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APPENDIX

This appendix complements the main paper with proofs,
additional results and experiment details. In Appendix A,
we start with additional theoretical background. Appendix B
presents full proofs for the main theoretical results in the
paper. Appendix C provides kernel-specific theoretical up-
per bounds for the KL divergence of posterior candidates
obtained by KL-UCB. In Appendix D, we present a sensitiv-
ity analysis on dimensionality effects on KL-UCB. Finally,
in Appendix E, we conclude with further details on the
experiments setup.

A FURTHER BACKGROUND

Definition A.1. Let Q and P be two probability measures
such that Q is absolutely continuous with respect to P.
The Kullback-Leibler (KL) divergence between @ and P is
defined as:

Dic(QIP) = | o (dQ) Q. W

Case Q and P are both defined on a Euclidean space R¢
and are absolutely continuous with respect to the Lebesgue
measure on this space, the equation above can be rewritten
as:

q(68
Drs (QI1P) = Dra(all) = | ate)tog (41) a6
JR4 p(0)
where ¢(0) := dQ( ) and p(0) := 4& ( ) are the probabil-
ity density functlons of @ and P, respectlvely.

GP predictive equations: The theoretical results are
given in terms of a Gaussian process model GP(m, k) for
the log-likelihood function ¢ : © — R which is learnt with
batches of S i.i.d. samples from a probability distribution g,
ateach iteration t € {1,...,T}. Therefore, at each iteration

t > 1, the GP predictive mean and variance are given by:

11(8) :=m(0) + kn,(0)" (Ky, +n1) " (2, — mz(vé))
k(0,0) ;= k(0,0") —kn,(0)T(Ky, + nI)*lth(e’)(‘L)
07 (0) = k(0,0), (5)
where k, (0) = [k(0,01),....k(0,05)]7. [Ky,)ij ==

k(@l, 0]‘), i,] € {]., C ,Nt}, and Ny :=¢S.

B PROOFS

We here present full proofs for the theoretical results in the
paper. We start with a few auxiliary results and then follow
with the proofs for the main results.

B.1 AUXILIARY RESULTS

Lemma B.1. In our settings, the GP posterior variance is
always bounded, i.e.:

Vvt >0, ot <1 (6)

Proof. As the kernel k is bounded, with k£(6,6) < 1,V0 €
O, the definition in Equation 5 leads to:
Vt>1, 02(0)<k(0,0)<1, ¥YO9cO. (1)

O

Lemma B.2. Assuming a bounded mean functionm : © —
R, the GP posterior mean is bounded, i.e.:

VE>0, |pellee < oo ®)
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Proof. As defined in Equation 3, for ¢ > 1, we have:
1:(0) :=m(8) + kn,(0)"(Ky, +1I) L (zy, — my;,)
<m(0)+n "k, (0) (zy, —my,)
< llmlloo + 07~ |k, (O)]11 ]z, — M, [l
< lmllso + 07 (2w, oo + Imllo)
<oo, VOeO,

©))

where we first used the fact that (Ky, + nI)~! =
= (n 'Ky, + 1)~ < 77 due to positive-definiteness,
then applied Holder’s inequality, and finally the observation
that ||k, (0)]|1 < t, due to the kernel bound. O

Lemma B.3 (Srinivas et al. (2010, Lemma 5.3)). The in-
formation gain for a sequence of evaluations {0;, z;} Y,
where z; = f(0;) + €;, €, ~ N(0,7), can be expressed in
terms of the predictive variances. Namely, if f ~ GP(m, k),
then:

N
1
I, Ex10x) = 5 D log(L+ 0702 1(8:)) . (10)
i=1

Lemma B.4 (Chowdhury and Gopalan (2017, Lemma 4)).
Following the setting of Lemma B.3, the sum of predictive
standard deviations at a sequence of evaluation points is
bounded in terms of the maximum information gain:

N
> " 0im1(8:) < VAN +2)yy - (11)
=1

Lemma B.5. Let A C © be a set of points where a function
f ~ GP(m, k) was evaluated, so that the GP posterior
covariance function and the corresponding variance are
given by:

kA(0,0) :=k(0,0') — k0, A)T(K(A) +nI) k(A0

(12)
0%(0) :=ka(0,0), 0.6 cO, (13)
where k(0,A) = [k(0,a)]aca and K(A) :=

[k(a,a’)|a,a’ca. Then, for any given set B O A of eval-
uations of f, we have:

