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Abstract

For nonlinear supervised learning models, assess-
ing the importance of predictor variables or their
interactions is not straightforward because impor-
tance can vary in the domain of the variables. Im-
portance can be assessed locally with sensitivity
analysis using general methods that rely on the
model’s predictions or their derivatives. In this
work, we extend derivative based sensitivity anal-
ysis to a Bayesian setting by differentiating the
Rényi divergence of a model’s predictive distribu-
tion. By utilising the predictive distribution instead
of a point prediction, the model uncertainty is taken
into account in a principled way. Our empirical re-
sults on simulated and real data sets demonstrate
accurate and reliable identification of important
variables and interaction effects compared to alter-
native methods.

1 INTRODUCTION

Identifying important features and interactions from com-
plex data sets and models remains a topic of active research.
This is a fundamental problem with important applications
in many scientific disciplines. Often the goal is to improve
understanding of the model, but the identified features and
interactions can also be used to build a simpler or more
interpretable surrogate model.

For models that can capture nonlinear effects and interac-
tions, the typical approach is to assess the contributions of
individual predictors or interactions on the model’s predic-
tion at an individual observation. One approach is sensitiv-
ity analysis, which evaluates the change in predictions to
small perturbations in the predictor values [Cacuci, 2003,
Oakley and O’Hagan, 2004, Cacuci et al., 2005, Paana-
nen et al., 2019]. For example, the partial derivative of the
model’s prediction with respect to the predictors can be a

−2

0

2

4

y

E[y|x]
p(y|x)

x
0

1

2

se
n

si
ti

v
it

y ∂E[y|x]
∂x

R-sens

Figure 1: Top: Example of data and a probabilistic model
with a Gaussian predictive distribution p(y|x). The different
shades of blue represent 1, 2, and 3 standard deviations of
the predictive distribution. Bottom: The derivative of E[y|x]
with respect to x (black) represents the naive sensitivity of
the model’s predictions to changes in x. The R-sens method
proposed in this work (red) represents uncertainty-aware
sensitivity as given by differentiating a Rényi divergence of
predictive distributions, which adjusts the sensitivity accord-
ing to uncertainty about y.

measure of importance [Guyon and Elisseeff, 2003]. Since
the derivative can vary from positive to negative in the do-
main of the predictors, most approaches use absolute or
squared derivatives averaged from the observations [Ruck
et al., 1990, Dorizzi, 1996, Czernichow, 1996, Refenes and
Zapranis, 1999, Leray and Gallinari, 1999, Sundararajan
et al., 2017, Cui et al., 2020]. A similar approach is popular
in image classification, where derivatives with respect to
each pixel are called saliency maps [Simonyan et al., 2013,
Zeiler and Fergus, 2014, Guidotti et al., 2018]. The average
predictive comparison of Gelman and Pardoe [2007] uses
the difference quotient of two predictions without taking
the limit. By extending to cross-derivatives with respect to
two predictors, one can also measure the interaction effect
of predictors [Friedman et al., 2008, Cui et al., 2020]. A
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closely related approach for sensitivity analysis is to directly
estimate the contribution of predictor main effects or inter-
actions to the variance of the target variable [Homma and
Saltelli, 1996, Oakley and O’Hagan, 2004, Saltelli, 2002].

Recently, approaches that evaluate the differences of predic-
tions in permuted training observations have gained popu-
larity in machine learning. For example, Fisher et al. [2019]
permute the observations of a single predictor, and exam-
ine the loss in predictive ability compared to the original
data. Shapley values use permutations to assess the aver-
age marginal contribution of a predictor to a specific obser-
vation [Shapley, 1953, Štrumbelj and Kononenko, 2014].
Lundberg et al. [2018] extended this approach to evaluate
second-order interactions based on the Shapley interaction
index [Fujimoto et al., 2006]. Friedman et al. [2008] and
Greenwell et al. [2018] use permutations and partial depen-
dence functions [Friedman, 2001] to construct statistics that
measure the strength of pairwise interactions. The individ-
ual conditional expectation plots of Goldstein et al. [2015]
can also be used to identify interactions, but they rely on
visualisation only.

This paper uses the curvature of Rényi divergence between
predictive distributions to construct a uncertainty-aware sen-
sitivity measure. Similar ideas have been used for mea-
suring the sensitivity of Bayesian inference to the choice
of prior [Al-Labadi et al., 2021]. Moreover, Dupuis et al.
[2020] use Rényi divergence to measure the sensitivity of
rare event probabilities.

