weight matching is defined as a matching with
the maximum weight over all possible matchings between
S and T . The maximum-weight matching as a set function
in S is known to be monotone submodular [Ito et al., 2002,

Sakashita et al., 2008]. Let xi and yi be the x and y coordi-
nates of installation location i ∈ [n], respectively. We define
the similarity score between two installation locations i and
j as

wi,j , exp
(
− (xi − xj)2 + (yi − yj)2

σ2

)
,

where σ = 16 is a parameter. Then g : 2V → R≥0 is
defined as the weight of the maximum-weight matching
between S and T ; i.e.,

g(S) , max
M⊆S×T :matching

∑
(i,j)∈M

wi,j .

The computation of g takes O(n3) time [Galil, 1986]. We
set the solution size k to 6 and construct a (low-entropy) set
T of size 6 by running the greedy algorithm on −f(·).

Results. We ran Algorithm 3 and Greedy with each
approximation threshold β = 0.05, 0.1, . . . , 0.95, 1. Fig-
ures 1a and 1b plot f(Sβ) and g(Sβ) for each value of β,
respectively, where Sβ is a solution that Approx(0.99), Ap-
prox(0.8), Approx(Gr), Greedy(f ), or Greedy(g) returned
with β. Whereas Approx(0.99) satisfies that g(Sβ) ≥
βOPTg excepting only a few points of β (e.g., β = 0.9),
Approx(0.8) and Approx(Gr) violate the constraint for β >
0.8. Regarding the approximation accuracy f(Sβ)/OPTf ,
Approx(Gr) is slightly worse than Approx(0.8) and Ap-
prox(0.99) for small β. Greedy(f ) gives a solution Sf such
that f(Sf ) = OPTf and g(Sf ) ≈ 0.17 OPTg, which sig-
nificantly violates the constraint on g, Greedy(g) on g gives
a solution Sg such that f(Sg) ≈ 0.77 OPTf and g(Sg) =
OPTg, which is drastically worse than Approx(0.99), Ap-
prox(0.8), and Approx(Gr) for the case of small β. Figure 1c
plots running time for computing Sβ for each β. Greedy(f )
and Greedy(g) required only 1 second. Approx(0.8) and
Approx(Gr) required 6 seconds. Though Approx(0.99) was
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Figure 2: Movie recommendation results, where Sβ denotes the solution of SMSC with β.

the slowest because a (1−ε)-approximation oracle for SFM
requires more time as the value of ε decreases, it still re-
quired 200 seconds. Note that Approx(0.99), Approx(0.8),
and Approx(Gr) called approximation oracles 29, 12, and
8 times, respectively, regardless of the value of β. To sum
up, the proposed framework even with the greedy algorithm
outperformed the simple application of the greedy algo-
rithm, and Approx(0.99) provided more accurate solutions
than Approx(0.8) and Approx(Gr) if β is close to 1, at the
expense of efficiency.

5.2 MOVIE RECOMMENDATION

We applied the proposed framework to the movie recom-
mendation task, whose objective is to extract a small number
of diverse, highly-rated movies given a log of movie ratings.

Setup. We used the publicly-available MovieLens data
ml-latest-small [Harper and Konstan, 2015], which
contains 100,000 ratings from u = 600 users on
m = 9,000 movies, where each rating takes a value in
0.5, 1, 1.5, . . . , 4.5, 5.

We designed two monotone submodular functions f and g
in the following way. Consider the following scenario: One
is going to extract a few movies to be displayed in recom-
mender systems but wants to include as many movies as
possible from a fixed set of movies, say, T . Such a set T con-
sists of movies an agency wants to advertise, for example.
We can apply SMSC to such scenarios where f measures
how diverse and highly-rated a set of movies S is and g mea-
sures how many movies of T are included in a solution S.
We first designed f based on the facility-location objective.
Similar submodular objectives have been adopted in the
literature, e.g., [Lindgren et al., 2016, Mirzasoleiman et al.,
2016, Feldman et al., 2017, Mitrovic et al., 2017, Balka-
nski and Singer, 2018]. Obtaining the user-movie rating

matrix R ∈ Ru×m from the data, we constructed feature
vectors for each movie. For this purpose, we performed
nonnegative matrix factorization to obtain a factorization
R ≈ UV>, where U ∈ Ru×d consists of user feature vec-
tors, V ∈ Rm×d consists of movie feature vectors, and d
is the dimension of feature vectors, where we set d = 32.
Specifically, we applied a nonnegative matrix factorization
algorithm from the Python package scikit-learn3 [Ci-
chocki and Phan, 2009, Févotte and Idier, 2011]. The feature
vector of movie i is denoted by vi ∈ Rd. Intuitively, the in-
ner product 〈vi,vj〉measures the similarity between movies
i and j. Let V be a set of n = 403 movies with at least 54
reviews. The facility location objective f : 2V → R≥0,
which quantifies how well a movie set S covers V , is then
defined as follows:

f(S) ,
∑
t∈V

max
s∈S
〈vs,vt〉,

which is known to be monotone and submodular [Frieze,
1974]. A similarity function g : 2V → R≥0 is simply de-
fined to be the intersection size; i.e., g(S) , |S ∩ T | for a
target set T .

We set the solution size k to 16 and constructed a (less-
diverse) set T of size 16 by running the greedy on −f(·).

Results. Figures 2a and 2b plot f(Sβ) and g(Sβ) for each
value of β = 0.05, 0.1, . . . , 0.95, 1, where Sβ is a solution
of SMSC that Algorithm 3 and Greedy returned with β.
Examining the results of approximation frameworks, Ap-
prox(0.99) almost always satisfies that g(Sβ) ≥ βOPTg
for every β. This is because the function value of g only
takes a number in {0, 1, 2, . . . , 16}. When β ≥ 0.9, Ap-
prox(0.99) must choose Sβ = T uniquely as a solution
(regardless of the design of f ), and thus the function value f

3https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.NMF.html
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drops sharply. On the other hand, Approx(0.8) and Ap-
prox(Gr) violate the constraint if β ≥ 0.9. Note that
Greedy(f ) gave a solution Sf such that f(Sf ) = OPTf
and g(Sf ) = 0 while Greedy(g) gave a solution Sg such that
f(Sg) ≈ 0.25 OPTf and g(Sg) = OPTg. Hence, Greedy
produced poor-quality solutions in practice. Figure 2c plots
the running time of each algorithm. Similarly to sensor
placement, Greedy required at most 20 seconds, which was
the fastest. Approx(0.8) and Approx(Gr) required 80 sec-
onds while Approx(0.99) required 6 minutes. Note that the
number of oracle calls of Approx(0.99), Approx(0.8), and
Approx(Gr) were 31, 12, and 8, respectively, regardless of
the value of β.

6 CONCLUSION

In this paper, we formulated a new optimization problem
called submodular maximization under submodular cover
(SMSC). We proposed an approximation framework for
SMSC with a provable guarantee. We demonstrated the
effectiveness of the proposed framework by performing ex-
periments using real-world data. Future work includes better
approximation guarantees and hardness-of-approximation
results.
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