0c%(8) < dj(0), VOcO. (14)

Proof. The result follows by observing that the GP posterior
given observations at A is a prior for the GP with the new
observations at the complement C := B\ \A. Then we obtain,
forall @ € ©:

o5(0) :=k(0,0) — k(6,B)(K(B) + nl)"*k(B,0)
= 0%(0) — ka(6,C)(Ka(C) + L) "ka(C,0)
< 0i(0),
(15)

since k4(0,C)(KA(C) + nI)"1k4(C, 6) is non-negative.
O

B.2 PROOF OF LEMMA 1

We prove Lemma 1 by applying Jensen’s inequality to The-
orem 1. Specifically, consider that the following holds with
probability greater than 1 — § simultaneously over all ©:

V>0, [6(0)— u(0)| < Bi(6)or(6) . (16)

With the same probability, we then have that:

|Eo~q, [£(0) — 114(0)]] < Egrg, [[6(0) — 11:(6)]]
< Bi(6)Eong, [0:(0)], a7
VO € ©,Vt >0,

since the absolute value || is convex. Lastly, we note that the
GP in Algorithm 1 is taking batches of samples per iteration.
Therefore, we have to replace the original K;, which holds
t observations, by Kp,, which holds all the ¢S observations
collected up to iteration ¢.! This concludes the proof.

B.3 PROOF OF THEOREM 2

We prove Theorem 2 in two parts, one for each component
of the result. In the first part we establish a bound on the in-
stant regret. We then propagate this bound to the cumulative
regret. For these derivations, we will make use of Lemma 1
and some of the auxiliary results in Section B.1.

Proof of Theorem 2. We start by proving that, with
h(q|D;—1) given by KL-UCB and §; := S;(4) according to
Theorem 1, we obtain a bound on the instant regret:

e < 251:71(5)15% [Utfl] . (18)

By Lemma 1, uniformly over all ¢ > 1 with probability at
least 1 — 4, we have that:

E,[¢] — D < E,[u, 1] — D
max qlf] KL(QIlp)_gleag glue—1] — Dxr(qllp)

= By, [u—1] — Dkr(:|lp) -
19)

Applying this bound to the definition of instant regret yields

"This replacement does not violate the conditions under
which Theorem 1 holds, as we may define a filtration §:;—1 :=
0(Ds—1,{0:,:}5-1), i.e., the o-algebra generated by the random
variables in the dataset D;_; and the selected batch, t > 1. In this
case, the noise {et,i}le in the observations at iteration ¢ > 1 is
oe-sub-Gaussian when conditioned on §¢—1.



the first part of Theorem 2:

re == Dxr(¢e|lpx) — Dxe(q”|[px)
_ I&%{Eq (0] — Dki(qllp) — Eq, [€] + Dxr(g:]p)

< Eg, [ue—1] — Eq, [4]
=Eog, [1tt-1(0) + Bi—10:-1(0) — £(6)]
< QBtflEGth [Utfl(e)] )
(20)
which holds with probability at least 1 — 4.

For the second part, we apply the bound to the cumulative
regret and initally obtain:

T T
Ry = Zrt < 2Z/Bt71Eétht [0'7571(015)}
t=1 t=1
T

<28r) B,y [01-1(81)
t=1
T o~
< 267Bg, L, Br~ar [Z Utl(f’t)} )
t=1

21

since B; > (i1, Vt > 1, and expectations are linear opera-
tions. Considering the predictive variances above, recall that,
at each iteration ¢t > 1, the algorithm selects a batch of i.i.d.
points B; := {6,,;}7_,, sampled from g;, where to evalu-
ate the log-likelihood function ¢. The predictive variance
o?_, is conditioned on all previous observations, which are
grouped by batches. We can then decompose, for any ¢ > 1:

0;(0) = a7_1(0)
—k—1(0,B)(Ki—1(By) + TII)ilktfl(Btv 0),
(22)

where we use the notation introduced in Lemma B.5, and:
ki (6,0") = ki —1(6,0")
— ke—1(6, B) (Ky—1(By) + 1)~ ky—1(By, 0")
(23)
ko(0,6") :=k(6,0'). (24)

Therefore, the predictive variance of the batched algorithm
is not the same as the predictive variance of a sequential
algorithm, and we cannot direcly apply Lemma B.4 to bound
the last term in Equation 21.