The contributions of this work are summarised as follows.
First, we present a novel method that generalises derivative
and Hessian based sensitivity analysis to a Bayesian setting
for models with a parametric predictive distribution or its ap-
proximation. Instead of using the first or second derivatives
of the mean prediction of the model, we instead differentiate
the Rényi divergence between two predictive distributions
that coincide with each other, which takes into account the
epistemic uncertainty of the predictions. Figure 1 gives an il-
lustration of this method. Second, we show that our method
is an analytical generalisation and extension of a previous
finite difference method [Paananen et al., 2019]. Third, we
show empirically that our proposed method can improve the
accuracy of sensitivity analysis in situations where the used
model has significant predictive uncertainty. Code for our
method is freely available at https://github.com/topipa/rsens-
paper.

2 UNCERTAINTY-AWARE SENSITIVITY

Consider a supervised learning model trained on data
(X,y), where X ∈ RN×D is the design matrix and y ∈ RN
is the vector of target observations. Let us denote the predic-
tion function of the model for the target variable y as f(x∗).
Derivative based sensitivity analysis can be used to assess

the local sensitivity of f to the different predictors (xd)Dd=1.
The sensitivity can be quantified by the partial derivative

∂f(x∗)
∂x∗d

.

Absolute values of local derivatives can be aggregated over
the empirical distribution of x to obtain a global importance
estimate for xd, the expected absolute derivative [EAD;
Leray and Gallinari, 1999, Cui et al., 2020]

EAD(xd) = Ep(x)

[∣∣∣∣∂f(x)∂xd

∣∣∣∣] . (1)

Similarly, absolute values of the elements of the Hessian
matrix of f , that is, the second derivatives with respect to
xd and xe, quantify the sensitivity to the joint interaction
effect of xd and xe.

In this section, we present our proposed method, called R-
sens, that extends derivative and Hessian based sensitivity
analysis methods to a Bayesian setting where the evaluated
model not only has a function for point predictions, but a
predictive distribution p(y∗). For now, we only consider pre-
dictive distributions that have some parametric form, which
can be obtained exactly in closed form or it can be an ap-
proximation. Because the predictive distribution is obtained
by integrating over uncertainty for the model parameters,
it is important to utilise this uncertainty in sensitivity anal-
ysis as well. The predictive distribution does not need to
be a posterior predictive distribution (i.e. conditioned on
data), but in this work we only consider posterior predictive
distributions.

To formulate a derivative based sensitivity measure for a
model with a predictive distribution, we need a suitable func-
tional of the predictive distribution, which to differentiate.
We choose a family of statistical divergences called Rényi
divergences due to their convenient properties, which we
discuss later in this section. Rényi divergence of order α is
defined for two probability mass functions P = (p1, ..., pn)
and Q = (q1, ..., qn) as

Dα[P ||Q] =
1

α− 1
log

(
n∑
i=1

pαi
qα−1
i

)

when 0 < α < 1 or 1 < α < ∞ [Rényi et al., 1961,
Van Erven and Harremos, 2014]. The definition generalises
to continuous spaces by replacing the probabilities by densi-
ties and the sum by an integral. The divergences for values
α = 0, 1, and ∞ are obtained as limits. The most well-
known Rényi divergence is the Kullback-Leibler divergence
which is obtained in the limit α→ 1 [Kullback and Leibler,
1951].

Let us consider a model with a predictive distribution
parametrised by a vector λ∗ = (λ∗1, ..., λ

∗
M ), which de-

pends on x∗. Let us denote the predictive distribution for y
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conditional on predictor values x∗ as

p(y∗) ≡ p(y∗|λ∗(x∗)).

Keeping x∗ fixed, we denote the Rényi divergence of order
α between two predictive distributions as a function of x∗∗

as

Dpα[x∗∗] ≡ Dα[ p(y∗|λ∗(x∗))||p(y∗|λ∗(x∗∗))].

We formalise the sensitivity of the predictive distribution
to a change in a single predictor variable by differentiating
the Rényi divergence in the limit when the distributions
coincide, that is when x∗∗ = x∗. However, because Rényi
divergences obtain their minimum value when the two dis-
tributions coincide, the first derivative at this point is always
zero. Hence, we formulate the uncertainty-aware sensitivity
measure with respect to the predictor xd using the second
derivative

∂2Dpα[x∗∗]
(∂x∗∗d )2

∣∣∣∣
x∗∗=x∗

= (2)(
∂λ∗(x∗)
∂x∗d

)T
Hλ∗(x∗∗)(Dpα[x∗∗])

(
∂λ∗(x∗∗)
∂x∗∗d

)∣∣∣∣
x∗∗=x∗

,

where Hλ∗(x∗∗) is the Hessian matrix of the Rényi diver-
gence with second order derivatives with respect to λ∗(x∗∗).