Lemma B.5 tells us that the predictive variance given a set
of observations is less than the predictive variance given a
subset of observations. Selecting only the first point from
within each batch and applying Lemma B.5, we get, for
t>1:

o} (0) < s7(0)

= k(8,0) — k(6,0,)(K(O,) + 1) "'k(©1,0).
(25)

where ©; := {0,;1}!_,, with 8,1 € B;,i € {1,...,t}.
Note that the right-hand side of the equation above is
simply the non-batched GP predictive variance. Further-
more, sample points within a batch are i.i.d., so that 8; ; ~
q¢ and 0, ~ q: are identically distributed. We can now apply
Lemma B.4, yielding:

T
t=1

< Eé1~q17m,§r~qT [Z stfl(et)

t=1

] (26)

Combining this result with Equation 21, we obtain:

Ry < ABrv/ (T +2)yr € O(Br/Thr) - 27

Lastly, from the definition of 8;(¢), we have:

Br(8) = b+ oer/20 og(IT + 1Ko, [1/2/5), (28)
where:

log(‘I + 77_1KDT |1/2) = I(ZNT7 gNT) < YNy = VST
(29)
for g ~ GP(m,k). Therefore, the KL-UCB cumulative
regret is such that:

Ry € OWT(byAT + AT75T)) S (30)

which concludes the proof. O

B.4 PROOF OF LEMMA 2

Lemma 2 states that, for a bounded kernel k, maximising h
atany ¢t > 1 is equivalent to:

argmax h(q|D;—1) = argmin Dk, (¢||ps—1) , 31)
qEQ qEQ

where h is defined as:

h(q|Di-1) := Egrglui—1(0)] — Dkr(qllp) . (32)

with ut(O) = [Lt(e) + ﬂt(jt(e), 0 S /Bt < o0, and ot
and o? define GP posterior mean and variance at iteration
t. The proof follows by the same argument which turns
the general KL divergence minimisation problem into an
ELBO maximisation. The only part to verify is whether
pr—1 defines a valid probability density function.

Proof of Lemma 2. In general, let f : © — R be a bounded
function on © C R, i.e. || f|l < o0, and p a probability
density function on ©. Then we have that:

E,lf] == /@ £(8)p(6) B < || [l /@ p(8)d0 = ||| -
(33)



Combining Lemma B.1 and Lemma B.2, we have that u; is
always bounded, since:
Ve > 1, u(0):= u(0) + Bror(0)
< lptlloo + Bellot]oo < o0, VO E€O.
(34)

Then the normalisation constant (; for p;(0) =
ép(@) exp u(0) is bounded, for:

VE>0, ( :=Ep[expu]

:/p(@) exp ug(0) dO < ||exp ut oo
)

< 0.
(35)

Now, for the lemma’s main result, we obtain:

argmax E,[u;—1] — Dk, (¢||p)
qeQ

= argmax E,[u;_1 + log p — log ¢]
qEQ

= argminlog E,[exp u;—1] — Equ—1 + log p — log ]
qeQ

= argmin o 4(O)Ep[expu; ]
= arg /@q(ﬂ)l g(p(a)exm_l(a)) 9

= argmin Dkr, (q/|pi—1) ,
qeEQ

(36)

which concludes the proof. L

B.5 PROOF OF COROLLARY 1

The corollary is simply a restatement of Theorem 2 in terms
of ¢; = py—1. In this case, the KL divergence with respect
to the optimal solution is Dkr,(¢*||px) = 0, since we are
considering a class of non-parametric distributions which
can recover arbitrary distributions via MCMC. By Theorem
2, we then know that:

1
minr, < Ry € O(ysrT~Y?). (37)

t<T

If vg7 € O(T?), for some o < 1/2, so that « — 1/2 < 1,
then:

1
Tl € ore1?) =

T—oo t<T T—o0
(38)
Replacing r; = Dk, (p:—1]||px) above concludes the proof.