The sensitivity measure in equation (2) has two kinds of
partial derivatives: (i) second order derivatives of the Rényi
divergence with respect to the parameters λ∗ of the pre-
dictive distribution, and (ii) first order derivatives of the
parameters λ∗ with respect to the predictor x∗d. These are
obtained as follows:

(i) For sufficiently regular parametrisations, the second
order Taylor approximation of the Kullback-Leibler
divergence (α = 1) gives an approximate equivalence
between the Hessian of the divergence and the Fisher
information matrix of p(y∗) in the limit x∗∗ − x∗ →
0 [Kullback, 1959, Van Erven and Harremos, 2014].
Haussler et al. [1997] state that this generalises to any
Rényi divergence with 0 < α < ∞, leading to the
relation

Hλ∗(x∗∗)(Dpα[x∗∗])|x∗∗=x∗ ≈ αI(λ∗(x∗)), (3)

where I(λ∗(x∗)) is the Fisher information matrix of
the distribution p(y∗|λ∗(x∗)).

(ii) The partial derivative of the parameter λ∗k with respect
to predictor variable x∗d depends on the model where
the predictive distribution is from.

We define R-sens, an uncertainty-aware sensitivity measure
for predictor xd at x∗ as

R-sens(x∗, xd, α) ≡√
α

(
∂λ∗(x∗)
∂x∗d

)T
I(λ∗(x∗))

(
∂λ∗(x∗)
∂x∗d

)
.

(4)

In a similar fashion as above, we generalise the Hessian
based sensitivity to a Bayesian predictive distribution by dif-
ferentiating the Rényi divergence four times, i.e. twice with
respect to two predictors. However, the full fourth deriva-
tive contains cross-derivative terms, which we drop for two
reasons. First, based on our experiments we concluded that
the simplified formula we use is better at identifying interac-
tions, meaning that the dropped terms do not contain useful
information about the interaction effect between xd and
xe. Second, the simplified formula is similar to the R-sens
measure and is thus more easily interpretable and computa-
tionally cheaper. We define R-sens2, the uncertainty-aware
sensitivity measure for the interaction effect between vari-
ables xd and xe as

R-sens2 (x∗, (xd, xe), α)

≡
√
α

(
∂2λ∗(x∗)
∂x∗d∂x

∗
e

)T
I(λ∗(x∗))

(
∂2λ∗(x∗)
∂x∗d∂x

∗
e

)
.

(5)

In the supplementary material, we show the full equation
and an illustration of the benefit of equation (5) compared
to the full fourth derivative.

2.1 ORDER OF RÉNYI DIVERGENCE

In the R-sens and R-sens2 equations, the order of Rényi
divergence α is only a prefactor. Thus, when using the
uncertainty-aware sensitivity analysis for comparing ob-
servations or predictors to each other, the value of α often
does not make a difference in practice. In all experiments,
we use the value α = 1. Other families of divergences may
provide different results and serve as an interesting direction
for future research.

2.2 LOCATION-SCALE FAMILY

For distributions in the location-scale family (p(y|λ1, λ2) =
g((y − λ1)/λ2)/λ2), the Fisher information of the location
parameter λ1 depends only on the scale parameter λ2, but
not the location parameter itself [Shao, 2006, Ch.3, Ex. 20].
This has two implications. First, if the predictive distribu-
tion is in the location-scale family, the R-sens and R-sens2
measures are direct extensions to the absolute derivative or
absolute Hessian of the mean prediction. The extension is
twofold, as they introduce the derivative of the scale param-
eter and possible auxiliary parameters, and also multiplica-
tion with the Fisher information matrix. The uncertainty-
aware measures can be also viewed as the Mahalanobis
norm of the differentiated parameters of the predictive dis-
tribution instead of a simple Euclidean norm. Second, for a
sufficiently regular model, where the posterior uncertainty
vanishes in the asymptotic regime due to the Bernstein-von
Mises theorem [Walker, 1969] such that the predictive dis-
tribution converges to a limiting distribution in the location-
scale family, R-sens tends to the absolute derivative of the
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mean prediction. Here, we have to assume that the Fisher
information exists and converges to the Fisher information
of the limiting distribution.