Alternative proof. Another way of proving the same bound
on the KL divergence is the following. The KL divergence

1
lim minr; < lim TRT =0.

from p; to px is bounded via Lemma 1. Namely, with prob-
ability greater than 1 — ¢, we have that:

Dkr(Pe]|px) = Eo~p, [log pi(8) — log px ()]
= Eg~p,[logp(0) — 111(0) + Br0+(0)
—log ¢; — log px(8)]
= Eo~p, [16(6) + B0t (8) — £(6)] + log p(x)
— log ¢

< 2BtEg~p,[0+(0)] + log p(x) — log (; -
39

For the second part of the last term in the right-hand side
above, we also have that:

p(x) = / p(0)expl(0)dO < / p(0) expu:(6)dl = (;
e e
(40)
which holds with the same probability as Equation 39. There-
fore, we conclude the proof with:

log p(x) —log ¢; < 0

41
= Dxr(0t||px) < 26:Eo~p, [0:(0)] - @D

O

C KL DIVERGENCE BOUNDS FOR
KL-UCB WITH SPECIFIC KERNELS

Corollary 1 connects the regret bound in Theorem 2 with
the KL divergence of posterior approximations by KL-UCB
when sampling directly from the posterior surrogate induced
by UCB. In this case, we can bound the KL divergence of
the posterior approximations by KL-UCB with respect to
the posterior as:

. . Rr
< T > 1.
min Dy (P ||px) < 7 =21 (42)

According to Theorem 2, we have Ry € O(vsrvVT).
Therefore, to bound the KL divergence, we need kernel-
specific upper bounds for the maximum information gain
~r (Srinivas et al., 2010; Vakili et al., 2021). In particular,
we consider the case of two popular stationary kernel classes.
The first one is the squared-exponential kernel, used in our
experiments. As previously mentioned, this kernel yields a

bound 7 € O (1ogd+1(T)) (Srinivas et al., 2010).

The second type of kernel is the Matérn class with smooth-
ness parameter v > 1/2:

N 1 V2vpg.er ’ V2upe o
0,67 = F(V)QV—1< l ) B”( l ’

43)
where pg g := ||@ — 6’||2, 1 > 0 is a length-scale parameter
controlling the smoothness of the functions in the RKHS, I"



Kernel class min, <7 Dxr, (5¢]|px)

Squared exponential ) (T —1/2 gttt (ST))

Matérn v > 1/2 O (Tﬁ(%_”) log 7 (ST))

Table 1: KL divergence bounds for KL-UCB

is the gamma function, and B,, is the modified Bessel func-
tion of the second kind, for 8, 6’ € ©. This kernel leads to a

maximum information gain yp € O (TT% log% (T))
according to recent results (Vakili et al., 2021).

Table 1 presents upper bounds for the KL divergence of pos-
terior approximations by KL-UCB. As the table shows, both
kernels lead to an asymptotically vanishing KL divergence
in the approximations with respect to the true posterior in
general. An exception to asymptotic convergence, however,
is that convergence does not necessarily hold for d > 2v
in the case of the Matérn kernel, noticing the exponent in
its rate. For instance, a Matérn kernel with v = 3/2 would
not guarantee convergence in a problem whose parameter
space has dimension d > 3. The guarantees for the squared-
exponential kernel do not suffer from this drawback, though
the rates are possibly worse due to the exponential depend-
ence on d via the logarithmic term.

In terms of approximation bounds with respect to the num-
ber of likelihood evaluations N = ST, we have a KL diver-
gence bound of O (N~1/2) and O (Nﬁ(%f”)) for the
squared-exponential and the Matérn kernels, respectively.
Here the O-notation suppresses logarithmic factors. Com-
pared to the exponential convergence rates in Kanagawa
and Hennig (2019), notice that their results are for a noise-
free setting, while we consider settings with (sub-Gaussian)
noise. In the noise-free setting, one is usually able to obtain

tighter concentration bounds for the GP approximation (see
de Freitas et al., 2012).