2.3 ILLUSTRATIVE EXAMPLE

To illustrate the effects of the different components in equa-
tion (4), we analyse a Bayesian linear regression model as
an example. We use the standard Gaussian likelihood with
noise variance σ2 and denote the regression coefficients as
β. Using an improper uniform prior on (β, logσ), integrat-
ing over the uncertainty about all the parameters makes the
posterior predictive distribution at any point x∗ (treated as a
row vector)

p(y∗|X,y) = Student-t(E[y∗],Var[y∗], ν), where

E[y∗] = x∗β̂,

Var[y∗] = s2(1 + x∗(XTX)−1x∗T ),

ν = N −D,
β̂ = (XTX)−1XTy,

s2 =
(y −Xβ̂)T (y −Xβ̂)

N −D .

Here, ν represents the degrees of freedom, N and D are
the number of observations and predictor variables, respec-
tively, and β̂ are the maximum likelihood estimates of the
regression coefficients. The derivative of ν with respect to
x∗d is zero, and the derivatives of the other two parameters
of p(y∗|X,y) are

∂E[y∗]
∂x∗d

= β̂d,

∂Var[y∗]
∂x∗d

= 2s2[(XTX)−1x∗T ]d ≡ 2s2Vd.

Multiplying these with the Fisher information matrix of
the Student-t predictive distribution, the R-sens sensitivity
measure for the predictor xd from equation (4) evaluates to

R-sens(x∗, xd, α = 1) =

√√√√ (ν + 1)β̂ 2
d +

2νs4V 2
d

Var[y∗]

(ν + 3)Var[y∗]
. (6)

The two summands have the following interpretations: In
the absence of the second term, the measure would be pro-
portional to |β̂d| divided by the standard deviation of the
predictive distribution. The first term thus measures the ab-
solute derivative of the mean prediction, but predictions
with high uncertainty are given less weight. Also the second
term in equation (6) quantifies the amount of uncertainty in
the predictive distribution, but in a different way. Even if
β̂d would be exactly zero, the second summand is nonzero
as long as there is uncertainty about the model parameters
that causes the predictive uncertainty to vary with respect

to x∗. There are thus two separate mechanisms that include
epistemic uncertainty in the sensitivity analysis [O’Hagan,
2004, Kendall and Gal, 2017]. As N (and hence also ν)
approaches infinity and the posterior uncertainty vanishes,
the R-sens measures for both variables approach a constant
proportional to |β̂d|.
To visualise the effects of the two terms in equation (6),
we simulated 10 observations from a linear model with
two predictor variables x1 and x2 whose true regression
coefficients are β1 = 1 and β2 = 0. The predictor variables
are independent and normally distributed with zero mean
and standard deviation one, and the simulated noise standard
deviation is σtrue = 0.5. The R-sens sensitivities for both
variables are shown in the bottom part of Figure 2 with solid
lines. The dashed lines represent the contribution of the
∂E[y∗]/∂x∗d term, i.e. R-sens if ∂Var[y∗]/∂x∗d were zero,
whereas the dotted line represents R-sens if ∂E[y∗]/∂x∗d
were zero. The red color depicts the predictive distribution
p(y|x1, x2 = 0) (top) and R-sens (bottom) for x1. The R-
sens value is dominated by the contribution from the first
summand in equation (6), where the Fisher information
weighs down the sensitivity at the edges of the data because
of the larger uncertainty. The blue color shows the predictive
distribution p(y|x2, x1 = 0) and R-sens for x2. Now the
first summand in equation (6) is almost zero because β̂2 is
small. In this case, the second term dominates because there
is still a significant amount of epistemic uncertainty in the
model. Comparing R-sens for x1 and x2 illustrates the two
different ways that R-sens takes uncertainty into account.
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Figure 2: Top: Predictive distributions p(y|x1, x2 = 0) (red)
and p(y|x2, x1 = 0) (blue) for the linear regression model
in Section 2.3. Bottom: R-sens uncertainty-aware sensitivity
measure for x1 (red) and x2 (blue). The dashed and dotted
lines show the contributions of the two summands in equa-
tion (6).

Note that R-sens is model-agnostic in the sense that it does
not take into account the fact that the prediction function is
constrained to be linear in the example above. In addition,
the different terms in equation (4) may not have such clear
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interpretations for other likelihoods or models. For example,
in a binary classification task, the posterior predictive dis-
tribution can be considered a Bernoulli distribution which
has only a single parameter. Nevertheless, the principle of
taking into account the uncertainty through the predictive
distribution still holds.

2.4 APPLICABILITY

The requirements for using the proposed R-sens and R-sens2
methods are that we must have an analytical representation
of the predictive distribution conditioned on the predictor
variables, and that the derivatives of its parameters with
respect to the predictors must be available. This somewhat
restricts their applicability, but computational tools such
as automatic differentiation make practical implementation
easier [Baydin et al., 2018]. There are no restrictions to
the support of the predictive distribution, and the methods
are thus applicable to many learning tasks. However, be-
cause the methods adjust sensitivity based on the model
uncertainty, the results may be misleading if the model
lacks proper uncertainty quantification. We thus recommend
using the methods for probabilistic models where the uncer-
tainty is properly taken into consideration. In practice, the
methods are most useful when the number of observations
is relatively small and there is a lot of uncertainty about the
parameters of the model.

Because the proposed methods measure the importance of
predictor variables locally, they are most useful for nonlin-
ear and complex models. For example, they can be useful for
sensitivity analysis with Gaussian process models, which
can represent flexible nonlinear functions with interactions,
but still have good uncertainty quantification [O’Hagan,
1978, MacKay, 1998, Neal, 1998, Rasmussen and Williams,
2006]. Moreover, the predictive distribution is available in
a parametric form, although for certain likelihoods some
approximations are required. In the supplementary mate-
rial we show the derivatives required for the R-sens and
R-sens2 methods for Gaussian processes and commonly
used likelihoods.

The added computational expense of the R-sens and R-
sens2 methods compared to just differentiating the mean
prediction depends on the used model. For many models,
the cost is not significant compared to the cost of inference.

2.4.1 Global Measures

For assessing the global importance of predictor variables or
pairs of variables, the local R-sens and R-sens2 sensitivity
measures can be aggregated over the empirical distribution
of the predictors similarly to EAD in equation (1). By using
the global measures, the predictor variables or pairwise inter-
actions can be ranked by global importance. This approach
is also taken in the experiments of Section 3.

2.5 FINITE DIFFERENCE APPROXIMATION

Paananen et al. [2019] propose a sensitivity analysis method
abbreviated KL, which is a finite difference like method
that evaluates the Kullback-Leibler divergence of predictive
distributions when the predictor variables are perturbed. If
we set α = 1 (where Rényi divergence equals the Kullback-
Leibler divergence), we show that the KL method is approx-
imately equivalent to the second order Taylor approximation
of R-sens

R-sens(x∗, xd, α = 1) ≈√
2D1[p(y∗|λ∗(x∗))||p(y∗|λ∗(x∗∗))]

|x∗∗d − x∗d|
.

Here, x∗∗ is equivalent to x∗ with predictor xd perturbed,
and D1 denotes the Kullback-Leibler divergence. We show
the full derivation in the supplementary material. The benefit
of the finite difference approximation is its generality, as it
requires only an analytical representation of the predictive
distribution but not the derivatives of its parameters with
respect to the predictors. However, using R-sens avoids
numerical errors related to finite difference and is easier
because the selection of the perturbation size is avoided.
For an appropriately chosen perturbation, the two equations
produce practically identical results up to a small numerical
error.

Our proposed R-sens2 measure is not directly approximable
with finite differences in the same way as R-sens. This is
because it would require second-order finite differences,
but the first-order finite difference using Kullback-Leibler
divergence already reduces the predictive distribution into
a single number. Riihimäki et al. [2010] perturb two pre-
dictor variables at a time with a unit length perturbation
and measure the change in predictions by Kullback-Leibler
divergence. For an infinitesimal perturbation this would be
equivalent to a directional derivative instead of the cross-
derivative in the R-sens2 method that is required to properly
assess interaction effects.

3 EXPERIMENTS

In this section, we demonstrate the practical utility of the
methods discussed in Section 2 for identifying important
predictor variables and interactions in nonlinear models.
First, we evaluate different variable importance methods on
simulated data using a hypothetical predictive function. This
way we can control the quality of the model fit and limit
the comparison strictly to the variable importance methods.
Second, we will use Gaussian process models to evaluate
ranking of main effects and interactions on both simulated
and real data.