D DIMENSIONALITY EFFECT

In this section, we present a short analysis on the effect
of dimensionality on the regret of the KL.-UCB algorithm.
Figure 1 presents the KL-UCB regret for the problem in
Section 7.1 when we increase the dimensionality of the
parameter space © = R?. As the plot shows, the regret
has an exponential dependence on the dimensionality of the
parameter space. Therefore, the practitioner might need to
run the method for longer to obtain reasonable posterior
approximations or apply dimensionality reduction methods.

3 5
. 5
(0]

—_
(o)) (e}
D 21
—_
[J]
(@]
g1 &
> T
< |0
=
1020 4.0 8.0
Dimension

Figure 1: Dimensionality effect on the mean regret of KL-
UCB on the RKHS log-likelihood problem after 20 itera-
tions as a function of the dimensionality of the parameter
space. The results of 5 independent runs were combined to
produce the box plot.

E DETAILS OF THE EXPERIMENTAL
SETUP

In this section, we present further details on the experimental
setup for the empirical results in the paper. In particular, we
describe the settings for KL-UCB. For VBMC, we used an
implementation provided by its author.”

KL-UCB setup: For the GP model in KL-UCB, we used
GPyTorch (Gardner et al., 2018) with adaptations to perform
fast rank-1 Cholesky updates on the GP covariance matrix
(see Rasmussen and Williams, 2006, Algorithm 2.1). Given
the theoretical nature of this work, we did not perform on-
line hyper-parameters learning, contrary to what is usual in
other GP-based approximate inference methods (Gutmann
and Corander, 2016; Acerbi, 2018). The kernel lengthscale
was set as 0.5, a value which provided fitting GP estimates
for the generated problem scenarios. The GP was configured
as zero mean m := 0 for the RKHS-based problem in Sec-
tion 7.1, while we used the log-prior probability as the mean
function m := log p for the problems in Section 7.2. The
latter allows the GP to provide low likelihood estimates for
parameters of low prior probability, avoiding excessive ex-
ploration of the parameter space. In terms of noise settings,
observations in the RKHS problem (Section 7.1) were added
with Gaussian noise o, := 0.01||¢||, while the problems
with comparisons against VBMC were configured with ba-
sically no noise (o, := 1079), since this algorithm was not
originally designed to handle noise (see Acerbi, 2020, for a
recent noise-adapted version). The GP noise parameter was
correspondingly set as 17 := 10~2 for the RKHS problem,
and 1) := 10~ for the noise-free problems. Having a small,
non-zero 7 avoids numerical issues with matrix inversions.
Lastly, for the setting of 3;, the RKHS norm for the log-
likelihood function in Section 7.1 is available in closed form,
but for the non-RKHS functions we set b := 3 which yields

2VBMC experiments code: https://github.com/
lacerbi/infbench
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the common 3 standard deviations UCB parameter (also in
VBMC (Acerbi, 2018)) in a noiseless setting.

MCMC setup: We configured the EMCEE sampler
(Foreman-Mackey et al., 2013) with 25 walkers and a burn-
in of 400 samples. We selected the S := 5 evaluation points
in each BO iteration’s batch out of 500 samples drawn by
EMCEE. Sub-sampling from a larger batch of samples re-
duces the correlation between samples from the chain.

Estimation of KL divergence: To verify theoretical
bounds, we measured the KL divergence between KL-
UCB’s posterior approximations and the true posterior dis-
tribution, which is unknown to KL-UCB. As the posterior
distribution approximations from KL-UCB are sampled-
based MCMC estimates, we had to estimate the KL di-
vergence based on samples. We also took into account
that MCMC samples are usually correlated. To decorrel-
ate the samples, we built a kernel density estimator out of
the MCMC samples using a Gaussian kernel with the rule
by Scott (1992) for kernel bandwidth selection® and then
sampled from this continuous density. For a large enough
number of MCMC samples (2000 for the likelihood-free
inference problem, 10000 for the circular likelihood, and
1000 for the other problems), the i.i.d. samples from the
density estimator approximately follow the stationary distri-
bution of the MCMC chain, i.e. its target posterior. We then
applied a k-nearest-neighbours method (Szabé, 2014)* to
obtain the KL divergence estimates.
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