We compare the R-sens and R-sens2 measures to several
alternative variable importance methods: 1) Expected abso-
lute derivative (EAD) or expected absolute Hessian (EAH),
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which correspond to R-sens and R-sens2 without predictive
uncertainty [Cui et al., 2020], 2) Absolute expected deriva-
tive (AED) or absolute expected Hessian (AEH) that take
the expectation over x inside the absolute value [Cui et al.,
2020], 3) Average predictive comparison (APC) [Gelman
and Pardoe, 2007], 4) Shapley values [Shapley, 1953, Štrum-
belj and Kononenko, 2014, Lundberg et al., 2018], 5) Partial
dependence based importance (PD) [Greenwell et al., 2018],
6) Permutation feature importance (PFI) [Fisher et al., 2019],
7) Variance of the predictive mean (VAR) [Paananen et al.,
2019], and 8) H-statistic [Friedman et al., 2008]. We omit
comparison to the KL method of Paananen et al. [2019]
because it is equivalent to R-sens up to numerical accuracy.
We still show the results of their VAR method, which has
no direct connection to R-sens. We have used the methods
such that their computational cost is approximately equiva-
lent. In the supplementary material, we detail the practical
computational cost of the compared methods.

3.1 SIMULATED INDIVIDUAL EFFECTS

In the first experiment we compare different methods for
ranking individual predictors based on their importance. We
simulate 200 observations from 10 predictors, and construct
the target variable y as a sum of 10 effects with added
Gaussian noise

xi ∼ pxi(xi), i = 1, . . . , 10,

y = ftrue(x) =

10∑
i=1

Aiftrue,i(xi) + ε.

The shape of each effect ftrue,i(xi) is the same for all i,
but they have different strengths varying from A1 = 1 to
A10 = 10. We consider 6 different experiments with dif-
ferent function shapes. By considering only a single effect
shape for each experiment, we can unambiguously define
the true importance of each predictor. We also repeat the
experiment with 4 different distributions for the predictors.

When evaluating the ranking methods, we first use the true
data generating function ftrue(x) as the mean prediction of
the model. To simulate the uncertainty of the prediction
model, we set the predictive distribution as Gaussian whose
variance increases quadratically as distance from the mean
of the data increases. Using the true data generating function
allows us to strictly compare the ranking methods without
being obfuscated by a non-optimal model fit. Because all of
the compared methods use the mean prediction for ranking
the predictors, using the true data generating function does
not favour any single method over the others.

To consider the effect of taking uncertainty into account
in the ranking, we also consider an imperfect version of
the ground-truth model, where each term Aiftrue,i(xi) is
multiplied with a term (|Abias,i||xi|3 + 1) where Abias,i is
drawn from a normal distribution with mean 0 and standard

deviation 0.02. This simulates a situation where the model
is correct where the uncertainty is small, but is biased at the
edges of the data where the uncertainty is larger.

In Table 1 we show the results of different ranking methods
for 6 different functions ftrue(x). Here, the distributions pxi

of the predictors are independent Student-t3 distributions.
In the supplementary material, we show the results of the ex-
periment with three alternative distributions pxi

. The results
are generated from 500 independent repetitions. In each
repetition, the 10 predictors are ranked in importance from
1 to 10. For each data realisation, we compute the average
error in the ranks across the predictors with respect to the
true ranking, and compare that error to the ranking error of
R-sens. A negative number thus means that the error is on
average smaller than for R-sens. Table 1 reports the mean
and 95% uncertainty invervals of the comparative ranking
errors across the 500 independent data realisations.

The top section of Table 1 shows the ranking errors when us-
ing the ground-truth predictions function. R-sens and EAD
are almost equivalent in many cases, but R-sens is signif-
icantly better for functions that have a large derivative in
the tails of the data (x3 and x exp(−x)). Both R-sens and
EAD outperform the other methods in most cases. AED
does well for function that are monotonic, but it fails badly
for non-monotonic functions. This is expected because the
derivative of these functions varies from positive to negative.

In the bottom section of Table 1 when the model’s predic-
tions are imperfect, the difference in the ranking errors of R-
sens and EAD is significantly larger in favour of R-sens. R-
sens is also consistently better than the alternative methods
with just a few exceptions. This shows that the uncertainty-
aware sensitivity can be more reliable when there is a signif-
icant amount of uncertainty. In the supplementary material,
we repeat the experiment with three alternative distributions
pxi

, including independent and correlated normal distri-
butions. These results have similar conclusions: R-sens is
mostly similar to EAD, but better in specific situations.

3.2 SIMULATED INDIVIDUAL AND PAIRWISE
EFFECTS

In the second experiment, we study how accurately different
methods evaluate interactions when the model has both main
effects and interaction effects. We simulate 12 predictors
and 8 main effects with different shapes and strengths, and
three equally important pairwise interaction effects which
are simply the product of the two predictors, i.e. xdxe. These
are chosen such that the predictors of the first interaction do
not have main effects, one of the predictors in the second
interaction has a main effect, and both predictors of the third
interaction have a main effect. To study how many obser-
vations the different methods require to reliably detect the
true interactions in the data, we generate data with different
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Table 1: Average relative errors in rankings compared to R-sens and 95% uncertainty intervals from 500 data realisations in
the simulated example of Section 3.1. A negative value indicates better ranking than R-sens.

Ground-truth models

Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 2.3± 0.2 1.1± 0.1 3.6± 0.2 3.9± 0.2
x3 0 2.0± 0.2 2.0± 0.2 9.5± 0.5 10.0± 0.4 1.2± 0.3 15.8± 0.5 5.7± 0.3

x+ cos(3x) 0 −0.1± 0.0 4.0± 0.2 5.9± 0.3 1.7± 0.2 1.8± 0.2 2.8± 0.2 3.0± 0.2
sin(3x) 0 0.0± 0.0 20.3± 0.6 11.5± 0.4 0.4± 0.1 0.3± 0.1 0.4± 0.1 8.3± 0.5

x exp(−x) 0 0.6± 0.1 0.6± 0.1 0.7± 0.3 1.1± 0.2 −16.5± 0.7 5.6± 0.7 −4.6± 0.7
exp(−x2) 0 0.0± 0.0 20.5± 0.6 9.3± 0.3 0.3± 0.1 −0.1± 0.1 0.3± 0.1 0.0± 0.1

Imperfect models
Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 2.6± 0.5 2.7± 0.5 10.8± 0.7 20.1± 0.7 22.4± 0.9 21.3± 0.7 1.1± 0.4
x3 0 1.4± 0.5 1.7± 0.5 6.7± 0.7 9.7± 0.8 12.3± 0.9 9.7± 0.8 −4.4± 0.5

x+ cos(3x) 0 2.6± 0.4 6.7± 0.5 14.0± 0.6 23.4± 0.7 25.1± 0.9 24.8± 0.6 4.0± 0.4
sin(3x) 0 2.1± 0.3 18.9± 0.6 10.5± 0.5 14.8± 0.6 5.3± 0.9 20.8± 0.7 1.0± 0.3

x exp(−x) 0 0.2± 0.3 0.5± 0.3 4.3± 0.8 3.9± 0.8 5.2± 1.0 4.0± 0.8 −2.7± 0.8
exp(−x2) 0 0.0± 0.0 20.6± 0.6 9.1± 0.3 0.3± 0.1 0.0± 0.1 0.3± 0.1 0.0± 0.1

numbers of observations ranging from 50 to 300.

In Figure 3, we plot the importance values averaged from 50
simulations for the three interacting variable pairs as well as
three variable pairs without an interaction effect. The solid
lines represent pairs with a true interaction, and the dotted
lines are pairs without an interaction. In the left plot, both
variables in the pairs have a main effect. In the middle plot,
only one variable in the pairs has a main effect, and in the
right plot neither variable has a main effect. For each of the
50 simulations, the interaction importance values are scaled
so that the maximum given by each method is one. Thus,
the ideal value is 1 for the solid lines and 0 for the dotted
lines.

Figure 3 shows that even when increasing the number of
observations, the HS method over-emphasizes the variable
pair where neither variable has a main effect (right plot),
whereas the PD method over-emphasizes the variable pair
where both variables have a main effect (left plot). The other
methods correctly identify the interactions as equally rele-
vant when increasing the number of observations. For the
true interactions (solid lines), EAH and R-sens2 are almost
indistinguishable, but R-sens2 gives higher importance to
the nonexistent interactions (dotted lines) when there is sig-
nificant uncertainty because the number of observations is
small.

3.3 BENCHMARK DATA SETS

In real data experiments, we focus on assessing the perfor-
mance of the pairwise interaction method R-sens2, because
the experiments of Paananen et al. [2019] already demon-
strate the effectiveness of (the finite difference approxima-

tion of) R-sens empirically. We use two publicly available
data sets. The first is the Concrete Slump data set where the
compressive strength of concrete is predicted based on the
amount of different components included [Yeh, 2007]. The
second is a Bike sharing data set, where the target variable
is the hourly number of bike uses from a bicycle rental sys-
tem [Fanaee-T and Gama, 2014]. The Concrete data has 103
observations and 7 predictors. From the Bike sharing data,
we picked observations from February across two years,
resulting in 1339 observations and 6 predictors. We model
the problems using Gaussian process models with an expo-
nentiated quadratic covariance function and either Gaussian
(Concrete) or Poisson (Bike) likelihood. With the Poisson
likelihood, we use the Laplace approximation for the latent
values, and thus the resulting predictive distribution is an
approximation but has an analytical solution. The details
of the models and the derivatives needed for R-sens2 are
presented in the supplementary material.

To evaluate the plausibility of the interactions identified by
the different methods, we compare the out-of-sample predic-
tive performance of models with explicit interaction terms
chosen based on interactions identified by each method.
We compare the performance of the models using cross-
validation with 50 random splits into training and test sets,
and log predictive density as the utility function. The num-
ber of training observations used is 80 in the Concrete data
and 500 in the Bike sharing data. For each training set, the
Gaussian process model with full interactions is fitted, and
the pairwise interactions are identified with R-sens2 and 5
other methods. Based on these, models with only 0 to 5 pair-
wise interaction terms are fitted again, and their predictive
performance is evaluated on the test data.
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Figure 3: The interaction importance values given to six variable pairs in data sets with different numbers of observations.
The solid lines represent pairs with a true interaction, and dotted lines are pairs without an interaction. The left plot depicts
two pairs where both variables in the pairs have a main effect. In the middle plot, only one variable in the pairs has a main
effect, and in the right plot neither variable has a main effect. In all plots, the ideal values would be 1 and 0 for the solid and
dotted lines, respectively. The error bars represent 95% uncertainty intervals for the means from 50 simulated data sets.

The mean log predictive densities (MLPDs) across different
test splits as well as 95% uncertainty intervals of the means
are shown in Figure 4. The figure shows that in the Bike
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5 interactions
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Figure 4: Mean log predictive densities (MLPDs) on inde-
pendent test sets from the Concrete and Bike sharing data
sets for Gaussian process models with different numbers
of interactions. With each method, the interactions were
identified from each training data set using the model with
all interactions. The error bars represent 95% uncertainty
intervals for the means from 50 different train-test splits.
The dotted and dashed lines represent the MLPD for models
with no interactions and all interactions, respectively.

sharing data, modelling only the three strongest pairwise
interactions increases the out-of-sample predictive perfor-
mance to the level of the model with all possible interactions.
R-sens2 does equally well compared to EAH, which both
identify more important interactions on average than the
competing methods. In the Concrete data set, adding even
5 pairwise interactions does not reach the performance of
the model with all interactions. In this data there are no

significant differences between the methods, except for HS
which is clearly worse than the rest.

We also evaluate the stability of the interaction rankings
by computing the variability in the rankings across 100
Bootstrap samples of the data. Table 2 shows the entropy in
the rankings of each method across the Bootstrap samples.
In both data sets, R-sens2 and EAH have smaller entropies
than the competing methods, meaning that their rankings
are more stable.

Table 2: Variability in rankings across different Bootstrap
samples of the benchmark data sets.

Data R-sens2 EAH AEH PD HS SHAP

Concrete 1.86 1.80 1.99 2.04 2.26 1.90
Bike 1.61 1.63 2.28 2.16 2.61 2.58

4 CONCLUSION

In this work, we presented an uncertainty-aware sensitivity
analysis method that is based on differentiating Rényi di-
vergences of predictive distributions. We showed that the
method takes model uncertainty into account in a principled
way and generalises to different likelihoods. For likelihoods
in the location-scale family, the method is a direct extension
to the absolute derivative or absolute Hessian of the mean
prediction which are non-Bayesian sensitivity measures.
Even though the method generalises to different predictive
distributions, we recommend using it for models that have
well calibrated uncertainty. The proposed method requires
an analytical representation of the predictive distribution
of the model, which is not available for all models. This
could be generalised further, which is a possible direction
for future research.

We demonstrated empirically that the method can reliably
identify main effects as well as interactions in nonlinear
models for complex data sets. In a controlled simulation
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setting, we showed that using uncertainty-aware sensitivity
is beneficial in the presence of uncertainty when the used
model may be wrong. Moreover, the proposed methods
were equally good or better than previous derivative based
sensitivity analysis methods in all of the tested cases. We
can thus recommend using uncertainty-aware sensitivity
analysis in modelling situations with little data and/or lots
of uncertainty. We also demonstrated with two real data sets
that our proposed method identifies pairwise interactions
in nonlinear models that, when added to a model, improve
its predictive performance. In addition, the ranking of the
interactions between different Bootstrap samples of the data
has less variation compared to many alternative variable
importance methods.
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